
Puppet Enterprise 2023.8.2

pe | Contents | ii

Contents

Welcome to Puppet Enterprise® 2023.8.2... 7
PE software architecture...7
Component versions in recent PE releases.. 14
FIPS 140-2 enabled PE.. 16
Getting support... 17
Using the PE docs.. 25
Puppet platform documentation for PE..28
API index.. 30

Release notes..33
PE release notes..33
PE known issues...39
What's new since PE 2021.7..42

Getting started with Puppet Enterprise...52
Install PE...53

Install PE using installer tarball... 53
Install PE using PIM.. 54

Log in to the PE console... 59
Check the status of your primary server..59
Add nodes to the inventory..60
Add code and set up Code Manager..61
Manage Apache configuration on *nix targets.. 65

Install the apache module..66
Set up Apache node groups... 67
Organize webserver configurations with roles and profiles...68

Manage IIS configuration on Windows targets... 71
Install the iis module...72
Set up IIS node groups...73
Organize webserver configurations with roles and profiles...74

Next steps..78

Installing...78
Supported architectures...79
System requirements...83

Hardware requirements...83
Supported operating systems.. 84
Supported browsers...90
System configuration.. 90

What gets installed and where?..102
Installing PE..110

Install PE using the installer tarball... 111
Install PE using PIM.. 125

Purchasing and activating your Puppet Enterprise license.. 129
Installing agents.. 131

Install agents with the install script... 132

pe | Contents | iii

Install agents from the console.. 136
Install *nix agents...141
Install Windows agents...146
Install macOS agents.. 154
Install non-root agents.. 157
Managing certificate signing requests..160

Installing compilers...161
Installing client tools.. 168
Uninstalling... 172

Upgrading.. 175
Upgrade paths... 175
Upgrade cautions.. 176
Test modules before upgrading.. 183
Upgrading Puppet Enterprise..184

Upgrade PE using the installer tarball... 184
Upgrade PE using PIM...191

Upgrading agents.. 197
Upgrade agents using Puppet Plan...202

Migrate PE.. 202

Configuring Puppet Enterprise...203
Tune infrastructure nodes... 204
How to configure PE..212
Configure Puppet Server.. 217
Configure PuppetDB...222
Configure security settings... 224
Configure proxies..230
Configure the console...232
Configure orchestration.. 238
Configure ulimit..243
Analytics data collection.. 245
Static catalogs... 249

Configuring disaster recovery... 252
Disaster recovery.. 252
Configure disaster recovery..262

Accessing the console..269
Reaching the console..269
Logging in...269

Managing access..271
User permissions and user roles...272
Creating and managing local users and user roles.. 282
LDAP authentication.. 285

Connecting LDAP external directory services to PE...285
Working with LDAP users and user groups..292

SAML authentication..294
Connect a SAML identity provider to PE... 294
Connect Microsoft ADFS to PE.. 300

pe | Contents | iv

Connect Okta to PE..305
Token-based authentication.. 308
RBAC API.. 315

Forming RBAC API requests...316
RBAC service errors...318
RBAC API v1...321
RBAC API v2...369

Activity service API... 380
Forming activity service API requests... 380
Event types reported by the activity service..381
Events endpoints... 384

Monitoring and reporting..392
Monitoring infrastructure state... 393
Identify operational issues affecting infrastructure nodes... 399
Viewing and managing packages...400
Value report.. 401
Infrastructure reports...405
Analyzing changes across Puppet runs.. 409
Puppet Enterprise metrics and status monitoring...411
View and manage Puppet Server metrics.. 413

Get started with Graphite... 413
Available Graphite metrics...419

Metrics API...423
Metrics API v2... 424
Metrics API v1... 427

Status API... 429
Status API authentication... 431
Forming status API requests.. 431
Status API: services endpoint...432
Status API: services plaintext endpoint... 437
Status API: metrics endpoint..438

Managing nodes.. 444
Adding and removing agent nodes.. 445
Adding and removing agentless nodes...446
How nodes are counted.. 449
Running Puppet on nodes...450
Grouping and classifying nodes... 452
Making changes to node groups.. 461
Environment-based testing..463
Preconfigured node groups...467
Managing agent certificates..471
Managing Windows nodes... 472
Designing system configs (roles and profiles)...498

The roles and profiles method..498
Roles and profiles example.. 502
Designing advanced profiles.. 505
Designing convenient roles.. 522

Node classifier API v1... 525
Forming node classifier API requests.. 526
Groups endpoints..528
Classes endpoint..544
Classification endpoints.. 545

pe | Contents | v

Commands endpoint... 555
Environments endpoints..557
Nodes check-in history endpoints.. 560
Group children endpoint...563
Rules endpoint.. 567
Import hierarchy endpoint.. 567
Last class update endpoint... 570
Update classes endpoint... 570
Validation endpoint...571
Node classifier API errors..574

Node classifier API v2... 575
Classification endpoints.. 575

Node inventory API v1.. 578
Forming node inventory API requests... 578
Command endpoints... 579
Query endpoints.. 583
Node inventory API errors... 586

Managing patches... 586
Configuring patch management..587
Patching nodes.. 593

Orchestrating Puppet runs, tasks, and plans...597
How Puppet orchestrator works... 598
Setting up the orchestrator workflow...602
Configuring Puppet orchestrator.. 609
Run Puppet on demand.. 616

Run Puppet on demand from the console..616
Run Puppet on demand from the CLI... 623

Tasks in PE...627
Installing tasks.. 627
Running tasks in PE... 628
Writing tasks... 642

Plans in PE..660
Plans in PE versus Bolt plans.. 661
Installing plans..663
Running plans in PE...664
Writing plans...669

Orchestrator API v1..694
Forming orchestrator API requests...694
Root endpoints.. 695
Command endpoints... 697
Inventory endpoints.. 716
Jobs endpoints...719
Scheduled jobs endpoints... 733
Plans endpoints... 748
Plan jobs endpoints...752
Tasks endpoints...765
Usage endpoints.. 769
Scopes endpoints...771
Orchestrator API error responses... 774

Migrating Bolt tasks and plans to PE.. 775

Managing and deploying Puppet code... 778
Managing environments with a control repository.. 779
Managing environment content with a Puppetfile... 783
Managing code with Code Manager.. 790

How Code Manager works...791
Set up Code Manager... 794
Configure Code Manager... 794
Configure Code Manager concurrency.. 800
Lockless code deploys..801
Customize Code Manager configuration in Hiera... 803
Triggering Code Manager on the command line...814
Triggering Code Manager with a webhook... 820
Triggering Code Manager with custom scripts..822
Troubleshooting Code Manager... 823
Code Manager API... 826
About file sync... 836

Managing code with r10k...840
Set up r10k..841
Configure r10k.. 841
Customizing r10k configuration...842
Deploying environments with r10k..851
r10k command reference.. 853

SSL and certificates..855
Regenerate the console certificate..856
Regenerate the SAML certificate...857
Regenerate infrastructure certificates... 857
Use an independent intermediate certificate authority...860
Use a custom SSL certificate for the console..862
Generate a custom Diffie-Hellman parameter file...864
Enable TLSv1... 864

Maintenance...865
Back up and restore PE..865
Database maintenance...873
Rotating the inventory service secret key..874

Troubleshooting...875
Log locations...875
Troubleshooting installation... 878
Troubleshooting disaster recovery..879
Troubleshooting puppet infrastructure run commands..879
Troubleshooting connections between components...880
Troubleshooting the databases..882
Troubleshooting SAML connections..883
Troubleshooting backup and restore.. 884
Troubleshooting Windows..885

Copyright and trademark notices...889

pe | Welcome to Puppet Enterprise® 2023.8.2 | 7

Welcome to Puppet Enterprise® 2023.8.2

Puppet Enterprise (PE) helps you be productive, agile, and collaborative while managing your IT infrastructure.
PE combines a model-driven approach with imperative task execution so you can effectively manage hybrid
infrastructure across its entire lifecycle. PE provides the common language that all teams in an IT organization can
use to successfully adopt practices such as version control, code review, automated testing, continuous integration,
and automated deployment.

Important: Before you use the product and its documentation, review the Copyright and trademark notices on page
889.

Puppet Enterprise docs links Other useful links

Getting started

Release notes

Architecture overview

System requirements

Getting started guide

Install and configure PE

Install PE

Install agents

Add agentless nodes

Configure and tune PE

Manage your infrastructure

Manage nodes

Run jobs, tasks, and plans

Deploy Puppet® code

Docs for Puppet Enterprise suite

Continuous Delivery

Security Compliance Management

Docs for related Puppet products

Open source Puppet

Puppet Bolt®

Puppet Development Kit

Get help

Support portal

PE support lifecycle

Archived PE docs

Share and contribute

Puppet community

Puppet Forge

PE software architecture
Puppet Enterprise (PE) is made up of various components and services including the primary server and compilers,
the Puppet agent, console services, Code Manager and r10k, orchestration services, and databases.

The following diagram shows the architecture of a typical PE installation.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/continuous-delivery/
https://www.puppet.com/docs/comply/latest/comply.html
https://www.puppet.com/docs/puppet/8/puppet_index.html
https://www.puppet.com/docs/bolt/
https://www.puppet.com/docs/pdk/latest/pdk.html
https://support.puppet.com/hc/en-us
https://www.puppet.com/misc/puppet-enterprise-lifecycle
https://www.puppet.com/community
https://forge.puppet.com

pe | Welcome to Puppet Enterprise® 2023.8.2 | 8

Related information
Component versions in recent PE releases on page 14
These tables show which components are in Puppet Enterprise (PE) releases, covering recent long-term supported
(LTS) releases. Component version tables for overlap support and EOL releases are available in the Documentation
for other PE versions on page 27.

The primary server and compilers
The primary server is the central hub of activity and process in Puppet Enterprise. This is where code is compiled to
create agent catalogs, and where SSL certificates are verified and signed.

PE infrastructure components are installed on a single node: the primary server. The primary server always contains
a compiler and a Puppet Server. As your installation grows, you can add additional compilers to distribute the catalog
compilation workload.

Each compiler contains the Puppet Server, the catalog compiler, and an instance of file sync.

Puppet Server

Puppet Server is an application that runs on the Java Virtual Machine (JVM) on the primary server. In addition
to hosting endpoints for the certificate authority service, it also powers the catalog compiler, which compiles
configuration catalogs for agent nodes, using Puppet code and various other data sources.

Catalog compiler

To configure a managed node, the agent uses a document called a catalog, which it downloads from the primary
server or a compiler. The catalog describes the desired state for each resource on the node that you want to manage,
and it can specify dependency information for resources that need to be managed in a certain order.

File sync

File sync keeps your code synchronized across multiple compilers. When triggered by a web endpoint, file sync takes
changes from the working directory on the primary server and deploys the code to a live code directory. File sync
then deploys that code to any compilers so that your code is deployed only when it's ready.

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 9

Certificate Authority

The internal certificate authority (CA) service:

• Accepts certificate signing requests (CSRs) from nodes
• Serves certificates and a certificate revocation list (CRL) to nodes
• Accepts commands to sign or revoke certificates (optional)

The CA service uses CSPRNG-generated .pem files in the standard ssldir to store credentials. You can use
the puppetserver ca command to interact with these credentials, including listing, signing, and revoking
certificates.

Depending on your architecture and security needs, you can host the CA server on either the primary server or its own
node. The CA service on compilers is configured, by default, to proxy CA requests to the CA server.

By default, the CA private key is located on the CA server at cadir/ca_key.pem. The default cadir is /etc/
puppetlabs/puppetserver/ca. If you choose to use another directory, the key file must be stored in location
readable by the pe-puppet user.

If you generate your own CA private key, the key must be RSA and the key file's PEM contents must begin with
either BEGIN RSA PRIVATE KEY or BEGIN PRIVATE KEY. The entire CA chain must use the SHA-2 (or
stronger) signing algorithm. Additionally, because the CA private key is one of the most critical files for security in
your Puppet certificate infrastructure, the pe-puppet user must be the file owner and the permissions must be set to
either mode: 0640 or -rw-r-----.

Related information
Hardware requirements on page 83
These hardware requirements are based on internal testing at Puppet and are provided as minimum guidelines to help
you determine your hardware needs.

Installing compilers on page 161
As your Puppet Enterprise infrastructure scales up to 4,000 nodes and beyond, add load-balanced compilers to your
installation to increase the number of agents you can manage.

About file sync on page 836
File sync helps Code Manager keep your Puppet code synchronized across your primary server and compilers.

The Puppet agent
Managed nodes run the Puppet agent application, usually as a background service. The primary server and any
compilers also run a Puppet agent.

Periodically, the agent sends facts to a primary server and requests a catalog. The primary server compiles the catalog
using several sources of information, and returns the catalog to the agent.

After it receives a catalog, the agent applies it by checking each resource the catalog describes. If it finds any
resources that are not in their desired state, it makes the changes necessary to correct them. (Or, in no-op mode, it
reports on what changes would have been made.)

After applying the catalog, the agent submits a report to its primary server. Reports from all the agents are stored in
PuppetDB and can be accessed in the console.

Puppet agent runs on *nix and Windows systems.

• Puppet agent on *nix systems
• Puppet agent on Windows systems

Facter

Facter is the cross-platform system profiling library in Puppet. It discovers and reports per-node facts, which are
available in your Puppet manifests as variables.

Before requesting a catalog, the agent uses Facter to collect system information about the machine it’s running on.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/dirs_ssldir.html
https://puppet.com/docs/puppet/6.10/services_agent_unix.html
https://puppet.com/docs/puppet/6.10/services_agent_windows.html
https://puppet.com/docs/facter/3.12/

pe | Welcome to Puppet Enterprise® 2023.8.2 | 10

For example, the fact os returns information about the host operating system, and networking returns the
networking information for the system. Each fact has various elements to further refine the information being
gathered. In the networking fact, networking.hostname provides the hostname of the system.

Facter ships with a built-in list of core facts, but you can build your own custom facts if necessary.

You can also use facts to determine the operational state of your nodes and even to group and classify them in the NC.

Console services
The console services includes the console, role-based access control (RBAC) and activity services, and the node
classifier.

The console

The console is the web-based user interface for managing your systems.

The console can:

• browse and compare resources on your nodes in real time.
• analyze events and reports to help you visualize your infrastructure over time.
• browse inventory data and backed-up file contents from your nodes.
• group and classify nodes, and control the Puppet classes they receive in their catalogs.
• manage user access, including integration with external user directories.

The console leverages data created and collected by PE to provide insight into your infrastructure.

RBAC

In PE, you can use RBAC to manage user permissions. Permissions define what actions users can perform on
designated objects.

For example:

• Can the user grant password reset tokens to other users who have forgotten their passwords?
• Can the user edit a local user's role or permissions?
• Can the user edit class parameters in a node group?

The RBAC service can connect to external LDAP directories. This means that you can create and manage users
locally in PE, import users and groups from an existing directory, or do a combination of both. PE supports
OpenLDAP and Active Directory.

You can interact with the RBAC and activity services through the console. Alternatively, you can use the RBAC
service API and the activity service API. The activity service logs events for user roles, users, and user groups.

PE users generate tokens to authenticate their access to certain command line tools and API endpoints. Authentication
tokens are used to manage access to the following PE services and tools: Puppet orchestrator, Code Manager , Node
Classifier, role-based access control (RBAC), and the activity service.

Authentication tokens are tied to the permissions granted to the user through RBAC, and provide users with the
appropriate access to HTTP requests.

Node classifier

PE comes with its own node classifier (NC), which is built into the console.

Classification is when you configure your managed nodes by assigning classes to them. Classes provide the Puppet
code—distributed in modules—that enable you to define the function of a managed node, or apply specific settings
and values to it. For example, you might want all of your managed nodes to have time synchronized across them. In
this case, you would group the nodes in the NC, apply an NTP class to the group, and set a parameter on that class to
point at a specific NTP server.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/facter/3.12/core_facts.html

pe | Welcome to Puppet Enterprise® 2023.8.2 | 11

You can create your own classes, or you can take advantage of the many classes that have already been created by the
Puppet community. Reduce the potential for new bugs and to save yourself some time by using existing classes from
modules on the Forge, many of which are approved or supported by Puppet by Perforce

You can also classify nodes using the NC API.

Related information
Managing access on page 271
Role-based access control (RBAC) is used to grant individual users the permission to perform specific actions.
Permissions are grouped into user roles, and each user is assigned at least one user role.

Managing nodes on page 444
Common node management tasks include adding and removing nodes from your deployment, grouping and
classifying nodes, and running Puppet on nodes. You can also deploy code to nodes using an environment-based
testing workflow or the roles and profiles method.

Code Manager and r10k
PE includes tools for managing and deploying your Puppet code: Code Manager and r10k.

These tools install modules, create and maintain environments, and deploy code to your primary servers, all based on
code you keep in Git. They sync the code to your primary servers, so that all your servers start running the new code
at the same time, without interrupting agent runs.

Both Code Manager and r10k are built into PE, so you don't have to install anything, but you need to have a basic
familiarity with Git.

Code Manager comes with a command line tool which you can use to trigger code deployments from the command
line.

Related information
Managing and deploying Puppet code on page 778
Puppet Enterprise (PE) includes built-in tools for managing and deploying your Puppet code. Code Manager and r10k
are code management tools that automatically install modules, create and maintain environments, and deploy new
code to your primary server and compilers, all based on version control of your Puppet code and data.

Triggering Code Manager on the command line on page 814
Use the puppet-code command to trigger Code Manager from the command line and deploy your environments.

How Puppet orchestrator works on page 598
With the Puppet orchestrator, you can run Puppet, tasks, or plans on-demand.

Orchestration services
Orchestration services is the underlying toolset that manages Puppet runs, tasks, and plans, allowing you to make on-
demand changes in your infrastructure.

For example, you can use it to enforce change on the environment level without waiting for nodes to check in for
regular 30-min intervals, or use it to schedule a task on target nodes once per day.

The orchestration service interacts with PuppetDB to retrieve facts about nodes. To run orchestrator jobs, users must
first authenticate to Puppet Access, which verifies their user and permission profile as managed in RBAC.

Agentless Catalog Executor (ACE) service

The ACE service enables you to run Puppet jobs, like tasks and plans, on nodes that don't have a Puppet agent
installed on them. ACE service primarily runs through the orchestrator but it can be configured by itself. Go to PE
ACE server configuration on page 615 to learn about configuring ACE.

Bolt vs ACE: Orchestrator uses both ACE and Bolt to run tasks and plans. While both can act on agentless targets,
the primary difference is that Bolt server works with agentless nodes over WinRM or SSH, whereas ACE works with
agentless devices, like network switches and firewalls, over other transports. Go to PE Bolt server configuration on
page 614 to learn about how Bolt works in PE and configuring the Bolt server.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppetlabs.com/
https://puppet.com/docs/puppet/6.10/environments_about.html

pe | Welcome to Puppet Enterprise® 2023.8.2 | 12

PE databases
PE uses PostgreSQL as a database backend. You can use an existing instance, or PE can install and manage a new
one.

The PE PostgreSQL instance includes the following databases:

Database Description

pe-activity Activity data from the Classifier, including who, what
and when

pe-classifier Classification data, all node group information

pe-puppetdb Exported resources, catalogs, facts, and reports (see
more, below)

pe-rbac Users, permissions, and AD/LDAP info

pe-orchestrator Details about job runs, users, nodes, and run results

PuppetDB

PuppetDB collects data generated throughout your Puppet infrastructure. It enables advanced features like exported
resources, and is the database from which the various components and services in PE access data. Agent run reports
are stored in PuppetDB.

See the PuppetDB overview for more information.

Related information
Database maintenance on page 873
You can optimize the Puppet Enterprise (PE) databases to improve performance.

Security and communications
Puppet Enterprise (PE) services and components use a variety of communication and security protocols.

Service/Component Communication Protocol Authentication Authorization

Puppet Server HTTPS SSL certificate verification
with Puppet CA

trapperkeeper-auth

Certificate Authority HTTPS SSL certificate verification
with Puppet CA

trapperkeeper-auth

Puppet agent HTTPS SSL certificate verification
with Puppet CA

n/a

PuppetDB HTTPS externally, or
HTTP on the loopback
interface

SSL certificate verification
with Puppet CA

SSL certificate allow list

PostgreSQL PostgreSQL TCP, SSL for
PE

SSL certificate verification
with Puppet CA

SSL certificate allow list

Activity service HTTPS SSL certificate verification
with Puppet CA, token
authentication

RBAC user-based
authorization

RBAC HTTPS SSL certificate verification
with Puppet CA, token
authentication

RBAC user-based
authorization

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 13

Service/Component Communication Protocol Authentication Authorization

Classifier HTTPS SSL certificate verification
with Puppet CA, token
authentication

RBAC user-based
authorization

Console Services UI HTTPS Session-based
authentication

RBAC user-based
authorization

Orchestrator HTTPS, Secure web
sockets

RBAC token authentication RBAC user-based
authorization

PXP agent Secure web sockets SSL certificate verification
with Puppet CA

n/a

PCP broker Secure web sockets SSL certificate verification
with Puppet CA

trapperkeeper-auth

File sync HTTPS SSL certificate verification
with Puppet CA

trapperkeeper-auth

Code Manager HTTPS; can fetch code
remotely via HTTP,
HTTPS, and SSH (via Git)

RBAC token
authentication; for remote
module sources, HTTP(S)
Basic or SSH keys

RBAC user-based
authorization; for remote
module sources, HTTP(S)
Basic or SSH keys

Compatible ciphers
Puppet Enterprise (PE) is compatible with a variety of ciphers for different services.

Most TLSv1.2 ciphers are available in IANA or OpenSSL format, depending on the service it's used for. You can use
the same TLSv1.3 ciphers interchangeably for OpenSSL and IANA formats.

Use IANA format for these services on TLSv1.2:

Puppet Server

PuppetDB

Console services

Orchestrator

Use OpenSSL format for these services on TLSv1.2:

Bolt Server

ACE server

PostgreSQL

NGINX

Restriction:

To use TLSv1.3, you must enable both TLSv1.2 and TLSv1.3.

To use ECDSA ciphers, you must use your own CA certificates with ECC keys, rather than Puppet Server-generated
certificates.

The following table describes the default TLSv1.2 and TLSv1.3 ciphers PE accepts for FIPS and non-FIPS
installations. If you use an unsupported cipher, it is rejected when the service tries to establish a connection.

Ciphers in IANA format Ciphers in OpenSSL
format

TLS protocol FIPS support

TLS_AES_256_GCM_SHA384TLS_AES_256_GCM_SHA384TLSv1.3 Yes

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 14

Ciphers in IANA format Ciphers in OpenSSL
format

TLS protocol FIPS support

TLS_AES_128_GCM_SHA256TLS_AES_128_GCM_SHA256TLSv1.3 Yes

TLS_CHACHA20_POLY1305_SHA256TLS_CHACHA20_POLY1305_SHA256TLSv1.3 No

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256ECDHE-ECDSA-
CHACHA20-POLY1305

TLSv1.2 No

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256ECDHE-RSA-
CHACHA20-POLY1305

TLSv1.2 No

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256ECDHE-ECDSA-
AES128-GCM-SHA256

TLSv1.2 Yes

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384ECDHE-ECDSA-
AES256-GCM-SHA384

TLSv1.2 Yes

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256ECDHE-RSA-AES128-
GCM-SHA256

TLSv1.2 Yes

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384DHE-RSA-AES256-
GCM-SHA384

TLSv1.2 No

Related information
FIPS 140-2 enabled PE on page 16
Puppet Enterprise (PE) is available in a FIPS (Federal Information Processing Standard) 140-2 enabled version. This
version is compatible with select third party FIPS-compliant platforms.

Component versions in recent PE releases
These tables show which components are in Puppet Enterprise (PE) releases, covering recent long-term supported
(LTS) releases. Component version tables for overlap support and EOL releases are available in the Documentation
for other PE versions on page 27.

Puppet Enterprise agent and server components

This table shows the components installed on all agent nodes.

PE Version Puppet and the
Puppet agent

Facter Ruby OpenSSL

2023.8.2 8.11.0 4.10 • MRI Ruby: 3.2.7
(Puppet agent)

• JRuby: 9.4.8.0 (Puppet
server)

3.0.15

2023.8.1 8.10.0 4.10 • MRI Ruby: 3.2.5
(Puppet agent)

• JRuby: 9.4.8.0 (Puppet
server)

3.0.15

2023.8.0 8.8.1 4.8.0 • MRI Ruby: 3.2.4
(Puppet agent)

• JRuby: 9.4.8.0 (Puppet
server)

3.0.14

2023.7 8.6.0 4.7.0 3.2.3 3.0.13

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 15

PE Version Puppet and the
Puppet agent

Facter Ruby OpenSSL

2023.6 8.4.0 4.5.2 3.2.2 3.0.12

2023.5 8.3.1 4.5.1 3.2.2 3.0.11

2023.4 8.2.0 4.4.3 3.2.2 3.0.10

2023.2 7.24.0 4.3.1 2.7.7 1.1.1t

2023.1 7.24.0 4.3.1 2.7.7 1.1.1t

2023.0 7.21.0 4.2.14 2.7.7 1.1.1q

2021.7.10 7.35.0 4.8.0 2.7.8 1.1.1v

2021.7.9 7.32.1 4.8.0 2.7.8 1.1.1v

2021.7.8 7.30.0 4.7.0 2.7.8 1.1.1v

2021.7.7 7.28.0 4.5.2 2.7.8 1.1.1v

2021.7.6 7.27.0 4.5.1 2.7.8 1.1.1v

2021.7.5 7.26.0 4.4.3 2.7.8 1.1.1v

2021.7.4 7.24.0 4.3.1 2.7.7 1.1.1t

2021.7.3 7.24.0 4.3.1 2.7.7 1.1.1t

2021.7.2 7.21.0 4.2.14 2.7.7 1.1.1q

2021.7.1 7.20.0 4.2.13 2.7.6 1.1.1q

2021.7.0 7.18.0 4.2.11 2.7.6 1.1.1q

This table shows components installed on server nodes.

PE Version Puppet
Server

PuppetDB r10k Bolt
Services

Agentless
Catalog
Executor
(ACE)
Services

PostgreSQL Java Nginx

2023.8.2 8.8.0 8.9.0 5.0.0 3.30.0 1.2.4 14.16 17.0.14.71.26.3

2023.8.1 8.7.1 8.8.1 5.0.0 3.30.0 1.2.4 14.15 17.0.13.111.26.2

2023.8.0 8.6.3 8.7.0 4.1.0 3.30.0 1.2.4 14.13 17.0.12.71.26.2

2023.7 8.6.0 8.5.1 4.1.0 3.29.0 1.2.4 14.11 17.0.11.91.25.1

2023.6 8.4.0 8.3.0 4.0.1 3.27.4 1.2.4 14.10 17.0.10.71.25.1

2023.5 8.3.0 8.2.0 4.0.0 3.27.4 1.2.4 14.8 17.0.9.91.25.1

2023.4 8.2.3 8.1.1 4.0.0 3.27.2 1.2.4 14.8 17.0.8.71.25.1

2023.2 7.11.0 7.13.0 3.15.4 3.26.2 1.2.4 14.5 17.0.7.61.22.0

2023.1 7.11.0 7.13.0 3.15.4 3.26.2 1.2.4 14.5 17.0.7.61.22.0

2023.0 7.9.4 7.12.1 3.15.4 3.26.2 1.2.4 14.5 17.0.5.81.22.0

2021.7.10 7.17.4 7.21.0 3.16.2 3.30.0 1.2.4 14.13 11.0.26.41.26.2

2021.7.9 7.17.2 7.19.1 3.16.2 3.30.0 1.2.4 14.13 11.0.24.81.26.2

2021.7.8 7.17.1 7.18.0 3.16.1 3.29.0 1.2.4 14.11 11.0.23.91.25.1

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 16

PE Version Puppet
Server

PuppetDB r10k Bolt
Services

Agentless
Catalog
Executor
(ACE)
Services

PostgreSQL Java Nginx

2021.7.7 7.15.0 7.16.0 3.16.0 3.27.4 1.2.4 14.10 11.0.22.71.25.1

2021.7.6 7.14.0 7.15.0 3.16.0 3.27.4 1.2.4 14.8 11.0.21.91.25.1

2021.7.5 7.13.1 7.14.0 3.16.0 3.27.2 1.2.4 14.8 11.0.20.81.25.1

2021.7.4 7.11.0 7.13.0 3.15.4 3.27.1 1.2.4 14.5 11.0.19.61.22.0

2021.7.3 7.11.0 7.13.0 3.15.4 3.27.1 1.2.4 14.5 11.0.19.61.22.0

2021.7.2 7.9.4 7.12.1 3.15.4 3.26.2 1.2.4 14.5 11.0.17.81.22.0

2021.7.1 7.9.2 7.11.2 3.15.2 3.26.1 1.2.4 14.5 11.0.6 1.22.0

2021.7.0 7.9.0 7.11.1 3.15.1 3.26.1 1.2.4 14.5 11.0 1.22.0

Server and agent compatibility
Use this table to verify that you're using a compatible version of the agent for your PE or Puppet Server.

Restriction: Puppet Server 6.x is no longer developed or tested.

ServerAgent

Puppet 6.x

PE 2019.1 through 2019.8

Puppet 7.x

PE 2021.0 through 2023.2

Puppet 8.x

PE 2023.4 and later

6.x # # #

7.x # #

8.x #

Task compatibility
Information is provided about the Puppet task specification that is compatible with Puppet Enterprise (PE).

PE 2023.8.2 supports version 1, revision 4 of the Puppet task specification.

FIPS 140-2 enabled PE
Puppet Enterprise (PE) is available in a FIPS (Federal Information Processing Standard) 140-2 enabled version. This
version is compatible with select third party FIPS-compliant platforms.

To install FIPS-enabled PE, install the appropriate FIPS-enabled primary server or agent package on a Supported
operating system with FIPS mode enabled. Primary and compiler nodes must be configured with sufficient available
entropy for the installation process to succeed.

Changes in FIPS-enabled PE installations

In order to operate on FIPS-compliant platforms, PE includes the following changes:

• All components are built and packaged against an agent’s vendored OpenSSL for the primary server, or against
OpenSSL built in FIPS mode for agents.

• All use of MD5 hashes for security has been eliminated and replaced.
• Forge and module tooling use SHA-256 hashes to verify the identity of modules.

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 17

• Proper random number generation devices are used on all platforms.
• All Java and Clojure components use FIPS Bouncy Castle encryption providers on FIPS-compliant platforms.

Limitations and cautions for FIPS-enabled PE installations

Be aware of the following when installing FIPS-enabled PE.

• A FIPS-enabled primary server supports only FIPS-enabled agents. Non-FIPS agents are not compatible with
FIPS-enabled PE.

• A Non-FIPS primary server supports both non-FIPS agents and FIPS-enabled agents.
• Migrating from non-FIPS versions of PE to FIPS-enabled PE requires reinstalling on a supported platform with

FIPS mode enabled.
• FIPS-enabled PE installations don't support extensions or modules that use the standard Ruby Open SSL library,

such as hiera-eyaml. As a workaround, you can use a non-FIPS-enabled primary server with FIPS-enabled agents,
which limits the issue to situations where only the primary uses the Ruby library. This limitation does not apply
to versions 1.1.0 and later of the splunk_hec module, which supports FIPS-enabled servers. The FIPS Mode
section of the module's Forge page explains the limitations of running this module in a FIPS environment.

Related information
Supported operating systems and devices on page 84
You can install PE and the agent on these supported platforms.

Installing PE on page 110
To install Puppet Enterprise (PE), you can use either the PE installer tarball for your operating system platform or
Puppet Installation Manager.

Getting support
You can get commercial support for versions of Puppet Enterprise (PE) in the leading-edge release stream (also
known as STS), long-term support (LTS), and overlap support (extended support for prior LTS streams until EOL).
You can also get support from our user community.

Puppet Enterprise support life cycle
Puppet Enterprise (PE) release streams are considered short-term support (STS), long-term support (LTS), overlap
support (extended support until EOL), and end of life (EOL).

Note: STS is the leading-edge release stream, also called the Puppet Enterprise (PE) release track.

For full information about release types, support phases and dates for each release, release frequency, and upgrade
recommendations, go to the Puppet Enterprise lifecycle policy page.

If the latest release with the most up-to-date features is right for you, download or try the latest PE release, or
download an older supported release from the Previous Releases page. We recommend following our Installing on
page 78 guide and understanding the System requirements on page 83 before downloading the installation
package.

Open source tools and libraries

PE uses open source tools and libraries. We use both externally maintained components, such as Ruby, PostgreSQL,
and JVM, and projects we own and maintain, such as Facter, Puppet agent, Puppet Server, and PuppetDB.

Projects we own and maintain are "upstream" of our commercial releases. Our open source projects move faster and
have shorter support life cycles than PE. We might discontinue updates to our open source platform components
before their commercial EOL dates. We vet upstream security and feature releases and update supported versions
according to customer demand and our Security policy.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/splunk_hec#fips-mode
https://puppet.com/products/puppet-enterprise/product-support-lifecycle/
https://puppet.com/try-puppet/puppet-enterprise/download/
https://puppet.com/misc/pe-files/previous-releases
https://puppet.com/security/

pe | Welcome to Puppet Enterprise® 2023.8.2 | 18

Support portal
We provide responsive, dependable, quality support to resolve any issues regarding the installation, operation, and use
of Puppet Enterprise (PE).

PE has two commercial support plans: Standard and Premium. Both allow you to report your support issues to our
confidential customer support portal. When you purchase PE, you receive an account and login details for the portal,
which includes access to our knowledge base.

Note: The term standard installation refers to a PE installation with up to 4,000 nodes. The Standard Support Plan is
not limited to this installation type. In the support context, Standard refers to the support level, not the PE installation
size.

Puppet metrics collector
The Puppet metrics collector can help troubleshoot performance issues with Puppet Enterprise (PE) components.

The Puppet metrics collector is packaged in a module that is installed with PE. By default, the module collects
Puppet services metrics and does not collect system metrics. You can enable and disable metrics collection by setting
Boolean values for these parameters.

• puppet_enterprise::enable_metrics_collection

• puppet_enterprise::enable_system_metrics_collection

Important: If you have a version of the puppetlabs-puppet_metrics_collector module, from the Forge
or other sources, specified in the code, you must remove this version before upgrading to allow the version bundled
with PE to be asserted.

Related information
How to configure PE on page 212
After you've installed Puppet Enterprise (PE), you can optimize it by configuring and tuning settings. For example,
you might want to add your certificate to the allowlist, increase the max-threads setting for http and https
requests, or configure the number of JRuby instances.

Puppet Enterprise metrics and status monitoring on page 411
You can use Puppet Enterprise (PE) metrics and status monitoring for your own performance tuning or provide the
information to Support for troubleshooting.

PE support script
When seeking support, you might be asked to run an information-gathering support script. This script collects a large
amount of system information and Puppet Enterprise (PE) diagnostics, compresses the data, and prints the location of
the zipped tarball when it finishes running.

The pe_support_script module, bundled with the installer, provides the script.

Running the support script

Run the support script on the command line of your primary server or any agent node running Red Hat Enterprise
Linux, Ubuntu, or SUSE Linux Enterprise Server operating systems with the command: /opt/puppetlabs/
bin/puppet enterprise support

PE version 2023.0 and later include version 3 of the support script. Version 3 has more options that can be used to
modify the support script behavior. As such, some options in version 3 are not available in combination with the --
v1 option. This is because the --v1 option activates the legacy (version 1) support script. Options not compatible
with version 1 are designated in the table below as Not compatible with the --v1 parameter.

These options can modify the support script output:

Option Description

--verbose Logs verbosely.

© 2024 Puppet, Inc., a Perforce company

https://support.puppet.com/hc/

pe | Welcome to Puppet Enterprise® 2023.8.2 | 19

Option Description

--debug Logs debug information.

--classifier Collects classification data.

--dir <DIRECTORY> Specifies where to save the support script's resulting
tarball.

--ticket <NUMBER> Specifies a support ticket number for record-keeping
purposes.

--encrypt Encrypts the support script's resulting tarball with
GnuPG encryption.

Note: You must have GPG or GPG2 available in your
PATH in order to encrypt the tarball.

--log_age Specifies how many days' worth of logs the support
script collects. Valid values are positive integers or all
to collect all logs, up to 1 GB per log. Default is 7 (seven
days).

--v1 Activate version 1 of the support script. This option
is not compatible with options designated as Not
compatible with the --v1 parameter.

--v3 Activate version 3 of the support script. This is a default
but can be overridden with --v1.

--list List diagnostics that can be enabled or disabled.
Diagnostics labeled "opt-in" must be explicitly enabled.
All others are enabled by default. Not compatible with
the --v1 parameter.

--enable <LIST> A comma-separated list of diagnostic names to enable.
Use the --list option to print available names. The
--enable option must be used to activate diagnostics
marked as "opt-in." Not compatible with the --v1
parameter.

--disable <LIST> A comma-separated list of diagnostic names to disable.
Use the --list option to print available names. Not
compatible with the --v1 parameter.

--only <LIST> A comma-separated list of diagnostic names to enable.
All other diagnostics are disabled. Use the --list
option to print available names. Not compatible with the
--v1 parameter.

--upload Upload the output tarball to Puppet Support via SFTP.
Requires the --ticket <NUMBER> option to be used.
Not compatible with the --v1 parameter.

--upload_disable_host_key_check Disable SFTP host key checking. Go to Use SFTP to
upload files to Puppet Support for a list of current host
key values. Not compatible with the --v1 parameter.

--upload_user <USER> Specify a SFTP user to use when uploading. If not
specified, a shared write-only account is used. Not
compatible with the --v1 parameter.

© 2024 Puppet, Inc., a Perforce company

https://support.puppet.com/hc/en-us/articles/360009970114-KB-0305-How-do-I-use-SFTP-to-upload-files-to-Puppet-support-
https://support.puppet.com/hc/en-us/articles/360009970114-KB-0305-How-do-I-use-SFTP-to-upload-files-to-Puppet-support-

pe | Welcome to Puppet Enterprise® 2023.8.2 | 20

Option Description

--upload_key <FILE> Specify a SFTP key to use with --upload_user. Not
compatible with the --v1 parameter.

These code examples show how to use options when running the support script:

Collect diagnostics for just Puppet agent and Puppet Server
/opt/puppetlabs/bin/puppet enterprise support --only puppet-
agent,puppetserver

Enable collection of PE classification
/opt/puppetlabs/bin/puppet enterprise support --enable
 pe.console.classifier-groups

Disable collection of system logs, upload result to Puppet Support via
 SFTP
/opt/puppetlabs/bin/puppet enterprise support --disable system.logs --upload
 --ticket 12345

Descriptions of diagnostics you can select with the --enable, --disable, and --only flags are in the next
sections.

Information collected by the support script

This information is collected by the support script.

base-status

The base-status check collects basic diagnostics about the PE installation. This check is always enabled and
is not affected by the --disable or --only flags.

Specifically, the base-status check collects the support script version, the Puppet ticket number (if supplied),
and the time the script ran.

system

The checks in the system scope gather diagnostics, logs, and configuration related to the operating system.

The system.config check collects:

• A copy of /etc/hosts
• A copy of /etc/nsswitch.conf
• A copy of /etc/resolv.conf
• Configuration for the APT, YUM, and dnf package managers
• The operating system version
• The umask in effect
• The status of SELinux
• A list of configured network interfaces
• A list of configured firewall rules
• A list of loaded firewall kernel modules

The system.logs check collects a copy of the system log (syslog) and kernel log (dmesg).

The system.status check collects:

• Values of variables set in the environment
• A list of running processes
• A list of enabled services
• A list of systemd timers
• System uptime
• A list of established network connections

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 21

• NTP status
• The IP address and hostname of the node running the script, according to DNS
• Disk usage
• RAM usage

puppet-agent

The checks in the puppet-agent scope gather diagnostics, logs, and configuration related to the Puppet agent
services.

The puppet.config check collects:

• Facter configuration files from /etc/puppetlabs/facter/facter.conf
• Puppet configuration files from /etc/puppetlabs/puppet/device.conf, /etc/puppetlabs/

puppet/hiera.yaml, and /etc/puppetlabs/puppet/puppet.conf
• PXP agent configuration files from /etc/puppetlabs/pxp-agent/modules/ and /etc/

puppetlabs/pxp-agent/pxp-agent.conf

The puppet-agent.logs check collects:

• Puppet log files from /var/log/puppetlabs/puppet
• JournalD logs for the puppet service and pxp-agent service
• PXP agent log files from /var/log/puppetlabs/puppet

The puppet-agent.status check collects:

• facter -p output and debug-level messages
• A list of Ruby gems installed for use by Puppet
• Ping output for the Puppet Server the agent is configured to use
• A copy of the graphs/ directory and the classes.txt and last_run_summary.yaml files from the

Puppet statedir
• A listing of metadata (name, size, etc.) for files present in the /etc/puppetlabs, /var/log/

puppetlabs, and /opt/puppetlabs directories
• A listing of Puppet and PE packages installed on the system along with verification output for each

puppetserver

The checks in the puppetserver scope gather diagnostics, logs, and configuration related to the Puppet Server
service.

The puppetserver.config check collects these Puppet Server configuration files:

• /etc/puppetlabs/code/hiera.yaml

• /etc/puppetlabs/puppet/auth.conf

• /etc/puppetlabs/puppet/autosign.conf

• /etc/puppetlabs/puppet/classfier.yaml

• /etc/puppetlabs/puppet/fileserver.conf

• /etc/puppetlabs/puppet/hiera.yaml

• /etc/puppetlabs/puppet/puppet.conf

• /etc/puppetlabs/puppet/puppetdb.conf

• /etc/puppetlabs/puppet/routes.yaml

• /etc/puppetlabs/puppetserver/bootstrap.cfg

• /etc/puppetlabs/puppetserver/code-manager-request-logging.xml

• /etc/puppetlabs/puppetserver/conf.d/

• /etc/puppetlabs/puppetserver/logback.xml

• /etc/puppetlabs/puppetserver/request-logging.xml

• /etc/puppetlabs/r10k/r10k.yaml

• /opt/puppetlabs/server/data/code-manager/r10k.yaml

The puppetserver.logs check collects:

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 22

• Puppet Server log files from /var/log/puppetlabs/puppetserver/
• JournalD logs for the pe-puppetserver service
• r10k log files from /var/log/puppetlabs/r10k/

The puppetserver.metrics check collects data stored in /opt/puppetlabs/puppet-metrics-
collector/puppetserver.

The puppetserver.status check collects:

• A list of certificates issued by the Puppet CA
• A list of Ruby gems installed for use by Puppet Server
• Output from the status/v1/services API
• Output from the puppet/v3/environment_modules API
• Output from the analytics/v1/collections/snapshots API
• Output from the puppet/v3/environments API
• environment.conf and hiera.yaml files from each Puppet code environment
• The disk space used by Code Manager cache, storage, client, and staging directories
• The disk space used by the server's File Bucket
• The output of r10k deploy display

puppetdb

The checks in the puppetdb scope gather diagnostics, logs, and configuration related to the PuppetDB service.

The puppetdb.config check collects these configuration files:

• /etc/puppetlabs/puppetdb/bootstrap.cfg

• /etc/puppetlabs/puppetdb/certificate-whitelist

• /etc/puppetlabs/puppetdb/conf.d/

• /etc/puppetlabs/puppetdb/logback.xml

• /etc/puppetlabs/puppetdb/request-logging.xml

The puppetdb.logs check collects PuppetDB log files (/var/log/puppetlabs/puppetdb) and
JournalD logs for the pe-puppetdb service.

The puppetdb.metrics check collects data stored in /opt/puppetlabs/puppet-metrics-
collector/puppetdb.

The puppetdb.status check collects:

• Output from the status/v1/services API
• Output from the pdb/admin/v1/summary-stats API
• A list of active certnames from the PQL query nodes[certname] {deactivated is null and

expired is null}

pe

The checks in the pe scope gather diagnostics, logs, and configuration related to Puppet Enterprise services.

The pe.config check collects:

• Installer configuration files:

• /etc/puppetlabs/enterprise/conf.d/

• /etc/puppetlabs/enterprise/hiera.yaml

• /etc/puppetlabs/installer/answers.install

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 23

• PE client tools configuration files:

• /etc/puppetlabs/client-tools/orchestrator.conf

• /etc/puppetlabs/client-tools/puppet-access.conf

• /etc/puppetlabs/client-tools/puppet-code.conf

• /etc/puppetlabs/client-tools/puppetdb.conf

• /etc/puppetlabs/client-tools/services.conf

The pe.logs check collects:

• PE installer log files from /var/log/puppetlabs/installer/
• PE backup and restore log files from /var/log/puppetlabs/pe-backup-tools/ and /var/log/

puppetlabs/puppet_infra_recover_config_cron.log

The pe.status check collects output from puppet infra status, current tuning settings from puppet
infra tune, and recommended tuning settings from puppet infra tune.

The pe.file-sync check is disabled by default. When activated by the --enable option, this check
collects:

• Puppet manifests and other content from /etc/puppetlabs/code-staging/
• Puppet manifests and other content stored in Git repos under /opt/puppetlabs/server/data/

puppetserver/filesync

pe.console

The checks in the pe.console scope gather diagnostics, logs, and configuration related to the Puppet
Enterprise console service.

The pe.console.config check collects these configuration files:

• /etc/puppetlabs/console-services/bootstrap.cfg

• /etc/puppetlabs/console-services/conf.d/

• /etc/puppetlabs/console-services/logback.xml

• /etc/puppetlabs/console-services/rbac-certificate-whitelist

• /etc/puppetlabs/console-services/request-logging.xml

• /etc/puppetlabs/nginx/conf.d/

• /etc/puppetlabs/nginx/nginx.conf

The pe.console.logs check collects :

• Console log files from /var/log/puppetlabs/console-services/ and /var/log/
puppetlabs/nginx/

• JournalD logs for the pe-puppetdb and pe-nginx services

The pe.console.status check collects:

• Output from the /status/v1/services API
• Directory service connection configuration, with passwords removed

The pe.console.classifier-groups check is disabled by default. When activated by the --enable
option, the pe.console.classifier-groups check collects all classification data provided by the /v1/
groups API endpoint.

pe.orchestration

The checks in the pe.orchestration scope gather diagnostics, logs, and configuration related to the Puppet
Enterprise orchestration services.

The pe.orchestration.config check collects:

• ACE server configuration files from /etc/puppetlabs/puppet/ace-server/conf.d/
• Bolt server configuration files from /etc/puppetlabs/puppet/bolt-server/conf.d/

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 24

• Orchestration service configuration files:

• /etc/puppetlabs/puppet/orchestration-services/bootstrap.cfg

• /etc/puppetlabs/puppet/orchestration-services/conf.d/analytics.conf

• /etc/puppetlabs/puppet/orchestration-services/conf.d/auth.conf

• /etc/puppetlabs/puppet/orchestration-services/conf.d/global.conf

• /etc/puppetlabs/puppet/orchestration-services/conf.d/inventory.conf

• /etc/puppetlabs/puppet/orchestration-services/conf.d/metrics.conf

• /etc/puppetlabs/puppet/orchestration-services/conf.d/orchestrator.conf

• /etc/puppetlabs/puppet/orchestration-services/conf.d/pcp-broker.conf

• /etc/puppetlabs/puppet/orchestration-services/conf.d/web-routes.conf

• /etc/puppetlabs/puppet/orchestration-services/conf.d/webserver.conf

• /etc/puppetlabs/puppet/orchestration-services/logback.xml

• /etc/puppetlabs/puppet/orchestration-services/request-logging.xml

The pe.orchestration.logs check collects:

• ACE server log files from /var/log/puppetlabs/ace-server/
• Bolt server log files from /var/log/puppetlabs/bolt-server/
• Orchestrator log files from /var/log/puppetlabs/orchestration-services/
• JournalD logs for the pe-ace-server service, pe-bolt-server service, and pe-orchestration-

services service

The pe.orchestration.metrics check collects data stored in /opt/puppetlabs/puppet-
metrics-collector/orchestrator/.

The pe.orchestration.status check collects output from the /status/v1/services API.

pe.postgres

The checks in the pe.postgres scope gather diagnostics, logs, and configuration related to the Puppet
Enterprise PostgreSQL database.

The pe.postgres.config check collects these configuration files:

• /opt/puppetlabs/server/data/postgresql/*/data/postgresql.conf

• /opt/puppetlabs/server/data/postgresql/*/data/postmaster.opts

• /opt/puppetlabs/server/data/postgresql/*/data/pg_ident.conf

• /opt/puppetlabs/server/data/postgresql/*/data/pg_hba.conf

The pe.postgres.logs check collects JournalD logs for the pe-postgresql service and these
PostgreSQL log files:

• /var/log/puppetlabs/postgresql/*/

• /opt/puppetlabs/server/data/postgresql/pg_upgrade_internal.log

• /opt/puppetlabs/server/data/postgresql/pg_upgrade_server.log

• /opt/puppetlabs/server/data/postgresql/pg_upgrade_utility.log

The pe.postgres.status check collects:

• A list of setting values that the database is using while running
• A list of currently established database connections and the queries being executed
• A distribution of Puppet run start times for thundering herd detection
• The status of any configured replication slots
• The status of any active replication connections
• The size of database directories on disk
• The size of databases as reported by the database service
• The size of tables and indices within databases

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 25

Community support
As a Puppet Enterprise (PE) customer, you are welcome to participate in our large and helpful open source
community as well as report issues against the open source project.

• Join the Puppet Enterprise Users group. Your request to join is sent to Puppet by Perforce for authorization, and
you receive an email when you’ve been added to the user group.

• Click “Sign in and apply for membership.”
• Click “Enter your email address to access the document.”
• Enter your email address.

• Join the open source Puppet Users group.
• Join the Puppet Developers group.
• Report issues with the open source Puppet project.

Using the PE docs
Review these tips to get the most out of the PE docs.

Using example commands
These guidelines can help you understand and customize the example commands you'll find in the Puppet Enterprise
(PE) docs.

Ports, paths, and other input

Some examples in the PE docs use puppet commands to populate variables and curl arguments. This can take
the guesswork out of providing those values. In the following example, the puppet config print server
command supplies the DNS name for a curl command:

url="http://$(puppet config print server):4433"
curl "$url"

In these examples, puppet commands generate cert paths:

--cert $(puppet config print --section main hostcert) \
--key $(puppet config print --section main hostprivkey) \
--cacert $(puppet config print --section main localcacert) \

puppet commands can return different values depending on various conditions. Make sure you run the entire
example (including commands setting environment variables and the curl command) as the root, administrator, or
with equivalent elevated privileges.

To run such commands on a machine without elevated privileges, you must replace the puppet commands with
hard-coded values. If you’re unsure about the correct values, run the puppet commands to get reasonable default
values.

Tip: If an example command uses a service's default port, and you changed the service's port, you must change the
port number accordingly in the command.

Authentication tokens in curl commands

If a curl command requires token-based authentication, the example might contain this line:

auth_header="X-Authentication: $(puppet-access show)"

© 2024 Puppet, Inc., a Perforce company

https://groups.google.com/a/puppet.com/forum/#!forum/pe-users
http://groups.google.com/group/puppet-users
http://groups.google.com/group/puppet-dev
https://tickets.puppetlabs.com/browse/PUP

pe | Welcome to Puppet Enterprise® 2023.8.2 | 26

If you have an actual authentication token available, you can use that in the command instead, such as:

auth_header="X-Authentication: <TOKEN>"

For instructions on generating, configuring, revoking, and deleting authentication tokens in PE, go to Token-based
authentication on page 308.

Modifications for Windows

While the commands in the PE docs are primarily *nix-based, Windows-specific commands are provided in topics
focusing exclusively on Windows systems.

Tip: With the exception of Windows-specific commands, code samples use backslashes (\) as line-continuation
characters. In Windows, the equivalent characters are carets (^) and, for PowerShell specifically, backticks (`).

Additionally, *nix commands use forward slashes (/) as directory separator characters. You might use either
backslashes or forward slashes as directory separator characters in your Windows commands; however some modules
and commands require you to use one or the other. For modules, check the module's Forge page for information about
Windows modifications or requirements.

Furthermore, Windows commands might require wrapping strings or arguments in double quotes rather than single
quotes.

There are various options for running curl commands directly in Windows, such as:

• Installing the curl executable for Windows.
• Using built-in curl functionality included with Git for Windows.
• Using the GNU Bash shell.

If you're using PowerShell, you can use these equivalent commands to modify *nix curl commands for use in
Windows:

Native curl PowerShell equivalent

curl Invoke-WebRequest

-k or --insecure [System.Net.ServicePointManager]::ServerCertificateValidationCallback
= $true

-H -Headers

-X -Method

-d -Body

\ (as a line-continuation character) `

You can learn more about Invoke-WebRequest and the arguments it accepts in the Microsoft
PowerShelldocumentation. You can also learn about running Puppet language commands on Windows in the Puppet
documentation.

Related information
Executing PowerShell code on page 481
Some Windows maintenance tasks require the use of Windows Management Instrumentation (WMI), and PowerShell
is the most useful way to access WMI methods. Puppet has a special module that can be used to execute arbitrary
PowerShell code.

Managing Windows nodes on page 472
You can use Puppet Enterprise (PE) to manage your Windows configurations, including controlling services, creating
local group and user accounts, and performing basic management tasks with modules from the Forge.

Configuring patch management on page 587

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-webrequest
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-webrequest
https://puppet.com/docs/puppet/8/services_commands_windows.html

pe | Welcome to Puppet Enterprise® 2023.8.2 | 27

To enable patch management, create a node group for nodes you want to patch and add the node group to the PE
Patch Management parent node group.

Troubleshooting Windows on page 885
Troubleshoot issues in Windows PE installations, such as failed installations, failed upgrades, problems applying
manifests, and other issues.

Commands with elevated privileges
Some commands in PE require elevated privileges. Depending on the operating system, youc an use either sudo,
runas, or a root or admin user.

Elevated privileges allow you to access and do more than you might be able to with your personal account privileges.
There are three primary methods for using elevated privileges:

root (or administrator)

In *nix systems, the root user has virtually unlimited access to read, write, or change files and system
configurations; install,uninstall, and upgrade software; or perform any operation as any user. The equivalent in
Windows is the administrator.

sudo

The sudo command, which means super user do, allows a user to execute a command from a personal user
account with temporarily elevated privileges. With sudo, you can do most of the things the root user can do
without actually logging in as the root user.

Run as administrator or runas

Using the runas command or running a program as an administrator (for example, by right-clicking the program
and selecting Run as administrator) is the Windows equivalent of sudo – It allows you to temporarily perform
administrator functions without actually logging in as the administrator.

You can use sudo to run almost all commands in Puppet with the exception of puppet infrastructure
commands, which require you to be logged in as the root user (or administrator). You can run puppet
infrastructure help <ACTION> to get information about puppet infrastructure commands.

Restriction: You must log in as the root user (or administrator) to run puppet infrastructure commands.

In Windows systems, use runas or open the command prompt as an administrator (recommended for PowerShell
commands) instead of using sudo.

Documentation for other PE versions
Documentation for each PE version is initially published on our documentation website (where you are now). We
actively maintain documentation for our leading-edge PE release stream (also known as STS), the current LTS
stream, and, when applicable, the ongoing support stream (which is the previous LTS until it reaches EOL).

Documentation for end-of-life (EOL) and superseded major versions (formatted as <YEAR>.y, such as 2023.0,
2023.1, and so on) may continue to be available on our documentation website while no longer being updated, and,
eventually, moved to our PE docs archive on GitHub.

For LTS releases, we do not separately publish documentation for each incremental version (formatted as
<YEAR>.y.z, such as 2021.7.0, 2021.7.1, and so on). To find PDFs of prior LTS incremental versions, go to our PE
docs archive on GitHub.

When we start a new LTS stream, we continue to host (but do not update) the prior major versions for that stream for
some time. For example, if the LTS is 2021.7.z, then we retain 2021.0 through 2021.6 for a limited amount of time.
For the prior LTS, we continue to host the latest increment of that stream during the overlap support period and up to
one year after.

To find documentation for any version earlier than the current LTS stream's earliest major version (such as 2021.0)
or, when applicable, the most recent overlap support incremental version, you must go to our PE docs archive on
GitHub.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/docs-archive/tree/main/pe
https://github.com/puppetlabs/docs-archive/tree/main/pe
https://github.com/puppetlabs/docs-archive/tree/main/pe
https://github.com/puppetlabs/docs-archive/tree/main/pe
https://github.com/puppetlabs/docs-archive/tree/main/pe

pe | Welcome to Puppet Enterprise® 2023.8.2 | 28

Archived documentation is commonly retained as PDF. You may find some older versions retained in markdown
format.

This table describes where you can find documentation for various PE versions and release streams:

PE Version Documentation location

2023.8.2 You are in the latest documentation collection.

2023.8.1 https://www.puppet.com/docs/pe/2023.8/
pe_user_guide.html

2023.8.0 https://www.puppet.com/docs/pe/2023.8/
pe_user_guide.html

2023.7 https://www.puppet.com/docs/pe/2023.7/
pe_user_guide.html

2023.6 https://puppet.com/docs/pe/2023.6/pe_user_guide.html

2023.5 https://puppet.com/docs/pe/2023.5/pe_user_guide.html

2023.4 https://puppet.com/docs/pe/2023.4/pe_user_guide.html

2023.2 https://puppet.com/docs/pe/2023.2/pe_user_guide.html

2023.1 https://puppet.com/docs/pe/2023.1/pe_user_guide.html

2023.0 https://puppet.com/docs/pe/2023.0/pe_user_guide.html

2021.7.z (overlap support) Documentation for the most-recent incremental release
is available at: https://puppet.com/docs/pe/2021.7/
pe_user_guide.html

For earlier incremental releases, go to the PE docs
archive on GitHub.

2021.6 https://puppet.com/docs/pe/2021.6/pe_user_guide.html

2021.5 https://puppet.com/docs/pe/2021.5/pe_user_guide.html

2021.4 https://puppet.com/docs/pe/2021.4/pe_user_guide.html

2021.3 https://puppet.com/docs/pe/2021.3/pe_user_guide.html

2021.2 https://puppet.com/docs/pe/2021.2/pe_user_guide.html

2021.1 https://puppet.com/docs/pe/2021.1/pe_user_guide.html

2021.0 PE docs archive on GitHub

2019.8.z (EOL) Documentation for the most-recent incremental release
is available at: https://puppet.com/docs/pe/2019.8/
pe_user_guide.html

For earlier incremental releases, go to the PE docs
archive on GitHub.

Earlier versions PE docs archive on GitHub

Puppet platform documentation for PE
Puppet Enterprise (PE) is built on the Puppet platform which has several components: Puppet, Puppet Server, Facter,
Hiera, and PuppetDB. This page describes each of these platform components, and links to the component docs.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/2023.8/pe_user_guide.html
https://www.puppet.com/docs/pe/2023.8/pe_user_guide.html
https://www.puppet.com/docs/pe/2023.8/pe_user_guide.html
https://www.puppet.com/docs/pe/2023.8/pe_user_guide.html
https://www.puppet.com/docs/pe/2023.7/pe_user_guide.html
https://www.puppet.com/docs/pe/2023.7/pe_user_guide.html
https://puppet.com/docs/pe/2023.6/pe_user_guide.html
https://puppet.com/docs/pe/2023.5/pe_user_guide.html
https://puppet.com/docs/pe/2023.4/pe_user_guide.html
https://puppet.com/docs/pe/2023.2/pe_user_guide.html
https://puppet.com/docs/pe/2023.1/pe_user_guide.html
https://puppet.com/docs/pe/2023.0/pe_user_guide.html
https://puppet.com/docs/pe/2021.7/pe_user_guide.html
https://puppet.com/docs/pe/2021.7/pe_user_guide.html
https://github.com/puppetlabs/docs-archive/tree/main/pe
https://github.com/puppetlabs/docs-archive/tree/main/pe
https://puppet.com/docs/pe/2021.6/pe_user_guide.html
https://puppet.com/docs/pe/2021.5/pe_user_guide.html
https://puppet.com/docs/pe/2021.4/pe_user_guide.html
https://puppet.com/docs/pe/2021.3/pe_user_guide.html
https://puppet.com/docs/pe/2021.2/pe_user_guide.html
https://puppet.com/docs/pe/2021.1/pe_user_guide.html
https://github.com/puppetlabs/docs-archive/tree/main/pe/2021
https://puppet.com/docs/pe/2019.8/pe_user_guide.html
https://puppet.com/docs/pe/2019.8/pe_user_guide.html
https://github.com/puppetlabs/docs-archive/tree/main/pe
https://github.com/puppetlabs/docs-archive/tree/main/pe
https://github.com/puppetlabs/docs-archive/tree/main/pe

pe | Welcome to Puppet Enterprise® 2023.8.2 | 29

Puppet

Puppet is the core of our configuration management platform. It consists of a programming language for describing
desired system states, an agent that can enforce desired states, and several other tools and services.

Right now, you’re reading the PE documentation, which is separate from the Puppet documentation. Use the
navigation sidebar to navigate the documentation.

Important: The Puppet documentation has information about installing the open source release of Puppet. PE users
can ignore those pages.

These are good starting points for getting familiar with Puppet:

Language

• Fundamental pieces of the Puppet language are resources, variables, conditional statements and expressions,
and relationships and ordering.

• You use Classes and defined resource types to organize Puppet code into useful chunks. Classes are the main
unit of Puppet code you’ll interact with on a daily basis. You can assign classes to nodes in the PE console.

• You can use facts and built-in variables as special variables in your Puppet manifests.

Modules

• Most Puppet code goes in modules. Modules overview explains how modules work.
• Learn how to install modules from the Forge and publish modules on the Forge.
• Use PE's code management features to control your modules instead of installing manually, as explained in

Managing and deploying Puppet code on page 778.

Services and commands

• Learn about Puppet commands, including and overview of Puppet's architecture and a list of the main Puppet
commands and services you'll interact with.

• You can also learn about running Puppet commands on Windows.

Built-in resource types and functions

• The resource type reference describes built-in Puppet resource types.
• The built-in function reference describes built-in Puppet functions.

Important directories and files

• Most Puppet content goes in environments.
• The codedir is the main directory for Puppet code and data, and the confdir contains Puppet config files.
• The modulepath and the main manifest depend on the current environment.

Configuration

• The main config file for Puppet is /etc/puppetlabs/puppet/puppet.conf. You can learn about
Puppet settings and puppet.conf.

• Other Puppet config files are used for special purposes.

Puppet Server

Puppet Server is the JVM application that provides the core Puppet HTTPS services. Whenever Puppet agent checks
in to request a configuration catalog for a node, it contacts Puppet Server.

Generally, PE users don’t need to directly manage Puppet Server, and the Puppet documentation describes how
Puppet Server evaluates the Puppet language and loads environments and modules. For users who need to access
the environment cache and JRuby pool administrative APIs, you can find background information in the rest of the
Puppet Server docs.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/puppet_index.html
https://puppet.com/docs/puppet/8/navigating_the_docs.html
https://puppet.com/docs/puppet/8/puppet_language.html
https://puppet.com/docs/puppet/8/lang_resources.html
https://puppet.com/docs/puppet/8/lang_variables.html
https://puppet.com/docs/puppet/8/lang_conditional.html
https://puppet.com/docs/puppet/8/lang_relationships.html
https://puppet.com/docs/puppet/8/lang_classes.html
https://puppet.com/docs/puppet/8/lang_defined_types.html
https://puppet.com/docs/puppet/8/lang_facts_and_builtin_vars.html
https://puppet.com/docs/puppet/8/modules_fundamentals.html
https://puppet.com/docs/puppet/8/modules_installing.html
https://puppet.com/docs/puppet/8/modules_publishing.html
https://puppet.com/docs/puppet/8/services_commands.html
https://puppet.com/docs/puppet/8/services_commands_windows.html
https://puppet.com/docs/puppet/8/type.html
https://puppet.com/docs/puppet/8/function.html
https://puppet.com/docs/puppet/8/environments_about.html
https://puppet.com/docs/puppet/8/dirs_codedir.html
https://puppet.com/docs/puppet/8/dirs_confdir.html
https://puppet.com/docs/puppet/8/dirs_modulepath.html
https://puppet.com/docs/puppet/8/dirs_manifest.html
https://puppet.com/docs/puppet/8/config_about_settings.html
https://puppet.com/docs/puppet/8/config_file_main.html
https://puppet.com/docs/puppet/8/config_files.html
https://puppet.com/docs/puppet/latest/server/about_server.html
https://puppet.com/docs/puppetserver/latest/admin-api/v1/environment-cache.html
https://puppet.com/docs/puppetserver/latest/admin-api/v1/jruby-pool.html

pe | Welcome to Puppet Enterprise® 2023.8.2 | 30

Note: The Puppet Server documentation has information about installing the open source release of Puppet Server.
PE users can ignore those pages. Additionally, a built-in Puppet module manages the Puppet Server config files; to
change most settings, you can set the appropriate class parameters in the console.

Facter

Facter is a system profiling tool that Puppet agent uses it to send important system information to Puppet Server.
Puppet Server can access that information when compiling that node’s catalog.

• For a list of variables you can use in your code, check the Facter: Core facts reference.
• You can write your own custom facts, as explained in Writing custom facts and the Custom facts overview.

Hiera

Hiera is a hierarchical data lookup tool. You can use it to configure your Puppet classes.

Start with About Hiera, and then use the navigation sidebar to explore the Hiera docs.

Note: Hiera 5 is a backwards-compatible evolution of Hiera, which is built into Puppet. To provide some backwards-
compatible features, it uses the classic Hiera 3 codebase. This means “Hiera” is still version 3.x, even though this
Puppet Enterprise version uses Hiera 5.

PuppetDB

PuppetDB collects the data Puppet generates, and offers a powerful query API for analyzing that data. It’s the
foundation of the PE console, and you can also use the API to build your own applications.

If you’re interacting with PuppetDB directly, you’ll mostly use the query API. Here are some resources to get you
started:

• The API query tutorial walks you through building and executing a query.
• The Query structure page explains the fundamentals of using the query API.
• The API curl tips page has useful information about testing the API from the command line.

Important: The PuppetDB documentation has information about installing the open source release of PuppetDB. PE
user can ignore those pages.

Related information
Managing and deploying Puppet code on page 778
Puppet Enterprise (PE) includes built-in tools for managing and deploying your Puppet code. Code Manager and r10k
are code management tools that automatically install modules, create and maintain environments, and deploy new
code to your primary server and compilers, all based on version control of your Puppet code and data.

API index
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Puppet Enterprise APIs

For information on port requirements, see System configuration on page 90.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/facter.html
https://puppet.com/docs/puppet/8/core_facts.html
https://puppet.com/docs/facter/7/fact_overview.html
https://puppet.com/docs/puppet/8/custom_facts.html
https://puppet.com/docs/puppet/8/hiera_intro.html
https://puppet.com/docs/puppetdb/latest/
https://puppet.com/docs/puppetdb/latest/api/query/tutorial.html
https://puppet.com/docs/puppetdb/latest/api/query/v4/query.html
https://puppet.com/docs/puppetdb/latest/api/query/curl.html
https://puppet.com/docs/puppetdb/latest/

pe | Welcome to Puppet Enterprise® 2023.8.2 | 31

API Useful for

Node inventory API v1 on page 578 • Making HTTP(S) requests to the Puppet inventory
service API.

• Creating and deleting connection entries in the
inventory service database.

• Listing the connections entries in the inventory
database.

RBAC service API v1 • Managing access to PE.
• Connecting to external directories.
• Generating authentication tokens.
• Managing users, user roles, user groups, and user

permissions.

RBAC service API v2 • Fetch users (with filters).
• Revoking authentication tokens.
• Managing LDAP.

Node classifier service API • Querying the groups that a node matches.
• Querying the classes, parameters, and variables that

have been assigned to a node or group.
• Querying the environment that a node is in.

Orchestrator API • Gathering details about the orchestrator jobs you run.
• Inspecting applications and applications instances in

your Puppet environments.

Code Manager API • Creating a webhook to trigger Code Manager.
• Queueing Puppet code deployments.
• Checking Code Manager and file sync status.

Status API • Checking the health status of PE services.

Activity service API • Querying PE service and user events logged by the
activity service.

Value API • Generating reports about time and money freed by PE
automation.

© 2024 Puppet, Inc., a Perforce company

pe | Welcome to Puppet Enterprise® 2023.8.2 | 32

Open source Puppet Server, Puppet, PuppetDB, and Forge APIs

API Useful for

Puppet Server administrative API endpoints

• environment-cache

• jruby-pool

• Deleting environment caches created by a primary
server.

• Deleting the Puppet Server pool of JRuby instances.

Server-specific Puppet API

• Environment classes
• Environment modules
• Static file content

• Getting the classes and parameter information that is
associated with an environment, with cache support.

• Getting information about what modules are installed
in an environment.

• Getting the contents of a specific version of a file in a
specific environment.

Puppet Server status API • Checking the state, memory usage, and uptime of the
services running on Puppet Server.

Puppet Server metrics API • Querying Puppet Server performance and usage
metrics.

• The /metrics/v1/mbeans endpoint is
deprecated.

Puppet HTTP API • Retrieving a catalog for a node.
• Accessing environment information.

Certificate Authority (CA) API • Used internally by Puppet to manage agent
certificates.

PuppetDB APIs • Querying the data that PuppetDB collects from
Puppet.

• Importing and exporting PuppetDB archives.
• Changing the PuppetDB model of a population.
• Querying information about the PuppetDB server.
• Querying PuppetDB metrics.

Forge API • Finding information about modules and users on the
Forge.

• Writing scripts and tools that interact with the Forge
website.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetserver/latest/admin-api/v1/environment-cache.html
https://puppet.com/docs/puppetserver/latest/admin-api/v1/jruby-pool.html
https://puppet.com/docs/puppetserver/latest/puppet-api/v3/environment_classes.html
https://puppet.com/docs/puppetserver/latest/puppet-api/v3/environment_modules.html
https://puppet.com/docs/puppetserver/latest/puppet-api/v3/static_file_content.html
https://puppet.com/docs/puppetserver/latest/status-api/v1/services.html
https://puppet.com/docs/puppetserver/latest/http_api_index.html
https://puppet.com/docs/puppetserver/latest/http_certificate.html
https://puppet.com/docs/puppetdb/latest/api/overview.html
https://forgeapi.puppetlabs.com/

pe | Release notes | 33

Release notes

These release notes contain important information about Puppet Enterprise (PE)® 2023.8.2.

This release incorporates new features, enhancements, and resolved issues from all previous major releases. If you're
upgrading from an earlier version of PE, review the release notes for any interim versions for details about additional
improvements in this release over your current release.

Tip: This version of documentation represents the latest update in this release stream. Features or functionality might
differ from previous releases in this stream.

Security and vulnerability announcements are posted at Security: Puppet's Vulnerability Submission Process.

• PE release notes on page 33
These are the enhancements and resolved issues in this version of Puppet Enterprise (PE).
• PE known issues on page 39
These are the known issues in PE 2023.8.2.
• What's new since PE 2021.7 on page 42
This page describes the new features, enhancements, deprecations, and other notable changes since the previous LTS
release (2021.7), specifically PE versions 2023.0 through 2023.7. The previous LTS release stream comprised PE
versions 2021.0 through 2021.7.9.

PE release notes
These are the enhancements and resolved issues in this version of Puppet Enterprise (PE).

For security and vulnerability announcements, see Security: Puppet's Vulnerability Submission Process.

PE 2023.8.2
Released February 2025

Important: Puppet Enterprise (PE) 2023 is our current PE LTS series. The previous LTS, PE 2021.7 reached End-
of-Life (EOL) on February 28, 2025.

• To access the End-of-Life (EOL) date and other maintenance information for PE 2023.8, see PE 2023.8 End-of-
Life (EOL)

• For important information about upgrading to 2023, see Upgrading Puppet Enterprise on page 184.
• If you're on the 2021.7 series, you'll find release notes and other information for that series in the 2021.7

documentation.
• Customers on 2021.7.z are encouraged to upgrade to 2023.8.z.

Note: To access the release notes for the Puppet® platform, including Puppet agent, Puppet Server, Facter, and
PuppetDB, see Platform release notes.

Features

Standard patching: View and copy the License ID in the PE console

In PE 2025.1.0 and PE 2023.8.2, users can view and copy the License ID in the PE console if it is present in their
license.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/security-vulnerability-announcements
https://puppet.com/docs/security-vulnerability-announcements
https://portal.perforce.com/s/article/228342387
https://portal.perforce.com/s/article/228342387
https://puppet.com/docs/pe/2021.7/pe_user_guide.html
https://puppet.com/docs/pe/2021.7/pe_user_guide.html
https://www.puppet.com/docs/pe/2021.7/upgrading_pe.html#upgrading_pe
https://www.puppet.com/docs/puppet/8/release_notes_osp

pe | Release notes | 34

Enhancements

PE console classifier performance improvement

In PE 2025.1.0 and PE 2023.8.2, the PE console classifier has been updated in order to improve performance
when resolving nodes for a node group in the PE console.

Platform support

Agent platforms added

This release adds support for the Puppet agent on the following operating system platforms:

• Fedora 41 x86_64
• macOS 15 ARM

Primary server platforms added

This release adds support for the primary server on the following operating system platforms:

• Ubuntu 24.04 x86_64

Platforms removed

Agent platforms removed

Agent platforms removed in 2023.8 and 2025.0:

• macOS 12 ARM

Primary server platforms removed

Primary server platforms removed in 2023.8:

• Red Hat Enterprise Linux (RHEL) 7

Resolved issues

Puppet certificate automatic renewal now refreshes all infrastructure services

In 2023.8.0 and 2025.0.0, when the agent automatically renewed a certificate on a PE infrastructure node
(primary, replica, compiler, or database), only some of the PE server services were signaled to take up the
changed certificate causing infrastructure outages. This issue has been fixed in PE 2023.8.2 and PE 2025.1.0.

Puppet code status command no longer fails to run

In PE 2021.7.8-2021.7.9, PE 2023.7.0-2023.8.1, and PE 2025.0.0, Puppet code status command failed to run.
This issue is fixed in PE 2021.7.10, 2023.8.2 and 2025.1.0.

Security fixes

Addressed the following CVEs:

• CVE-2025-1094
• CVE-2025-0306
• CVE-2024-49761

PE 2023.8.1
Released January 2025

Important: Puppet Enterprise (PE) 2023 is our current PE LTS series. The previous LTS, PE 2021.7, is in overlap
support until 28th February, 2025.

To access the End-of-Life (EOL) date and other maintenance information for PE 2023.8, see PE 2023.8 End-of-Life
(EOL).

For important information about upgrading to 2023, see Upgrading Puppet Enterprise on page 184.

© 2024 Puppet, Inc., a Perforce company

https://portal.perforce.com/s/article/228342387
https://portal.perforce.com/s/article/228342387

pe | Release notes | 35

If you're on the LTS (overlap support) stream (2021.7), you'll find release notes and other information for that series
in the 2021.7 documentation.

Customers on 2019.8.z are encouraged to upgrade to either 2021.7 or 2023.

Note: To access the release notes for the Puppet® platform, including Puppet agent, Puppet Server, Facter, and
PuppetDB, see Platform release notes.

Platform support

Agent platforms added

This release adds support for the Puppet agent on the following operating system platforms:

• Microsoft Windows Server 2016 FIPS

Resolved issues

A transaction rollback bug preventing upgrade from previous PE versions to PE 2023.8.0 fixed

A transaction rollback bug in PE 2023.8.0 prevented some users from upgrading from previous versions to PE
2023.8.0. This issue has been resolved in 2023.8.1.

Patching setup in the console no longer allows the selection of agentless nodes

In order to receive patches, a node must have the agent installed. In PE versions 2023.4, 2023.5, 2023.6 and
2023.7, in the patching setup workflow in the PE console, agentless nodes could be added to patching node
groups. The Configure nodes step of the workflow skipped any agentless nodes added in the Create node group
step, though the agentless nodes remained pinned to the created patching node group under Node groups > PE
Patch Management. If a patching node group that included only agentless nodes was created, running Puppet
on the Configure nodes step of the workflow failed entirely, though the created patching node group remained
under Node groups > PE Patch Management. This has been resolved in version 2023.8 and the user no longer
needs to avoid adding agentless nodes in the Create node group step of the patching setup workflow.

Patching creation workflow no longer allows the same node in multiple groups

In versions PE 2023.4, 2023.5, 2023.6 and 2023.7, in the patching creation workflow in the PE console, the same
node could be specified for multiple node groups. As a node can only resolve to one patch group, this caused
classification conflicts, which prevented patching from working properly. This has been resolved in version
2023.8 and the patching creation workflow no longer allows the same node in multiple groups.

Various issues on the pe-host-action collector service fixed

In PE 2023.8.1, various issues with the potential to cause out-of-memory conditions and a large number of
temporary files written to disk have been fixed allowing the pe-host-action collector service to
process data more efficiently.

The Puppet Enterprise value report no longer displays zeros for all content

In PE version 2023.7 and 2023.8.0, the value report displayed zeros for all content. This issue has been resolved
in PE 2023.8.1 and PE 2025.0.0.

The toggle_lockless_deploy plan configures the replica in disaster recovery architecture

In PE 2023.8.0 and PE 2021.7.9, the toggle_lockless_deploys plan did not properly switch over a
replica in disaster recovery to have lockless deploys because doing so requires updating Hiera data. This is fixed
in PE 2025.0.0 and users who have disaster recovery enabled and are toggling lockless deploys no longer need to
update their pe.conf after running the plan.

The toggle_lockless_deploy plan runs some actions verbosely, and failures are no longer expected
while polling for changes

In PE 2023.8.0 and PE 2021.7.9, the toggle_lockless_deploys plan ran some actions verbosely, and
failures were expected while polling for changes. This has been resolved in PE 2025.0.0.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/2021.7/pe_user_guide.html
https://puppet.com/docs/pe/2019.8/upgrading_pe.html#upgrading_pe
https://www.puppet.com/docs/puppet/8/release_notes_osp

pe | Release notes | 36

The toggle_lockless_deploy plan supports Ubuntu 18.04

In addition to Ubuntu 20.04 and 22.04, the toggle_lockless_deploys plan supports Ubuntu 18.04 in this
release.

PE 2023.8.0
Released August 2024

Important: Puppet Enterprise (PE) 2023 is our current PE LTS series. The previous LTS, PE 2021.7, is in overlap
support until 28th February, 2025.

For important information about upgrading to 2023, see Upgrading Puppet Enterprise on page 184.

If you're on the LTS (overlap support) stream (2021.7), you'll find release notes and other information for that series
in the 2021.7 documentation.

Customers on 2019.8.z are encouraged to upgrade to either 2021.7 or 2023.

Note: To access the release notes for the Puppet® platform, including Puppet agent, Puppet Server, Facter, and
PuppetDB, see Platform release notes.

Enhancements

Default to find reports generated within the last 30 minutes on the Events screen in the PE console

In order to make the page load faster and be more efficient, the Events screen in the PE console has changed the
default period from Events from the last run to Events in the last 30 minutes.

Lockless code deploys enabled by default

Lockless code deploys is now enabled by default. The default of locking all compilation processes to complete
each deployment of puppet code is no longer enabled. As a requirement of this release, the codedir is changed
from /etc/puppetlabs/code to /etc/puppetlabs/puppetserver/code.

Lockless code deploys defaults updated

The defaults for the Lockless Code Deploys feature of Code Manager (which since version 2023.7
is the default way to deploy code), have been updated with a faster method of deploying each
environment and the capacity to deploy 2 (configurable) environments at a time. See Configure
Code Manager for puppet_enterprise::master::file_sync::copy_method and
puppet_enterprise::master::file_sync::versioned_sync_pool respectively.

JRuby spawning initialization improvement

Puppet Server now initializes one JRuby instance and once it is initialized, further
instances are initialized concurrently, up to a configurable max level of concurrency.
This level of concurrency is configurable via class parameters, data, or the Hiera value of
puppet_enterprise::master::puppetserver::jruby_puppet_instance_creation_concurrency.

Experimental setting to potentially improve Puppet Server startup time

Customers may now enable an experimental setting that could improve Puppet Server startup time
by speeding up the per-JRuby instance creation time. This is controlled through the new parameter:
puppet_enterprise::master::puppetserver::settings_catalog.

Usage of find and chown in lockless Puppet code improved

A slow and I/O intensive operation in compiler catalogs (codedirs chown) is now optional and may be disabled
with the puppet_enterprise::master::file_sync::chown_code_to_pe_puppet parameter.

Code management parameter deprecations and new parameter improvements

The following parameters are deprecated:

• puppet_enterprise::master::code_manager::git_settings

• puppet_enterprise::master::code_manager::private_key

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/2021.7/pe_user_guide.html
https://puppet.com/docs/pe/2019.8/upgrading_pe.html#upgrading_pe
https://www.puppet.com/docs/puppet/8/release_notes_osp
https://www.puppet.com/docs/pe/2023.7/code_mgr_config.html?_gl=1*vu4xcv*_gcl_au*OTM0ODA2MjI0LjE3MjAxODA3MjQ.*_ga*MjE0MzMwNDc1NC4xNzIwMTgwNzI0*_ga_7PSYLBBJPT*MTcyMzYzNzc2MS4xOS4xLjE3MjM2NDU0MjIuNjAuMC4w
https://www.puppet.com/docs/pe/2023.7/code_mgr_config.html?_gl=1*vu4xcv*_gcl_au*OTM0ODA2MjI0LjE3MjAxODA3MjQ.*_ga*MjE0MzMwNDc1NC4xNzIwMTgwNzI0*_ga_7PSYLBBJPT*MTcyMzYzNzc2MS4xOS4xLjE3MjM2NDU0MjIuNjAuMC4w

pe | Release notes | 37

• puppet_enterprise::master::code_manager::forge_settings

Instead of providing one large JSON object to the git_settings and forge_settings parameter,
multiple simpler parameters have replaced the deprecated parameters and the replacement parameters are also on
a new class:

• puppet_enterprise::master::code_management

The replacement parameters for the git_settings parameter are:

• puppet_enterprise::master::code_management::git_provider

• puppet_enterprise::master::code_management::git_private_key

• puppet_enterprise::master::code_management::git_default_ref

• puppet_enterprise::master::code_management::git_proxy

• puppet_enterprise::master::code_management::git_oauth_token

• puppet_enterprise::master::code_management::git_repositories

The replacement parameters for the forge_settings parameter are:

• puppet_enterprise::master::code_management::forge_proxy

• puppet_enterprise::master::code_management::forge_baseurl

• puppet_enterprise::master::code_management::forge_authorization_token

For further information see Customize Code Manager configuration in Hiera.

Install and upgrade agents using Puppet Plan on the PE console and CLI

PE version 2023.8.0 introduces Puppet Plan on the PE console and CLI which enables users to install and
upgrade agents to intermediate and latest versions without upgrading their PE server.

Platform support

Agent platforms added

This release adds support for the Puppet agent on the following operating system platforms:

• RedHat Enterprise Linux 9 ppc64le
• Fedora 40 x86_64
• Ubuntu 24.04 amd64
• Ubuntu 24.04 aarch64
• Amazon Linux 2 aarch64
• Rocky 9 x86_64
• Rocky 9 aarch64
• Alma Linux 9 x86_64
• Alma Linux 9 aarch64

Primary server platforms removed

Primary server platforms removed in 2023.8:

• Ubuntu 18.04 amd64

Resolved issues

Tasks containing a description without any parameters fixed

In PE 2023.7 and PE 2021.7.8, if the task metadata on the Run a task screen in the PE console, contained a
description without any parameters, the console did not display the description. This issue has been resolved in
PE 2023.8.0 and PE 2021.7.9.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/2023.7/code_mgr_customizing

pe | Release notes | 38

Patching setup in the console no longer allows selection of agentless nodes

In order to receive patches, a node must have an agent installed. However, in PE 2023.7, agentless nodes could be
added to patching node groups in the patching setup workflow in the PE console. This issue has been resolved in
PE 2023.8.0 and users can no longer selection agentless nodes in the console.

SAML login no longer fails when changing the rbac_token_maximum_lifetime class

When modifying the rbac_token_maximum_lifetime parameter in Node groups > PE Infrastructure
in the PE console to anything other than the default of 10y, the user received the following error when trying to
use SAML login:

{
 "kind": "puppetlabs.rbac/saml-response-processing-error",
 "msg": "There was an error processing the SAML response: \"No
 implementation of method: :to-date-time of protocol: #'clj-time.coerce/
ICoerce found for class: clojure.lang.Keyword\""
}

This issue is fixed in PE 2023.8.0 and PE 2021.7.9.

pe-host-action collector service is stopped and restarted during backup restore

In PE 2023.7, the pe-host-action-collector service did not stop and restart during backup restore
and subsequently had stale data (usage and license) until the service was restarted. This issue is resolved in PE
2023.8.0.

Create patching group workflow no longer fails to set patch group

In PE versions 2023.3-2023.7, when using the new patching workflow, the workflow correctly created a node
group under the Node groups > PE Patch Management. However, the new node group failed to add the class
with the patch_group parameter set. This issue has been resolved in PE 2023.8.0 with the class parameters set
correctly.

Exec resources failure while using lockless code deploy and applying a compiler’s catalog simultaneously fixed

A race condition that could cause one or more executive resources to fail if a code deploy occurred at the same
time as a compiler’s catalog was applied has been fixed.

Reliability of the toggle_lockless_deploys plan fixed

In versions PE 2023.7 and PE 2021.7.8, the toggle_lockless_deploys plan could encounter a race
condition when running causing spurious failures. It also would not update Hiera data in the way needed for the
lockless deploys setting to be honored on the replica in DR/HA setups. The plan is now more robust and works
with DR/HA.

Unable to view a node’s Groups tab in the PE console if view permission is not enabled for any single group
the node is in fixed

In versions PE 2023.7 and PE 2021.7.3 - 2021.7.8, if a user did not have permission to view some of the groups
their node were in, they could not view their node in any of their node's groups to which they have rights and
received an error message stating that they did not have permission to view the group. This issue has been
resolved in PE 2023.8 and PE 2021.7.9.

Occasional failure due to a race condition while provisioning a replica fixed

During provisioning of a replica, with either the puppet infra provision replica or puppet
infra run enable_ha_failover commands, when the subscription on the replica was established,
the Puppet agent did not wait for the subscription initialization to complete and let it run in the background.
This resulted in a race condition in which pglogical performed a pg_restore on the database structure while the
Puppet agent simultaneously made other database changes. This caused a variety of error signatures, but typically
displayed as ERROR: tuple concurrently updated in the PostgreSQL log. Now, the provisioning
process waits for the database structure and data to complete its initial sync before proceeding. If you have a large
pe-activity database, this may cause provisioning to take a bit longer than usual, up to 10 extra minutes.

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 39

PE known issues
These are the known issues in PE 2023.8.2.

Installation and upgrade known issues
These are the known issues for installation and upgrade in this release.

Converting legacy compilers fails with an external certificate authority

If you use an external certificate authority (CA), the puppet infrastructure run
convert_legacy_compiler command fails with an error during the certificate-signing step.

Agent_cert_regen: ERROR: Failed to regenerate agent certificate on node
 <compiler-node.domain.com>
Agent_cert_regen: bolt/run-failure:Plan aborted: run_task
 'enterprise_tasks::sign' failed on 1 target
Agent_cert_regen: puppetlabs.sign/sign-cert-failed Could not sign request
 for host with certname <compiler-node.domain.com> using caserver <master-
host.domain.com>

To work around this issue when it appears:

1. Log on to the CA server and manually sign certificates for the compiler.
2. On the compiler, run Puppet: puppet agent -t
3. Unpin the compiler from PE Master group, either from the console, or from the CLI using the

command: /opt/puppetlabs/bin/puppet resource pe_node_group "PE Master"
unpinned="<COMPILER_FQDN>"

4. On your primary server, in the pe.conf file, remove the entry
puppet_enterprise::profile::database::private_temp_puppetdb_host

5. If you have an external PE-PostgreSQL node, run Puppet on that node: puppet agent -t
6. Run Puppet on your primary server: puppet agent -t
7. Run Puppet on all compilers: puppet agent -t

Converted compilers can slow PuppetDB in multi-region installations

In configurations that rely on high-latency connections between your primary servers and compilers – for example,
in multi-region installations – converted compilers running the PuppetDB service might experience significant
slowdowns. If your primary server and compilers are distributed among multiple data centers connected by high-
latency links or congested network segments, reach out to Support for guidance before converting legacy compilers.

Puppet Enterprise HA upgrade fails on main for Amazon Linux 2 primary server

The puppet infra upgrade replica command may fail with errors downloading pe-postgres packages
when running with a PE replica on Amazon Linux 2. Users can run the same command a second time in this case and
the second attempt is successful.

Upgrading to PE 2023.8.1 from any version prior to PE 2023.8.0 fails on PuppetDB migrations

Due to a regression in PostgreSQL, upgrading to PE 2023.8.1 from any version prior to PE 2023.8.0 can fail on
PuppetDB migrations with the following error:

java.sql.BatchUpdateException: Batch entry 38 ALTER TABLE reports ATTACH
 PARTITION reports_historical FOR VALUES IN (false) was aborted: ERROR:
 permission denied for database "pe-puppetdb"

To resolve this issue:

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 40

1. Update your PostgreSQL configuration file:

/opt/puppetlabs/server/data/postgresql/14/data/postgresql.conf

2. Set max_parallel_workers = 0

Important: This setting can be set before the initial upgrade attempt to avoid the failure entirely.

3. Save the configuration change and reload the PostgreSQL service with systemctl reload pe-
postgresql.

4. Rerun the PE installer to complete the upgrade.

After completing the upgrade it is safe to remove this setting, which reverts the setting to its default.

pe-console-services runs out of memory during PuppetDB migrations in PE 2023.8.z upgrades

pe-console-services runs out of memory during PuppetDB migrations in PE 2023.8.z upgrades. We
recommend users to increase the pe-console-services memory to 2048 MB before running the upgrade.

Disaster recovery known issues
There are no known issues for disaster recovery in this release.

FIPS known issues
These are the known issues with FIPS-enabled PE in this release.

FIPS-enabled PE 2023.0 and later can't use the default system cert store

FIPS-compliant builds running PE 2023.0 and later can't use the default system cert store, which is used automatically
with some reporting services. This setting is configured by the report_include_system_store Puppet
parameter that ships with PE.

Removing the puppet-cacerts file (located at /opt/puppetlabs/puppet/ssl/puppet-cacerts) can
allow a report processor that eagerly loads the system store to continue with a warning that the file is missing.

If HTTP clients require external certs, we recommend using a custom cert store containing only the necessary certs.
You can create this cert store by concatenating existing pem files and configuring the ssl_trust_store Puppet
parameter to point to the new cert store.

Puppet Server FIPS installations don’t support Ruby’s OpenSSL module

FIPS-enabled PE installations don't support extensions or modules that use the standard Ruby Open SSL library, such
as hiera-eyaml. As a workaround, you can use a non-FIPS-enabled primary server with FIPS-enabled agents, which
limits the issue to situations where only the primary uses the Ruby library. This limitation does not apply to versions
1.1.0 and later of the splunk_hec module, which supports FIPS-enabled servers. The FIPS Mode section of the
module's Forge page explains the limitations of running this module in a FIPS environment.

Configuration and maintenance known issues
These are the known issues for configuration and maintenance in this release.

puppet infrastructure tune fails with multi-environment environmentpath

The puppet infrastructure tune command on page 206 fails if environmentpath (in your puppet.conf
file) is set to multiple environments. To avoid the failure, comment out this setting before running this command.
For details about the environmentpath setting, refer to environmentpath in the open source Puppet
documentation.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/splunk_hec#fips-mode
https://puppet.com/docs/puppet/8/environments_creating.html#global-settings-environmentpath
https://puppet.com/docs/puppet/8/environments_creating.html#global-settings-environmentpath

pe | Release notes | 41

Restarting or running Puppet on infrastructure nodes can trigger an illegal reflective
access operation warning

When restarting PE services or performing agent runs on infrastructure nodes, you might see this warning in the
command-line output or logs: Illegal reflective access operation ... All illegal access
operations will be denied in a future release

These warnings are internal to PE service components and have no impact on their functionality. You can safely
disregard them.

JRuby instance flushing may cause a memory leak

In PE 2025.1.0 and 2023.8.2, JRuby instance flushing may cause a memory leak for many, if not all, of our users. We
recommend that users who have set their max-requests-per-instance settings for JRuby pools to custom,
non-zero values to either move them to be unmanaged i.e. accept the default value or explicitly set the default value to
0 (the new default). Please do not manually flush the JRuby pool via the HTTP API.

Orchestration services known issues
These are the known issues for the orchestration services in this release.

When plan_runner_active is set to true the infra plan throws an error

In PE 2023.6-2023.8.2 and 2025.0.0-2025.2.0, when plan_runner_active is set to true, the infra plan throws an
error. To work around this issue:

1. Open the /opt/puppetlabs/server/data/environments/enterprise directory.
2. Run patch -p1 < [absolute path to patch file].

This issue will be fixed in PE 2023.8.3 and 2025.3.0.

Console known issues
These are the known issues in this release for the console and console services.

It is not possible to set the LDAP ciphers through the intended class parameter settings

In PE 2023.6.0-2023.8.2 and 2025.0.0-2025.1.0, it is not possible to set the LDAP ciphers through the intended class
parameter settings. This issue will be fixed in a following 2023.8 release.

In the PE console, the run task review step does not mask sensitive parameters

In PE 2023.6-2023.8.2 and 2025.0.0-2025.1.0, the run task review step in the PE console does not mask sensitive
parameters. This issue will be fixed in a following 2023.8 release.

Patching known issues
These are the known issues for patching in this release.

Patching fails with excluded YUM packages

In the patching task or plan, using yum_params to pass the --exclude flag in order to exclude certain packages
can result in task or plan failure if the only packages requiring updates are excluded. As a workaround, use the
versionlock command (which requires installing the yum-plugin-versionlock package) to lock the
packages you want to exclude at their current version. Alternatively, you can fix a package at a particular version by
specifying the version with a package resource for a manifest that applies to the nodes to be patched.

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 42

Code management known issues
These are the known issues for Code Manager, r10k, and file sync in this release.

Changing a file type in a control repo produces a checkout conflict error

Changing a file type in a control repository – for example, deleting a file and replacing it with a directory of the same
name – generates the error JGitInternalException: Checkout conflict with files accompanied
by a stack trace in the Puppet Server log. As a workaround, deploy the control repo with the original file deleted, and
then deploy again with the replacement file or directory.

Code deployment fails from AzureDevOps with a rsa-sha error in Puppet Enterprise®

Deploying code via r10k or Code Manager from Azure DevOps (ADO) with a rsa-sha2 key fails with a
deprecated rsa-sha error. To fix the issue, change your authentication method to HTTPS and complete the steps
outlined here: Knowledge base article.

What's new since PE 2021.7
This page describes the new features, enhancements, deprecations, and other notable changes since the previous LTS
release (2021.7), specifically PE versions 2023.0 through 2023.7. The previous LTS release stream comprised PE
versions 2021.0 through 2021.7.9.

This page does not include resolved issues because most bug fixes were applied to both the 2021.7.z and 2023.y
streams at the time of resolution, except those that only impacted one stream or the other. For bug fixes included
in 2023.8.0, refer to the 2023.8.0 release notes. For information about outstanding, unresolved issues in 2023.8.z,
refer to the PE known issues. Some, but not all, features and changes described on this page applied to both the
2021.7.z and 2023.y streams. However, this page does not specify the interim release number for each feature or
change. You can find the original release notes for each interim release (and release notes for the 2021.7.z series) in
the Documentation for other PE versions. Furthermore, this page stops at 2023.7; to learn about resolved issues, new
features, deprecations, and other changes in later releases, refer to the PE release notes.

Important: BEFORE upgrading to 2023.8:

• Review the Upgrade cautions and Upgrade paths for important information that could impact your upgrade.
• Get familiar with the latest System requirements including hardware requirements, supported operating systems,

supported browsers, and network configurations.

Feature highlights

Experience the full value of Puppet Enterprise

If you have installed Puppet Enterprise, you can separately install and use Security Compliance Management
(formerly Puppet Comply®) and Continuous Delivery, which are both now covered by your Puppet Enterprise
license. Additionally, by purchasing the Puppet Enterprise Advanced license, you can unlock the following
premium features:

• Security Compliance Enforcement (formerly CEM)
• Advanced Impact Analysis capabilities within Continuous Delivery

For more information about the Puppet Enterprise license, see Getting a license on page 130.

Launch Security Compliance Management and Continuous Delivery consoles from the PE console

Starting in PE 2023.7, if you've installed Security Compliance Management and Continuous Delivery, you can
launch their respective consoles by clicking quick links in the PE console.

© 2024 Puppet, Inc., a Perforce company

https://portal.perforce.com/s/article/Code-deployment-fails-from-ADO-in-PE-with-rsa-sha-error
https://www.puppet.com/docs/pe/2023.8/release_notes_pe#release_notes_pe_x-8-resolved-issues-pe-x-8
https://www.puppet.com/docs/pe/2023.8/known_issues_pe#known_issues_pe
https://www.puppet.com/docs/pe/2023.8/using-pe-docs#archived_pe_docs
https://www.puppet.com/docs/pe/2023.8/release_notes_pe#release_notes_pe
https://www.puppet.com/docs/pe/2023.8/upgrade_cautions#upgrade_cautions
https://www.puppet.com/docs/pe/2023.8/supported_upgrade_paths
https://www.puppet.com/docs/pe/2023.8/system_requirements

pe | Release notes | 43

Identify operational issues affecting infrastructure nodes

The console now includes an Operational status page showing the result of the latest checks performed by the
pe_status_check module. Issues requiring your attention are listed under the affected infrastructure nodes.
For more information, see Identify operational issues affecting infrastructure nodes on page 399.

Important: If you previously installed the pe_status_check module from the Forge or specified a version
in your Puppetfile, ensure that you remove the previously installed version. This allows the latest version bundled
with PE to be asserted.

PE certificate authority supports auto-renewal of agent certificates

If your installation includes puppet-agent 8.2.0 or a later version, PE is preconfigured to allow the certificate
authority service to generate new agent certificates ahead of certificate expiration dates. This default functionality
helps prevent disruption associated with certificate expirations. Optionally, you can turn off auto-renewal of
agent certificates and customize your PE certificate authority settings.

Default timeout limits for deploy jobs

Timeout limits forcibly stop deploy jobs that run too long. This feature is useful for stopping jobs that are stuck,
without requiring you to manually monitor the progress of jobs.

CAUTION: The feature for forcibly stopping deploy jobs can result in incomplete Puppet runs, partial
configuration changes, and other issues. When setting timeout limits, consider the job scope, typical
runtime, and your infrastructure's capacity (such as concurrency limits).

The default timeout limit is 30 minutes per node. You can change the global default limit by modifying the
default_deploy_node_timeout setting in your Orchestrator and pe-orchestration-services parameters on
page 238.

View and edit scheduled plans in the console

You can now view and edit scheduled plan details in the console.

View and edit scheduled jobs in the console

You can now view and edit scheduled job details in the console.

Authenticate users in multiple LDAP domains

You can now connect multiple Lightweight Directory Access Protocol (LDAP) domains to PE. This new feature
brings many changes to the role-based access control (RBAC) API and LDAP-related pages in the PE console.

In the PE console, view and manage all of your LDAP external directory service connections on the LDAP tab of
the Access control page.

The Test connection button is removed. When you Connect to external directory services on page 286, the
Connect button now automatically tests the connection before saving the configuration.

Use the Certificate chain field (or cert_chain API key) to define unique certificate chains across servers.

The following new endpoints replace deprecated or removed endpoints. For a list of deprecated and removed
endpoints, refer to the Deprecations and removals section of these release notes.

• POST /command/groups/create on page 333
• POST /command/ldap/create on page 350
• POST /command/ldap/update on page 352
• POST /command/ldap/test on page 354
• POST /command/ldap/delete on page 354
• GET /ldap on page 377
• GET /ldap/<id> on page 378

Responses from these endpoints now include the identity_provider_id:

• GET /v1/groups
• GET /v1/groups/<sid>

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 44

• GET /v1/users
• GET /v1/users/<sid>
• GET /v2/users

Default timeout limits for tasks and plans

Timeout limits forcibly stop tasks and plans that run too long. This feature is useful for stopping tasks and plans
that are stuck without requiring you to manually monitor task or plan progress.

CAUTION: The feature for forcibly stopping tasks and plans can result in incomplete Puppet runs,
partial configuration changes, and other issues. When setting timeout limits, consider the task or plan
scope, typical runtime, and your infrastructure's capacity (such as concurrency limits).

The default timeout limits are 40 minutes for tasks (per node) and 60 minutes for plans (for the entire plan
run). You can change the global default limits by modifying the default_task_node_timeout and
default_plan_timeout settings in your Orchestrator and pe-orchestration-services parameters on page
238.

Alternatively, you can set timeout limits for an individual task or plan when Running tasks from the console on
page 628, Running plans from the console on page 664, or running tasks and plans with the Orchestrator
API.

You can use the timeout option with the following Orchestrator API endpoints:

• POST /command/task on page 704
• POST /command/plan_run on page 711
• POST /command/environment_plan_run on page 712
• POST /scheduled_jobs/environment_jobs on page 740

Unique status for queued jobs

To better differentiate queued-but-unstarted jobs from jobs that are running, a new pending state was introduced
for queued jobs.

The pending state is visible in the console and in responses from GET /plan_jobs on page 752 and GET /
plan_jobs/<job-id> on page 756.

View and edit scheduled tasks in the console

You can now view and edit scheduled task details in the console.

Enhancements

Infrastructure nodes excluded from licensed node count

With the new PE license, your primary server and any deployed database servers, compiler nodes, and replicas
are no longer counted towards your licensed node limit. For more information, see How nodes are counted.

Feature toggle for lockless code deploys

If you have enabled Code Manager, you can now turn the lockless code deploys feature on or off by running a
puppet infra plan on your primary server. See Toggle lockless code deploys on or off on page 802.

Tune file sync performance for lockless code deploys

To help improve the file sync performance for lockless code deploys, two new file sync settings have been added
to the puppet_enterprise::master::file_sync class.

• copy_method: Allows you to specify shell-cp instead of java as the method used by file sync for
copying versioned deploys to their directory locations.

• versioned_sync_pool: Allows you to specify the number of code environments that can be deployed
concurrently.

For information about these new settings, see Code Manager settings on page 798.

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 45

Disaster recovery workflows improved

This release includes improvements to disaster recovery workflows for standard and large installations. The
enhancements help to ensure smooth failover to your primary server replica, and minimize potential for
disruption in cases where replica promotion is required. See Configuring disaster recovery on page 252.

Correct CA directory automatically set up during upgrade

Starting in 2023.7, when you upgrade PE, the installer checks that your certificate authority (CA) directory is set
up at /etc/puppetlabs/puppetserver/ca and if necessary, the installer automatically migrates the CA
to this directory. This enhancement mitigates the risk of certificate collisions during disaster recovery procedures.

Enhanced logging of schema validation

In the Puppet Server version bundled with PE 2023.7, validation messages in the logs have been improved to
provide more context about failed schemas.

Strengthened default password policy

The default password policy for the PE console has been updated to include the following requirements:

• Passwords must be at least 12 characters in length and must include upper and lowercase letters, special
characters, and numbers.

• The last five previous passwords cannot be reused when passwords are changed.

If you currently have customized Password complexity parameters on page 236, your existing configuration is
not be overridden when you upgrade.

Strengthened login security

To enhance security for console logins, additional session replay prevention mechanisms were implemented.

Supported ciphers updated

To enhance data security, the list of supported ciphers has been updated. See Compatible ciphers on page 13.

Puppet Server automatically regenerates CRLs that are nearing expiry

Starting in PE 2023.6, Puppet Server performs daily checks on Certificate Revocation Lists (CRLs) and if a
CRL is due to expire within 30 days, Puppet Server automatically regenerates it. This enhancement significantly
reduces the risk of failed Puppet runs and service outages caused by expired CRLs.

Improved plan concurrency with new pe-plan-runner service

PE 2023.6 introduces the pe-plan-runner service, which improves scalability and performance compared
to the existing orchestrator service. Disabled by default, the new service runs on the primary server, allowing
concurrent execution of up to 100 plans, with potential for further scaling based on available primary server
memory.

With pe-plan-runner enabled, you can continue scheduling and running plans using existing PE console
workflows or Orchestrator APIs, and any previously scheduled plans are automatically executed by pe-plan-
runner.

To start running plans over pe-plan-runner instead of the orchestrator service:

1. Click Node groups > PE Infrastructure > PE Orchestrator.
2. Select the Classes tab and locate the puppet_enterprise::profile::orchestrator class.
3. From the Parameter name dropdown, select plan_runner_active and enter true as the value.
4. Click Add to node group and commit your changes.

Tip: After enabling pe-plan-runner, monitor memory usage on the primary server, as poorly optimized
plans may adversely affect performance.

Enhanced workflow for configuring and running task jobs in the console

The process of configuring and running task jobs has been divided into three clear steps in the Tasks section of
the console. You can now configure the task job, use one of the three node-targeting methods, and review your
setup before scheduling or running the task.

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 46

Include or exclude catalog resource edges in catalogs sent to PuppetDB

By default, catalogs submitted to PuppetDB include resource edges, providing data that is useful if you want
to identify or analyze the relationships between catalog resources. Starting in PE 2023.6, you can modify the
submit_catalog_edges parameter in the puppet_enterprise::profile::master::puppetdb
class to exclude resource edges from catalogs. This setting is beneficial if you do not require resource edge data
and want to reduce the amount of data stored by PuppetDB.

Specify ciphers to use for connections between PE console and LDAP servers

PE 2023.6 includes a new ldap_cipher_suites parameter in the
puppet_enterprise::profile::console class. This parameter allows console users to specify an
array of ciphers to use when establishing connections to configured LDAP servers. By default, the value is set
to $puppet_enterprise::ssl_cipher_suites, which captures the array of ciphers specified by the
puppet_enterprise::ssl_cipher_suites parameter.

Upgraded logback

To address CVE-2023-6378, logback is upgraded to version 1.3.14. If you want to use a customized setting for
the logappender variable, see Upgrade cautions for information about avoiding disruptions in logging.

By default, the puppet_enterprise::profile::agent class manages some puppet.conf settings

Starting in PE 2023.6, the manage_puppet_conf parameter in
puppet_enterprise::profile::agent class is set to true by default, meaning that all settings
configured in the puppet_enterprise::profile::agent class are applied to the puppet.conf file.

If you do not want to use the puppet_enterprise::profile::agent class to manage the
puppet.conf file, ensure you set manage_puppet_conf to false.

Enhanced options for creating fact-based node group rules

When creating fact-based node group rules, you can now include or exclude nodes based on whether a fact,
expressed as an array of values, contains a specific value.

For information about creating fact-based rules in the console, see Writing node group rules.

For information on using rules when forming requests to the node classifier API, see Rule condition grammar.

Updated common PQL queries in console

When configuring Puppet runs in the console, you can choose from a range of common Puppet Query Language
(PQL) queries to target nodes for jobs and tasks. With the removal of legacy facts in Puppet 8, common queries
that used legacy facts have been updated to use equivalent structured facts.

Puppet 8 is installed with PE 2023.4

When you install PE 2023.4, an upgraded version of Puppet is installed automatically. Puppet 8 includes several
changes that can enhance PE performance capability. For example:

• Starting in Puppet 8, legacy facts are replaced by structured facts.
• Strict validation is enabled by default.
• Ruby is upgraded to version 3.2.

Important: For information about these and other key changes in Puppet 8 that might affect your PE upgrade,
see Puppet upgrade in 2023.4 and later on page 177.

r10k upgrade

PE includes r10k version 4.0, which has been updated to enhance scalability, reduce dependency risks, and align
with Git security best practices.

Important: To review information about changes introduced in r10k 4.0 that might affect your PE upgrade, see
Upgrade cautions on page 176.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/2023.5/grouping_and_classifying_nodes#writing_node_group_rules
https://www.puppet.com/docs/pe/2023.5/forming_node_classifier_requests#forming_node_classifier_requests-rule_condition_grammar

pe | Release notes | 47

Task concurrency limit now pertains to individual tasks or plans

The task_concurrency setting defines the maximum number of task or plan actions that can be executed
simultaneously.

Previously, the concurrency limit pertained globally to actions on any nodes in your installation that were
targeted by any current task or plan jobs. Now, the concurrency limit is specific to the nodes targeted by
individual task or plan jobs. This improvement significantly reduces latency when multiple task or plan jobs are
run simultaneously.

For example, in a company that uses PE, four users each run a task job targeting 10 nodes. The four task jobs are
similar in scope and the users initiate their jobs simultaneously. The task_concurrency parameter is set to
10. Previously, with a concurrency limit of 10, task actions would begin executing for one of the jobs and the
three remaining jobs would be queued. Now in this scenario, the concurrency limit pertains to each job, so all 40
task actions are executed concurrently. Because the four task jobs are similar in scope, they can be expected to be
completed in roughly the same timeframe.

The global default concurrency limit is 1000 actions per job. You can change the global default limit by
modifying the task_concurrency parameter value in your Orchestrator and pe-orchestration-services
parameters on page 238.

Enhanced workflow for configuring and running jobs in the console

The process of configuring and running jobs has been divided into three clear steps in the Jobs section of the
console. You can now configure the job, use one of the three node-targeting methods, and review your setup
before scheduling or running the job.

Classifier service automatically replaces legacy facts in node group rules

With the removal of legacy facts in Puppet 8, the PE classifier service now analyzes your node group rules and
automatically replaces legacy facts with corresponding structured facts. If any of your node group rules contain
legacy facts that cannot be directly mapped to structured facts, the classifier service generates warning messages
in the logs, prompting you to manually remove or replace the unmappable legacy facts. For more information
about the removal of legacy facts in Puppet 8, see Puppet upgrade in 2023.4 and later on page 177.

PE installer flags unmappable legacy facts in node group rules

Because legacy facts are removed in Puppet 8, the PE installer now examines your existing node group rules
and if any unmappable legacy facts are found, the installation process stops with a warning. To proceed with
installation, you can replace or remove unmappable legacy facts and re-run the installer. For more information
about the removal of legacy facts in Puppet 8, see Puppet upgrade in 2023.4 and later on page 177

Session timeout warning in the PE console

Previously, whenever a console session timed out due to inactivity, users were logged out automatically and
returned to the console login screen without warning. Now, whenever a session is about to expire due to
inactivity, the console displays a warning modal to inform users they'll be logged out soon. The warning modal
includes an option to continue the session.

You can configure the behavior of the timeout modal using the following console service parameters:

• puppet_enterprise::profile::console::session_timeout_polling_frequency_seconds

• puppet_enterprise::profile::console::session_timeout_warning_seconds

Orchestrator HTTP-client limits can be configured to match infrastructure requirements

You can now specify HTTP-client connection limit parameters in the
puppet_enterprise::profile::orchestrator class. You can set connection limits for authenticated
and unauthenticated clients by specifying an integer value for the following parameters:

• max_connections_per_route_authenticated

• max_connections_total_authenticated

• max_connections_per_route_unauthenticated

• max_connections_total_unauthenticated

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 48

Orchestrator socket timeout is configurable

By default, whenever no data is available on the socket, the orchestrator waits for a maximum of
120,000 milliseconds before closing the HTTP connection. Now you can specify the maximum time
before socket timeout by changing the default value of the socket_timeout parameter in the
puppet_enterprise::profile::orchestrator class.

Enhanced logging of certificate authority actions

Previously, agent certificate requests were authorized using the ”pp_cli_auth”: “true” certificate
extension. Now, when RBAC tokens are available, token-based authentication is used. This new default
authorization method allows better auditability because user IDs that trigger certificate authority actions
are reported to the audit log. If you want to configure the certificate authority service settings so that
RBAC tokens are always required for authorization of agent certificate requests, you can set the value of
allow_puppetlabs_certificate_authentication to false in your certificate_authority service
parameters on page 472.

More efficient agent run reporting to conserve storage in PuppetDB

Previously, agent run reports submitted to PuppetDB contained significant amounts of data about unchanged
managed resources. Now by default, to conserve storage space in PuppetDB, agent run reports only include
data relating to changes enforced by the Puppet run. Data about the desired state of each managed resource is
still available in agent catalogs. To revert to the previous behavior for agent run reporting, you can modify the
puppet_enterprise::profile::agent::exclude_unchanged_resources parameter.

Improvements to error logging for the puppet backup command

Previously, error messages returned by the puppet backup command were generic in many cases. Now,
descriptive error messages are displayed both in the terminal and in the log file, and you can use a --debug flag
with puppet backup to extend error logging to all underlying Puppet commands.

Optimized translation of classifier rules in PuppetDB queries

Classifier rule translation has been optimized to produce better queries to PuppetDB when regular expressions are
used in fact matching.

Restriction: This enhancement does not impact trusted facts, so suboptimal queries can still be produced when
regular expressions are used against trusted facts.

Improved performance when querying PuppetDB

This enhancement helps to improve performance for PuppetDB queries that contain large arrays, for example, if
many nodes are enumerated or many terms are joined by a single "and" or "or" element.

Improved performance for the each, map, and filter functions in the Puppet language

Previously, the Puppet language built-in functions each, map, and filter showed poor performance and
consumed unnecessary resources when run on JRuby software. The issue was resolved to enhance performance.

Puppet Server provides more reliable warnings when it cannot check for an update

By default, Puppet Server periodically checks whether a new version of Puppet Server is available. Previously, if
Puppet Server could not connect to the update server, users were not provided with adequate information about
the error. Starting with Puppet Server 7.10.1, a warning about the error is available in the log file.

Java 17 upgrade

This version upgrades Java from version 11 to 17 and changes the default garbage collector from Parallel to G1.

Thoroughly test PE 2023.0 in a non-production environment before upgrading if you customized PE Java
services or you use plug-ins that include Java code.

Stop in-progress plans in the console

When Running plans in PE on page 664, you can click Stop plan on the plan's run details page to stop the
plan. In this way, you can prevent new tasks from starting and allow in-progress tasks to finish. To forcibly stop
in-progress tasks from a stopped plan, follow the instructions in Stop a task in progress on page 641.

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 49

Forcibly stop in-progress tasks in the console

To Stop a task in progress on page 641, you can now both stop and forcibly stop in-progress tasks from the
console. Previously, you had to use the Orchestrator API to forcibly stop tasks.

CAUTION: A forcible stop is the last resort when a task is stuck. This type of stop can result in
incomplete Puppet runs, partial configuration changes, and other issues.

Provisioning replicas requires matching agent versions

When provisioning a replica, the target node's agent version must match the primary server's agent version. If
the versions don't match, the puppet infra provision replica command fails before initializing
the provisioning process. Previously, the agent version wasn't checked, and mismatched agent versions caused
provisioning to fail partway through.

Increased task_concurrency limit

The default value of the task_concurrency orchestrator parameter was increased from 250 to 1000.

recover_configuration command recreates nodes files

Previously, the puppet infrastructure recover_configuration command merged new values
into the nodes files (at /etc/puppetlabs/enterprise/conf.d/nodes) instead of overwriting the
files. This process caused problems if you deleted a value relevant to one or more nodes, because the deleted
value would remain in these files and continue to be applied.

Now, the recover_configuration command fully rewrites the nodes files on each invocation. This
process matches how the command handles changes to the user_data.conf file.

Notification when session expires due to inactivity

PE redirects users to the login page when a session expires due to inactivity. When this happens, the login page
now includes a message that indicates why the user was logged out.

Improved performance when regenerating agent certificates for multiple agents

The puppet infrastructure run regenerate_agent_certificate action is now faster
when you Regenerate agent certificates on page 859 for multiple agents. You can also now use the
agent_pdb_query parameter to use a PDB query to generate a list of agents for which you want to regenerate
certificates.

This action now uses the Puppet Server CA API endpoints directly, rather than relying on the puppetserver
ca CLI, as it did previously. This process is faster, but, if you encounter problems, you can revert to the previous
behavior by including use_puppetserver_cli=true in the command.

Specify Code Manager worker cache cleanup interval

The deploy_pool_cleanup_interval specified how often workers pause to clean their on-disk caches.
Learn more about this setting in Code Manager parameters on page 809.

CHACHA20 ciphers, compatible with non-FIPS PE installs

TLS_CHACHA20_POLY1305_SHA256 (TLSv1.3)

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (TLSv1.2)

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (TLSv1.2)

TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (TLSv1.2)

AES versions of two GCM ciphers, compatible with FIPS and non-FIPS installs

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (TLSv1.2)

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (TLSv1.2)

Removed restrictions

TLS_CHACHA20_POLY1305_SHA256 is no longer limited to Bolt server, ACE server, and NGINX.

ECDHE-ECDSA-CHACHA20-POLY1305 is no longer limited to NGINX.

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 50

ECDHE-RSA-CHACHA20-POLY1305 is no longer limited to NGINX.

Platform support

PE 2023.0 through 2023.7 added support for these platforms:

Primary server platforms added

Red Hat Enterprise Linux (RHEL) 9 x86_64

Ubuntu 22.04 amd64

Agent platforms added

Amazon Linux 2023 amd64

Amazon Linux 2023 aarch64

Debian 11 aarch64

Debian 12 amd64

Debian 12 aarch64

macOS 14 ARM

macOS 14 x86_64

FIPS 140-2 compliant Red Hat Enterprise Linux (RHEL) 9 x86_64

AIX 7.3

Red Hat Enterprise Linux (RHEL) 9 ARM64

Ubuntu 22.04 ARM64

macOS 13 ARM and x86_64

Client tools platforms added

Support has been added for PE client tools on the following operating system platforms:

• Amazon Linux 2023 amd64
• macOS 14 ARM
• macOS 13 ARM and x86_64

Solaris 11 packages now verified with GPG

Starting with PE 2023.7 and 2021.7.8, Solaris 11 agent packages are no longer signed with a DigiCert code
signing certificate. Instead, you can verify the package's authenticity by using GPG-based verification with the
provided .asc file.

Deprecations and removals

Puppet 8 deprecations and removals

For information about deprecations and removals associated with the upgrade to Puppet 8, see Puppet upgrade in
2023.4.

Deprecated PSON

In previous releases, Pure JavaScript Open Notation (PSON) was used in Puppet to serialize data for
transmission.

PSON is deprecated in Puppet 7 and is removed in Puppet 8.

Deprecated RBAC API endpoints

POST /v1/groups and POST /v2/groups are replaced by POST /command/groups/create on page 333.

PUT /v1/ds is replaced by POST /command/ldap/create on page 350, POST /command/ldap/update on page
352, and POST /command/ldap/delete on page 354.

© 2024 Puppet, Inc., a Perforce company

pe | Release notes | 51

GET /v2/ds is replaced by GET /ldap on page 377.

GET /ds/test and PUT /ds/test are replaced by POST /command/ldap/test on page 354.

Removed primary server platforms

CentOS 8

Removed agent platforms

AIX 7.1

CentOS 6

CentOS 7 aarch64

macOS 10.15

Oracle Linux 6

Oracle Linux 7 aarch64

Red Hat Enterprise Linux (RHEL) 6

Red Hat Enterprise Linux (RHEL) 7 aarch64

Scientific Linux 6

Scientific Linux 7 aarch64

Solaris 10

CentOS 8

Debian 9

Fedora 32

Fedora 34

Ubuntu 16.04

Removed client tool platforms

CentOS 6

macOS 10.15

Oracle Linux 6

Red Hat Enterprise Linux (RHEL) 6

Scientific Linux 6

Removed patch management platforms

Debian 9

Fedora 34

Removed RBAC API endpoints

Removed the previously deprecated GET /v1/ds/, which is replaced by GET /ldap on page 377.

Removed patch management platforms

Debian 9

Fedora 34

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 52

Getting started with Puppet Enterprise

Puppet Enterprise (PE) is automation software that helps you and your organization be productive and agile while
managing your IT infrastructure.

PE is a commercial version of Puppet, our original open source product used by individuals managing smaller
infrastructures. It has all the power and control of Puppet, plus a graphical user interface, orchestration services, role-
based access control, reporting, and the capacity to manage thousands of nodes. PE incorporates other Puppet-related
tools and products to deliver comprehensive configuration management capabilities.

There are two things you need to get started with PE: your content and the Puppet platform.

Content

You develop and store your automation content in a Git repository and upload it onto the Puppet platform. It consists
of Puppet code, plan and task code, and Hiera data. You store content in a control repo, which contains bundles of
code called modules and references to additional content from external sources, like the Puppet Forge — a repository
of thousands of modules made by Puppet developers and the Puppet community.

Puppet platform

The Puppet platform includes the primary server, compilers, and agents. Use it to assign your desired state to
managed systems, orchestrate ad-hoc automation tasks on managed and unmanaged systems, and get reports about
configuration automation activity.

Check out this video for more information about how Puppet works:

Quick start guide

The following pages are meant to teach you the basics of installing PE, adding nodes to your inventory, setting up
your control repo, and running through an example task for managing websever configurations (using Apache to
manage a *nix machine or IIS to manage a Windows machine).

Note: This guide is intended as a simple overview to demonstrate basic PE setup and concepts. You'll likely use
more features and need additional customizations described in detail elsewhere in the PE documentation.

• Install PE on page 53
To install Puppet Enterprise (PE), you can use either the PE installer tarball for your operating system platform or
Puppet Installation Manager.
• Log in to the PE console on page 59
The Puppet Enterprise (PE) console is a graphical interface where you can manage your infrastructure without relying
on the command line.
• Check the status of your primary server on page 59
You can run a task in the console to check your primary server's status.
• Add nodes to the inventory on page 60
Your inventory is the list of nodes managed by Puppet. Add nodes with agents, agentless nodes that connect
over SSH or WinRM, or add network devices like network switches and firewalls. Agent nodes help keep your
infrastructure in your desired state. Agentless nodes do not have a Puppet agent installed, but can do things like run
tasks and plans.
• Add code and set up Code Manager on page 61
Set up your control repo, create a Puppetfile, and configure Code Manager so you can start adding content to your
Puppet Enterprise (PE) environments.
• Manage Apache configuration on *nix targets on page 65
Your nodes need applications and services to perform their intended functionality. Not all nodes need all software,
and different types of nodes require different software configurations. Puppet Enterprise (PE) help you deploy

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

pe | Getting started with Puppet Enterprise | 53

relevant software and configurations to your nodes by grouping related nodes and allowing you to specify relevant
software and configurations for each node group.
• Manage IIS configuration on Windows targets on page 71
Your nodes need applications and services to perform their intended functionality. Not all nodes need all software,
and different types of nodes require different software configurations. Puppet Enterprise (PE) help you deploy
relevant software and configurations to your nodes by grouping related nodes and allowing you to specify relevant
software and configurations for each node group.
• Next steps on page 78
Now that you have set up some basic automated configuration management with Puppet Enterprise (PE), here are
some things you might want to do next.

Install PE
To install Puppet Enterprise (PE), you can use either the PE installer tarball for your operating system platform or
Puppet Installation Manager.

• Install PE using installer tarball on page 53
This installer employs default settings to install PE infrastructure components on a single node, creating a standard PE
architecture. You can use a standard installation to try out PE with up to 10 nodes, or to manage up to 4,000 nodes.
From there, you can scale up to the large or extra-large installation as your infrastructure grows, or customize your
configuration as needed.
• Install PE using PIM on page 54
Puppet Installation Manager (PIM) supports the deployment of standard, large, and extra-large PE architectures.
For an interactive experience, choose the guided installation and follow the step-by-step process in your terminal to
configure and install the PE infrastructure you require. Alternatively, if you do not require guidance, you can create a
JSON file containing your custom installation parameters, and run the installation from the command line.

Install PE using installer tarball
This installer employs default settings to install PE infrastructure components on a single node, creating a standard PE
architecture. You can use a standard installation to try out PE with up to 10 nodes, or to manage up to 4,000 nodes.
From there, you can scale up to the large or extra-large installation as your infrastructure grows, or customize your
configuration as needed.

A standard PE installation consists of the following components installed on a single node:

• The primary server: The central hub of activity. It is where Puppet code is compiled to create agent catalogs and
where SSL certificates are verified and signed.

• The console: The graphical web user interface. It has configuration and reporting tools.
• PuppetDB: The data store for data generated throughout your Puppet infrastructure.

Important: The primary server can only run on a *nix machine. However, Windows machines can be Puppet
agents, and you can manage them with your *nix primary server. Furthermore, you can operate your *nix primary
server remotely from a Windows machine. To do this, before you install PE on your *nix primary server, you must
configure an SSH client (such as PuTTY) with the hostname or IP address and port of the *nix machine that you'll use
as your primary server. When you open an SSH session to install PE on the *nix primary server, log in as root or use
sudo.

Related information
What gets installed and where? on page 102
Puppet Enterprise installs several software components, configuration files, databases, services and users, and log
files. It's useful to know the locations of these should you ever need to troubleshoot or manage your infrastructure.

Supported operating systems on page 84
Puppet Enterprise supports various operating systems depending on the role a machine assumes in your infrastructure.

Commands with elevated privileges on page 27

© 2024 Puppet, Inc., a Perforce company

https://putty.org/

pe | Getting started with Puppet Enterprise | 54

Some commands in PE require elevated privileges. Depending on the operating system, youc an use either sudo,
runas, or a root or admin user.

FIPS 140-2 enabled PE on page 16
Puppet Enterprise (PE) is available in a FIPS (Federal Information Processing Standard) 140-2 enabled version. This
version is compatible with select third party FIPS-compliant platforms.

Verify the installation package on page 111
This task is only required if your organization requires you to verify authenticity before installing packages. These
steps explain how to use GnuPG (GPG) to verify the PE installation tarball.

Install PE from tarball

Before you begin

Review the Hardware requirements for standard installations on page 83 to make sure your system capacity can
handle the standard PE installation.

Log in as root on your target primary server. If you're installing on a system that doesn't allow root login, you must
use sudo su - to complete these steps.

1. Download the tarball appropriate to your operating system and architecture.

Tip: To download packages from the command line, run wget --content-disposition "<URL>" or
curl -JLO "<URL>", using the URL for the tarball you want to download.

2. To unpack the installation tarball, run:

tar -xzf <TARBALL_FILENAME>

3. From the installer directory, run ./puppet-enterprise-installer and follow the CLI instructions to
complete the installation.

4. Optional: Restart the shell to use client tool commands.

After completing the standard installation, you can scale or customize your installation, if needed. For information
and requirements for large and extra-large installations, go to Supported architectures on page 79 and System
requirements on page 83. You can use Configuration parameters and the pe.conf file on page 113 to customize
your installation.

Install PE using PIM
Puppet Installation Manager (PIM) supports the deployment of standard, large, and extra-large PE architectures.
For an interactive experience, choose the guided installation and follow the step-by-step process in your terminal to
configure and install the PE infrastructure you require. Alternatively, if you do not require guidance, you can create a
JSON file containing your custom installation parameters, and run the installation from the command line.

Regardless of the installation process you choose, you can use PIM on a jump host to install PE infrastructure
components on remote nodes that run a supported PE operating system. Alternatively, you can install PE locally
by using PIM on a machine running a supported PE operating system. In this scenario, if you require additional
infrastructure nodes to host PE components, your local machine can serve as a jump host.

PE infrastructure nodes are the hosts where PE components are installed. The following table lists the infrastructure
nodes you can include in your installation when you use PIM to install PE:

PE infrastructure node Description

Primary server (required) Essential for a PE installation. Can host all components
and services for smaller scale environments that include
up to 2,000 nodes.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/try-puppet/puppet-enterprise/download/

pe | Getting started with Puppet Enterprise | 55

PE infrastructure node Description

Primary server replica (optional) To set up disaster recovery, install a replica of the
primary server. If your primary server fails, the replica
takes over to continue critical operations.

Database server In an extra-large PE installation, a dedicated database
server hosts a PostgreSQL instance containing the
PuppetDB database.

Database server replica (optional) Provides backup support during failovers.

Compilers Compilers process Puppet code and convert it into
catalogs that can be applied to agent nodes. The primary
server can handle requests and compile catalogs for
up to 2,000 agent nodes. In large and extra-large PE
installations, dedicated compiler nodes help accelerate
catalog compilation.

Related information
Supported architectures on page 79
There are several configurations available for Puppet Enterprise. The configuration you use depends on the number
of nodes in your environment and the resources required to serve agent catalogs. When you install PE using the PE
installer tarball, you begin with the standard configuration, and can then scale up by adding additional infrastructure
components as needed. Alternatively, by using Puppet Installation Manager (beta) to install PE, you can start out with
a standard, large, or extra-large configuration.

What gets installed and where? on page 102
Puppet Enterprise installs several software components, configuration files, databases, services and users, and log
files. It's useful to know the locations of these should you ever need to troubleshoot or manage your infrastructure.

Supported operating systems on page 84
Puppet Enterprise supports various operating systems depending on the role a machine assumes in your infrastructure.

Install PE using the guided process
For an interactive experience, use the guided installation process. Based on information you provide about your
environment and requirements, PIM automatically configures your PE installation.

Before you begin

• Ensure that you have the required access to the nodes where you want to install PE infrastructure.

• To install the primary server locally on the machine where PIM is running, you must log in as the root user.
• To install PE components on remote nodes, the machine running PIM must have SSH access to the target

nodes, and the user executing the installation must have superuser privileges for those nodes.

• Ensure that Puppet is not already installed on any of the nodes where you want to install PE infrastructure.

• Check system requirements:

• Hardware requirements
• Supported operating systems
• Supported browsers
• System configuration

Important: Security-Enhanced Linux (SELinux) is enabled and enforced by default on Red Hat Enterprise Linux 9
(RHEL 9) operating systems. In order to use PIM, users must provide permission for PIM binary.

To install PE by using the PIM guided process:

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 56

1. Download PIM.

Go to the Puppet Installation Manager download page and download the binary for your operating system.

2. Start the guided installation process.

In your terminal, navigate to the pim directory and run the following command:

./pim wizard

3. Follow the guided steps in your terminal to complete the installation.

If you require additional guidance during the installation process, you can view help content by pressing Ctrl+H.

Install PE with your defined parameters
If you know which PE infrastructure components you want to install and you do not require guidance, you can specify
your installation parameters in a JSON file. Then use PIM to start the installation by running a single command.

Before you begin

• Ensure that you have the required access to the nodes where you want to install PE infrastructure.

• To install the primary server locally on the machine where PIM is running, you must log in as the root user.
• To install PE components on remote nodes, the machine running PIM must have SSH access to the target

nodes, and the user executing the installation must have superuser privileges for those nodes. You can
configure SSH, or use the -b flag to pass the SSH key or SSH credentials when you run the installation
command.

• Ensure that Puppet is not already installed on any of the nodes where you want to install PE infrastructure.

• Check system requirements:

• Hardware requirements
• Supported operating systems
• Supported browsers
• System configuration

To install PE from the PIM command line:

1. Download PIM.

Go to the Puppet Installation Manager download page and download the binary for your operating system.

2. Create a JSON file specifying the installation parameters you require.

For examples illustrating the JSON properties required for different PE architectures, see Creating an installation
parameters file.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/downloads/puppet-installation-manager-beta
https://www.puppet.com/downloads/puppet-installation-manager-beta

pe | Getting started with Puppet Enterprise | 57

3. Start the installation.

In your terminal, navigate to the pim directory and run one of the following commands, replacing
parameters.json with the actual file name (including the file path, if necessary):

• To run the installation without debugging and without configuring SSH, use a command like the following
example:

./pim install parameters.json

• To enable debug logging, add -d or --debug. For example:

./pim install parameters.json --debug

• To pass an SSH key or SSH credentials for accessing remote nodes, use the -b flag with the installation
command as shown in the following examples:

./pim install -b user=root -b private-key=~/.ssh/ssh_key params.json

./pim install -b user=root -b password=ssh_password params.json

4. Follow the CLI prompts to complete the installation process.

Note: PIM uses the Puppet Enterprise Administration Module (PEADM), which depends on Puppet Bolt, a tool
for automating Puppet infrastructure maintenance tasks. When you run the ./pim install command, PIM
checks whether Bolt is present and, if necessary, provides the option to install Bolt.

Creating an installation parameters JSON file
To install PE from the Puppet Installation Manager (PIM) command line, you must create a JSON file containing
your installation parameters and pass that file with the install command. The JSON file defines your installation
architecture, including the option for disaster recovery.

Important: Creating a JSON file containing installation parameters is not required if you use the guided installation
process. With the guided process, PIM automatically configures your installation based on the information you
provide about your environment and requirements.

Installation configuration examples

The following examples illustrate how to structure the JSON file for different PE configurations.

Installation parameters for an extra-large architecture with disaster recovery

{
 "primary_host": "pe-xl-core-0.lab1.puppet.vm",
 "primary_postgresql_host": "pe-xl-core-1.lab1.puppet.vm",
 "replica_host": "pe-xl-core-2.lab1.puppet.vm",
 "replica_postgresql_host": "pe-xl-core-3.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-xl-compiler-0.lab1.puppet.vm",
 "pe-xl-compiler-1.lab1.puppet.vm"
],
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for an extra-large architecture without disaster recovery

{
 "primary_host": "pe-xl-core-0.lab1.puppet.vm",
 "primary_postgresql_host": "pe-xl-core-1.lab1.puppet.vm",

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 58

 "compiler_hosts": [
 "pe-xl-compiler-0.lab1.puppet.vm",
 "pe-xl-compiler-1.lab1.puppet.vm"
],
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for a large architecture with disaster recovery

{
 "primary_host": "pe-l-core-0.lab1.puppet.vm",
 "replica_host": "pe-l-core-2.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-l-compiler-0.lab1.puppet.vm",
 "pe-l-compiler-1.lab1.puppet.vm"
],
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for a large architecture without disaster recovery

{
 "primary_host": "pe-l-core-0.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-l-compiler-0.lab1.puppet.vm",
 "pe-l-compiler-1.lab1.puppet.vm"
],
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for a standard architecture with disaster recovery

{
 "primary_host": "pe-core-0.lab1.puppet.vm",
 "replica_host": "pe-core-2.lab1.puppet.vm",
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for a standard architecture without disaster recovery

{
 "primary_host": "pe-core-0.lab1.puppet.vm",
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 59

Log in to the PE console
The Puppet Enterprise (PE) console is a graphical interface where you can manage your infrastructure without relying
on the command line.

To log in for the first time:

1. In your browser, open the console by entering a URL referencing your primary server hostname. For example:

https://primary.example.com

Note: You'll receive a browser warning about an untrusted certificate because you were the signing authority
for the console's certificate, and your PE deployment is not known to your browser as a valid signing authority.
Ignore this warning and accept the certificate.

2. Log in with your admin username and password.

• If you used the PE installer tarball to install PE, log in to the console with the username admin and the
password you created when installing. Keep track of this login because you'll need it later.

• If you used PIM to install PE, log in to the console with the admin username and password included in the
JSON file containing the parameters used for your installation. Your installation parameters file has a name
like /success_install_<DATE_TIME_STAMP>.json. When you are logged in successfully, change
your admin password promptly for account security.

Next, check your primary server's status.
Related information
Accessing the console on page 269
The console is the web interface for Puppet Enterprise.

Check the status of your primary server
You can run a task in the console to check your primary server's status.

A task is a single action that allows you to do ad-hoc things like upgrade packages and restart services on
target machines. Puppet Enterprise (PE) comes with a few tasks installed, such as package, service, and
puppet_conf, and you can download more tasks from the Forge or write your own.

1. In the console, in the Orchestration section, click Tasks.

2. Click Run a task in the upper right corner of the Tasks page.

3. In the Task field, select service because you are checking the status of the primary server service.

4. Optional: In the Job description field, provide a description. The text you enter here appears on the job list and
job details pages.

5. Under Task parameters, enter parameters and values for the task. The service task has two required
parameters. For action, choose status. For name, enter puppet.

6. Under Select targets, select Node list.

a) In the Inventory nodes field, add your primary server's hostname and select it.

7. Click Run task or Schedule job.
Your task run appears on the Tasks page. To rerun the task, click Run again and choose to rerun the task on all
nodes or only the nodes that failed during the initial run.

Tip: You can filter run results by task name to find specific task runs.

View the task status and output on the Jobs page after the task is finished running.

Confirm that your primary server's status is running and enabled.

Next, use the console to Add nodes to the inventory on page 60.

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 60

To learn more about tasks, including how to install them from the Forge and how to write your own tasks, go to
Installing tasks and Writing tasks.

Add nodes to the inventory
Your inventory is the list of nodes managed by Puppet. Add nodes with agents, agentless nodes that connect
over SSH or WinRM, or add network devices like network switches and firewalls. Agent nodes help keep your
infrastructure in your desired state. Agentless nodes do not have a Puppet agent installed, but can do things like run
tasks and plans.

Add agent nodes
You can use the Puppet Enterprise (PE) console to install Puppet agents on Windows, *nix, and macOS nodes and
add the nodes to your inventory. Agents help with configuration management by periodically checking in with the
primary server for the desired configuration, detecting and correcting changes to resources the agent manages, and
reporting information to the primary server about your infrastructure.

These steps demonstrate one method for Installing agents on page 131. For more detailed instructions, go to Install
agents from the console on page 136.

1. In the PE console, go to Nodes > Add nodes > Install agents.

2. Select a transport method used to remotely install the agent on the target node.

• SSH for *nix and macOS
• WinRM for Windows

3. Enter the target host names and the credentials required to access them. You can specify multiple targets, but only
one set of credentials.

Important: If you use an SSH key, include the begin and end tags.

4. Click Add nodes to install agents on the specified nodes. You can click Installation job started to view the task's
job details.
Agents are installed on the target nodes and then they automatically submit certificate signing requests (CSRs) to
the primary server.

5. Go to Certificates > Unsigned certificates and accept the CSRs.

Add agentless nodes
You can add nodes that don't or can't have a Puppet agent installed on them. Agentless automation allows you to do
manage nodes that don't have software installed, such as updating a package or restarting a server on demand.

1. In the PE console, click Nodes > Add nodes.

2. Click Connect over SSH or WinRM.

3. Select a transport method.

• SSH for *nix and macOS targets
• WinRM for Windows targets

4. Enter target host names and the credentials required to access them. If you use an SSH key, include the begin and
end tags.

5. Optional: Select additional Transport configuration options on page 447. For example, to customize the
connection port number, select Target Port from the Target options drop-down list, enter the desired port
number, and click Add.

6. Click Add nodes.

After adding agentless nodes to your PE inventory, they are added to PuppetDB, and you can view them on the
Nodes page (in the console). Any nodes in your inventory can be added to the inventory node list when you set up
a job to run tasks. To review a node's connection settings or remove an agentless node from the inventory, go to the
Connections tab on the Node details page.

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 61

Add code and set up Code Manager
Set up your control repo, create a Puppetfile, and configure Code Manager so you can start adding content to your
Puppet Enterprise (PE) environments.

The control repo is where you store your code. Code in your control repo is usually bundled in modules.

The Puppetfile specifies detailed information about each environment's Puppet code and data, including where to get
that code and data from, where to install it, and whether to update it.

Code Manager automates the management and deployment of your Puppet code. PE doesn't require Code Manager,
but it is helpful for ensuring Puppet syncs code to your primary server and all your servers run new code at the same
time.

Related information
How Code Manager works on page 791
To automatically manage your environments and modules, Code Manager uses r10k and the file sync service to stage,
commit, and sync your code.

Create a control repository from the Puppet template
To create a control repository (or control repo) that has the recommended structure, code examples, and configuration
scripts, base your control repo on the Puppet control repo template. This template covers most customer situations.

The Puppet control repo template contains the necessary files to configure a functioning code management control
repo plus helpful Puppet code examples, including:

• Basic code examples for setting up roles and profiles.
• A Puppetfile that references modules to manage content in your environments.
• An example Hiera configuration file and hieradata directory.
• A config_version script that tells you which version of code from your control repo was applied to your

agents.
• An environment.conf file that implements the config_version script and a site-modules directory

for roles, profiles, and custom modules.

In situations where you can't access the internet, or where organizational security policies prevent downloading
modules from the Forge, you can Create an empty control repo on page 781 and add the necessary files to it.

To use the template, you must set up a private SSH key, copy the control repo template to your development
workstation, set your own remote Git repository as the default source, and then push the template contents to that
source.

Important: The following steps assume you are using GitHub Enterprise with SSH. For more information and
instructions for other version control hosts, such as GitLab or BitBucket, go to the Puppet control-repo template
README.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/control-repo
https://github.com/puppetlabs/control-repo
https://github.com/puppetlabs/control-repo

pe | Getting started with Puppet Enterprise | 62

1. To allow access to the control repo, generate a private SSH key without a password:

a) To generate the key pair, run:

ssh-keygen -t ed25519 -P '' -f /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519

b) To allow the pe-puppet user to access the key, run:

puppet infrastructure configure

Your private key is located at /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519, and your public key is at /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519.pub.

c) Configure your Git host to use the SSH public key you generated. Usually, this involves creating a user or
service account and assigning the SSH public key to it, but the exact process varies for each Git host. For
instructions on adding SSH keys to your Git server, check your Git host's documentation (such as GitHub,
BitBucket Server, or GitLab).

Important: Code management needs read access to your control repository, as well as any module
repositories referenced in the Puppetfile.

2. In your Git user account or organization, create a repository named control-repo, and make sure a README
is not automatically generated when you create the repo. Take note of the repo's SSH URL.

Important: Do not use an existing repo. The template requires a new, empty repo named control-repo.

3. If you haven't already installed Git, run yum install git.

4. To clone the Puppet control-repo template, run:

git clone https://github.com/puppetlabs/control-repo.git

5. Change to the control-repo directory: cd control-repo

6. Remove the template repo as the origin: git remote remove origin

7. Set your control repo as the origin: git remote add origin
<SSH_URL_FOR_YOUR_CONTROL_REPO>

8. Push the contents of the production branch of the cloned control repo to your remote control repo: git push
origin production

You now have a control repository based on the Puppet control-repo template. After configuring Code Manager,
when you make changes to your control repo on your workstation and push the changes to the remote control repo on
your Git host, Code Manager detects and deploys your infrastructure changes.

By using the control-repo template, you now also have a Puppetfile to which you can add and manage content,
like module code.

Related information
Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.

Managing code with Code Manager on page 790
Code Manager automates the management and deployment of your Puppet code. When you push code updates to
your source control repository, Code Manager syncs the code to your primary server and compilers. This allows all
your servers to run the new code as soon as possible, without interrupting in-progress agent runs.

Add an environment on page 783

© 2024 Puppet, Inc., a Perforce company

https://developer.github.com/v3/guides/managing-deploy-keys/#machine-users
https://confluence.atlassian.com/bitbucketserver/ssh-access-keys-for-system-use-776639781.html
https://docs.gitlab.com/ce/ssh/README.html#deploy-keys

pe | Getting started with Puppet Enterprise | 63

Create new environments by creating branches based on your control repo's production branch.

Configure Code Manager
Code Manager stages, commits, and synchronizes your code, automatically managing your environments and
modules when you make changes.

Enable Code Manager
Set parameters in the console to enable Code Manager and connect your primary server to your Git repository.

Before you begin

Set up an SSH key to permit the pe-puppet user to access your Git repositories. The SSH key must be:

• Owned by the pe-puppet user.
• Located on the primary server.
• Located in a directory the pe-puppet user has permission to view, such as /etc/puppetlabs/

puppetserver/ssh/id-control_repo.ed25519.

These steps use the puppet job command. To use this command, you must have permission to run jobs and have
access to the primary server.

1. In the console, click Node groups, locate the PE Master node group, and set these parameters for the
puppet_enterprise::profile::master class:

a) Set code_manager_auto_configure to true to enable Code Manager.
b) For r10k_remote, enter a string that is a valid SSH URL for your Git control repository, such as

git@<YOUR.GIT.SERVER.COM>:puppet/control.git.

Important: Some Git providers have additional requirements for enabling SSH access. For
example, BitBucket requires ssh:// at the beginning of the SSH URL (such as ssh://
git@<YOUR.GIT.SERVER.COM>:puppet/control.git). See your provider's documentation for this
information.

c) For r10k_private_key, enter a string specifying the path to the SSH private key that permits the pe-
puppet user to access your Git repositories, such as "/etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519".

Important: If your PE installation includes disaster recovery, you must also set the
puppet_enterprise::profile::master::r10k_private_key parameter in pe.conf. This
ensures that the r10k private key is synced to your primary server replica.

d) For the r10k_known_hosts parameter, enter an array of hashes, with each hash containing the following
key-value pairs:

• "name":"<HOSTNAME>": Specify the hostname of your control repository host.
• "type":"<HOST_KEY_TYPE>": Specify the type of host key, such as rsa, dsa, ecds, or ed25519.
• "key":"<HOST_PUBLIC_KEY>": Specify the SSH public key for your control repository host.

Structure the parameter as shown in the following example:

[{"name":"<HOSTNAME>","type":"<HOST_KEY_TYPE>","key":"<HOST_PUBLIC_KEY>"},
{"name":"<HOSTNAME>","type":"<HOST_KEY_TYPE>","key":"<HOST_PUBLIC_KEY>"}]

Optionally, each hash can accept values for "title", "ensure", and "host_aliases".

The r10k_known_hosts parameter manages your known_hosts file to allow SSH host key verification,
which is required when you use Code Manager or r10k.

2. Click Commit.

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 64

3. On the command line, run puppet job run --nodes <NODE NAME> where <NODE NAME> is the name
of your primary server. For example:

puppet job run --nodes small-doubt.delivery.puppetlabs.net

Set up authentication for Code Manager.
Related information
Configure settings in the PE console on page 213
You can use the Puppet Enterprise (PE) console's graphical interface to configure settings for your PE installation.

Run Puppet on demand from the CLI on page 623
Use the puppet job run command to start an on-demand Puppet run to enforce changes on your agent nodes.

Set up authentication for Code Manager
To securely deploy environments, Code Manager needs an authentication token for both authentication and
authorization.

Before requesting an authentication token, you must assign a user to the deployment role.

1. In the Puppet Enterprise (PE) console, create a deployment user.

Tip: Create a dedicated deployment user for Code Manager to use.

2. Add the deployment user to the Code Deployers role.

When you install PE, this role is automatically created with default permissions for code deployment and token
lifetime management.

3. Click Generate Password to create a password for the deployment user.

Request an authentication token for deployments.
Related information
Configure puppet-access on page 308
The puppet-access command allows users to generate and manage authentication tokens from the command
line of any workstation (Puppet-managed or not), without the need to SSH into the primary server. If you want to use
puppet-access, ensure it is configured correctly before using it to generate authentication tokens.

Add a user to a user role on page 283
When you add a user to a role, the user gains the permissions you assign to that role. A user can't do anything in PE
until they have been assigned to at least one role. If users are assigned to multiple roles, they get all permissions from
all roles they are assigned to.

Assign user groups to user roles on page 293
After importing a group, you must assign at least one user role to it. This grants the role's permissions to the group
members. If you don't assign a role, the users in this group have no permissions.

Request an authentication token for deployments
To securely deploy your code, request an authentication token for the deployment user.

The default lifetime for authentication tokens is one hour. You can use the Override default expiry
permission set to change the token lifetime to a duration better suited for a long-running, automated process.

Use the puppet-access command to generate the authentication token.

1. From the command line on the primary server, run puppet-access login --lifetime 180d. This
command requests the token and sets the token lifetime to 180 days.

Tip: You can specify additional settings in this command, such as the token file's location or your RBAC API
URL, as explained in Configuration file settings for puppet-access.

2. Enter the deployment user's username and password when prompted.

The generated token is stored in a file for later use. The default token storage location is ~/.puppetlabs/token.
You can run puppet-access show to view the token.

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 65

Test the connection to the control repo.
Related information
Set a token-specific lifetime on page 313
If you want a token to have a different lifetime than the default lifetime, you can set a different lifetime when you
generate the token. This allows you to keep one token for multiple sessions.

Generate a token for use by a service on page 312
If you need to generate a token that a Puppet Enterprise (PE) service can use, and the token doesn't need to be saved,
use the --print option with the puppet-access command.

Test the connection and deploy your code
Make sure Code Manager can connect to your control repository, make a test deployment to a single environment,and
then deploy code to all environments.

1. To test the connection to the control repo, run: puppet-code deploy --dry-run

If the control repo is set up properly, this command fetches and displays a list of environments in the control repo
as well as the total number of environments.

If an environment is not set up properly or causes an error, it does not appear in the returned list. Check the Puppet
Server log for details about the errors.

2. If the control repo connection works, test Code Manager by deploying a single environment. From the command
line, run: puppet-code deploy my_test_environment --wait

The --wait flag returns results after the deployment is finished.

If Code Manager is configured correctly, this command deploys the test environment and returns deployment
results with the SHA (a checksum for the content stored) for the control repo commit.

If the deployment does not work, review the Code Manager configuration steps or refer to Troubleshooting on
page 875 for help.

3. After enabling and testing Code Manager, you can trigger Code Manager to deploy all environments. SSH into
your primary server and run: puppet-code deploy --all --wait

You can also use puppet-code deploy <ENVIRONMENT> --wait to deploy a specific environment.

After making changes to your Puppetfile, such as adding a new module or creating a repo, you must deploy your code
so Code Manager can recognize and start managing the content. You can trigger deployments from the command line,
webhooks, or custom scripts.
Related information
Triggering Code Manager on the command line on page 814
Use the puppet-code command to trigger Code Manager from the command line and deploy your environments.

Triggering Code Manager with a webhook on page 820
To deploy your code, you can trigger Code Manager by hitting a web endpoint, either through a webhook or a custom
script. Webhooks are the simplest way to trigger Code Manager.

Triggering Code Manager with custom scripts on page 822
Custom scripts are a good way to trigger deployments if you can't use webhooks. For example, if you have privately
hosted Git repositories, custom notifications, or existing continuous integration systems (like Continuous Delivery for
Puppet Enterprise (PE)).

Manage Apache configuration on *nix targets
Your nodes need applications and services to perform their intended functionality. Not all nodes need all software,
and different types of nodes require different software configurations. Puppet Enterprise (PE) help you deploy
relevant software and configurations to your nodes by grouping related nodes and allowing you to specify relevant
software and configurations for each node group.

Here we demonstrate how to distribute Apache services to a node group by installing the apache module, creating
a node group for the Apache nodes, creating profiles to specify Apache and webserver configurations, bundling

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 66

the profiles into a role, and assigning the role to the node group. Once this is done, PE distributes the role to the
individual nodes and ensures the individual nodes have the Apache service and the desired configurations.

• Install the apache module on page 66
Modules are self-contained, shareable bundles of code and data. Each module manages a specific task in your
infrastructure, such as installing and configuring a piece of software. With Puppet Enterprise (PE), a lot of your
infrastructure is supported by modules, so it is important to learn how to install, build, and use them. To practice
working with modules, try installing the puppetlabs/apache module, which automates installing, configuring,
and managing Apache services.
• Set up Apache node groups on page 67
Tell Puppet Enterprise (PE) your desired infrastructure configuration by creating node groups to categorize related
nodes based on their function. Before you begin, decide which of your inventory nodes you want to have Apache
services.
• Organize webserver configurations with roles and profiles on page 68
The roles and profiles method is a reliable way to build reusable, configurable, and refactorable system
configurations.

Install the apache module
Modules are self-contained, shareable bundles of code and data. Each module manages a specific task in your
infrastructure, such as installing and configuring a piece of software. With Puppet Enterprise (PE), a lot of your
infrastructure is supported by modules, so it is important to learn how to install, build, and use them. To practice
working with modules, try installing the puppetlabs/apache module, which automates installing, configuring,
and managing Apache services.

Before you begin
Install PE on page 53 and at least one *nix agent node before installing the apache module.

Tip: You can write your own modules or download pre-built modules from the Forge. While you can use any
module on the Forge, PE customers can take advantage of supported modules. These modules are designed to
facilitate common services, and they are tested and maintained by Puppet.

1. Go to the Apache module page on the Forge.

2. Select r10k or Code Manager as the Installation Method, and follow the instructions to add the module
declaration to your Puppetfile.

By default, Code Manager installs the latest version and disables automatic updates; however, you can specify
options to install a different version or keep the module current with the latest version. To automatically
update the module when a new version is released, specify :latest (such as mod 'puppetlabs/
apache', :latest). To install a specific version of the module and prevent automatic updates, specify the
version number as a string (such as mod 'puppetlabs/apache', '5.4.0').

3. Make sure your Puppetfile includes module declarations for the puppetlabs/stdlib and puppetlabs/
concat modules, which are dependencies of the apache module. Dependencies for each module are listed on
the Dependencies tab on the module’s Forge page, and you can specify the desired version in the same way you
did for the primary module.

For example, this code installs version 5.4.0 of the apache module, installs the module's dependencies, and
prevents automatic updates (due to specified version numbers):

mod 'puppetlabs/apache', '5.4.0'
mod 'puppetlabs/stdlib', '4.13.1'
mod 'puppetlabs/concat', '2.2.1'

4. SSH into your primary server and run puppet-code deploy --all to deploy code.

You installed the apache module. Installing a module makes it available in PE so you can use it to manage nodes.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/
https://forge.puppet.com/puppetlabs/apache

pe | Getting started with Puppet Enterprise | 67

After installing a module, you can run tasks included in the module from the PE console. The apache module
contains a task that allows you to perform Apache service functions. To view or run the apache task in the PE
console, go to the Run section, under Task, and enter apache in the Task field.

If the apache task doesn't appear, try refreshing the console in the browser. If it still does not appear, check that the
puppetlabs/apache module is in your Puppetfile and try again.

To continue managing Apache configuration on *nix targets, Set up Apache node groups on page 67.

Related information
Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.

Set up Apache node groups
Tell Puppet Enterprise (PE) your desired infrastructure configuration by creating node groups to categorize related
nodes based on their function. Before you begin, decide which of your inventory nodes you want to have Apache
services.

Important: Setting up a node group does not install software or configure the individual nodes in the node group.
A node group is a categorical designation for related nodes (in this case, nodes running the Apache module), and you
use the node group to manage nodes in bulk. After creating a node group, you must apply a role to the group so the
nodes have some specifications to inherit.

Create your classification group
A classification node group is a parent group for other node groups that contain classification data. You only need to
set up the classification node group once.

The classification group distinguishes classification node groups from environment node groups.

1. In the console, click Node groups, and click Add group.

2. Specify options for the new node group:

• Parent name: All Nodes
• Group name: All Classification
• Environment: production
• Environment group: Do not select

3. Click Add.

You created the classification group.

Create a node group and add it as a child of the classification group.

Create your apache node group
After creating the parent classification group, make the apache node group as a child of the classification group.

1. In the console, click Node groups, and click Add group.

2. Specify options for the apache node group:

• Parent name: All Classification
• Group name: apache
• Environment: production
• Environment group: Do not select

3. Click Add.

You have created a node group to categorize the nodes you want to have Apache services.

Identify nodes from your inventory that you want to run Apache on and add them to the apache node group.

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 68

Add nodes to the apache node group
Once you determine which nodes from your inventory belong in your apache node group, pin the nodes to the
group. Pinning adds nodes to a group one at a time. If you have a lot of nodes, you can create rules in the console to
dynamically add nodes to a node group.

Best practices for classifying node groups on page 453 can help you decide which nodes belong in your apache
node group.

1. In the console, click Node groups and select the apache node group.

2. On the Rules tab, under Certname, enter the certname of a node you want to add to the apache node group.

3. Click Pin node.

4. Repeat to add more nodes to the apache group.

5. When you are done pinning nodes, commit changes.

You have added your apache nodes to the apache node group.

Run Puppet.
Related information
Making changes to node groups on page 461
You can edit or remove node groups, remove nodes or classes from node groups, and edit or remove parameters and
variables.

Grouping and classifying nodes on page 452
Configure nodes by assigning classes, parameters, and variables to them. This is called classification.

Run Puppet on your Apache nodes
Run Puppet in the console to enforce your desired state on the apache node group you created.

1. In the console, on the Jobs page, click Run Puppet.

2. Under Run options, do not select anything.

3. From the list of target types, select Node group.

4. In the Chose a node group box, search for the apache node group and click Select.

5. Click Run job.
View the job status and a list of previous Puppet jobs on the Jobs page. To rerun the job, click Run again and
choose to rerun it on all nodes or only the nodes that failed during the initial run.

After running Puppet on a node group, the nodes in the group automatically check in with PE every 30 minutes to
confirm that their configuration matches what you've specified for this group. PE corrects the configuration it if it
doesn't match.

You must create roles and profiles to define specific applications, services, and configurations you want the nodes in
this group to receive, as explained in Organize webserver configurations with roles and profiles on page 68.

Important: Until you assign a role to a node group, the group has no defined configuration for the nodes to inherit.

Organize webserver configurations with roles and profiles
The roles and profiles method is a reliable way to build reusable, configurable, and refactorable system
configurations.

Roles and profiles allow you to select relevant pieces of code from modules and bundle them together to create
your own custom set of code for managing things. Profiles are the individual bundles of code. Roles gather profiles
together so you can assign them to nodes. This allows you to efficiently organize your Puppet code.

To illustrate roles and profiles, these steps demonstrate how to:

• Define a profile that configures virtual webhost (vhost) to serve the example.com website with a firewall rule.
• Create a role to contain the profile.
• Assign the role to the apache node group.

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 69

This creates a base structure where, if you had additional websites to serve, you would create additional profiles for
those sites. When you have multiple profiles, you can combine profiles within roles or create unique roles for each
profile.

Because this example adds a firewall rule, make sure you add the puppetlabs/firewall module to your
Puppetfile, following the same process you used to Install the apache module on page 66. Remember to add the
firewall modules dependencies (puppetlabs/stdlib), such as:

mod 'puppetlabs/firewall', '2.3.2'
mod 'puppetlabs/stdlib' , '4.0.0'

Related information
The roles and profiles method on page 498
The roles and profiles method is the most reliable way to build reusable, configurable, and refactorable system
configurations.

Set up your prerequisites
Before writing content for roles and profiles, you need to create modules to store them in.

1. Create one module for profile and one for role directly in your control repo. Do not put them in your
Puppetfile.

2. Make a new directory in the control repo named site. For example, /etc/puppetlabs/code/
environments/production/site.

3. Add site to the modulepath in the environment.conf file. The modulepath is the place where Puppet
looks for module information. For example: modulepath = site:modules:$basemodulepath.

4. Put the role and profile modules in the site directory.

Write a profile for your Apache vhost
Write a webserver profile that includes rules for your Apache vhost and firewall.

Before you begin
Make sure you have:

• Installed the puppetlabs/apache module, the puppetlabs/firewall module, and their dependencies
from the Forge.

• Created the role and profile modules, as explained in Set up your prerequisites.

Tip: We recommend writing your code in a code editor, such as VSCode, and then pushing to your Git server. There
is a Puppet VSCode extension that supports syntax highlighting of the Puppet language.

1. In the profile module, create the following directories and .pp file:

• manifests/

• webserver/

• example.pp

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/firewall
https://puppet-vscode.github.io/

pe | Getting started with Puppet Enterprise | 70

2. Paste this Puppet code into the example.pp file:

/etc/puppetlabs/code/environments/production/site/profile/manifests/
webserver/example.pp
class profile::webserver::example (
 String $content = "Hello from vhost\\n",
 Array[String] $ports = ['80']
 Array[String] $ips = ['127.0.0.1','127.0.0.2'],
)
{
 class { 'apache':
 default_vhost => false,
 }
{
 apache::vhost { 'example.com':
 port => $ports,
 ip => $ips,
 ip_based => true,
 docroot => '/var/www/html',
 }
 file { '/var/www/html/index.html':
 ensure => file,
 content => $content,
 }
 firewall { '100 allow http and https access':
 dport => $ports,
 proto => tcp,
 action => accept
 }
}

This profile applies custom rules for the apache::vhost class that include arrays of $ports and $ips. The
code uses file to ensure you vhost's main page has content. Finally, there is a firewall rule that only allows
traffic from the ports set in the $ports array.

You can add your own code to the profile as needed. For more information, go to these Forge pages:

• Apache module README
• Apache module Reference
• Firewall module README
• Firewall module Reference

Set data for the profile
Hiera is a configuration method that allows you to set defaults in your code or override defaults (in certain
circumstances). Use it to refine profile data.

Suppose you want to use the custom fact stage to represent the deployment stage of the node, which can be dev,
test, or prod. For this example, use dev and prod.

With Hiera structured data, you can set up a four-layer hierarchy consisting of:

• console_data for data defined in the console.
• nodes/%{trusted.certname} for per-node overrides.
• stage/%{facts.stage} for setting stage-specific data.
• common for global fallback data.

This structure lets you tune the settings for ports and IPs in each stage.

For example, to make webservers in the development environment have a custom message and use port 8080, you'd
create a data file with the following name, location, and code content:

cat /etc/puppetlabs/code/environments/production/data/stage/dev.yaml

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/apache/readme
https://forge.puppet.com/modules/puppetlabs/apache/reference
https://forge.puppet.com/modules/puppetlabs/firewall/readme
https://forge.puppet.com/modules/puppetlabs/firewall/reference

pe | Getting started with Puppet Enterprise | 71

profile::webserver::example::content: "Hello from dev\n"
profile::webserver::example::ports:
 - '8080'

You'd use this code to make webservers in the production environment listen to all interfaces:

cat /etc/puppetlabs/code/environments/production/data/stage/prod.yaml

profile::webserver::example::ips:
 - '0.0.0.0'
 - '::'

This is a brief introduction to what you can do with structured data in Hiera. To learn more about setting up
hierarchical data, see Getting started with Hiera.

Write a role for your Apache webserver
Roles contain sets of profiles. To write roles, think about the machines you're managing and decide what else they
need in addition to the webserver profile.

This example shows how to write a role by combining profiles. In this example, assume you want all nodes in your
apache node group to use the webserver profile you just wrote, and that your organization assigns all machines
(including workstations) a profile called profile::base that manages basic policies and uses some conditional
logic to include operating-system-specific configuration.

1. In your control repo, open the .pp file for the role module. If it doesn't exist, create the necessary directories
and file, such as:

/etc/puppetlabs/code/environments/production/site/role/manifests/
exampleserver.pp

2. Write a role that includes both the base profile and your webserver profile:

class role::exampleserver {
 include profile::base
 include profile::webserver
}

3. You can add more profiles to this role, or create additional roles with more profile configurations based on your
needs.

Assign the role to nodes
Assign the exampleserver role to the node group containing the nodes that you want to have the Apache vhost
configuration you wrote in the webserver::example profile.

For this example, assume you want to add role::exampleserver to all nodes in the apache node group.

1. In the console, click Node groups and select the apache node group.

2. On the Classes tab, select role::exampleserver and click Add class.

3. Commit the change.

Now, the apache node group manages your Apache vhost based on the rules you wrote in your webserver
profile. When the nodes check in with PE, PE distributes the role (and the contained profiles) to the individual nodes
and ensures the individual nodes have the Apache service and the desired configurations.

Manage IIS configuration on Windows targets
Your nodes need applications and services to perform their intended functionality. Not all nodes need all software,
and different types of nodes require different software configurations. Puppet Enterprise (PE) help you deploy

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/hiera_quick.html#getting_started_with_hiera

pe | Getting started with Puppet Enterprise | 72

relevant software and configurations to your nodes by grouping related nodes and allowing you to specify relevant
software and configurations for each node group.

Here we demonstrate how to distribute IIS services to a node group by installing the iis module, creating a node
group for the IIS nodes, creating profiles to specify IIS and webserver configurations, bundling the profiles into a
role, and assigning the role to the node group. Once this is done, PE distributes the role to the individual nodes and
ensures the individual nodes have the IIS service and the desired configurations.

• Install the iis module on page 72
Modules are self-contained, shareable bundles of code and data. Each module manages a specific task in your
infrastructure, such as installing and configuring a piece of software. With Puppet Enterprise (PE), a lot of your
infrastructure is supported by modules, so it is important to learn how to install, build, and use them. To practice
working with modules, try installing the puppetlabs/iis module, which automates installing, configuring, and
managing IIS services.
• Set up IIS node groups on page 73
Tell Puppet Enterprise (PE) your desired infrastructure configuration by grouping and classifying nodes based on
their function. Before you begin, decide which of your inventory nodes you want to have IIS services.
• Organize webserver configurations with roles and profiles on page 74
The roles and profiles method is a reliable way to build reusable, configurable, and refactorable system
configurations.

Install the iis module
Modules are self-contained, shareable bundles of code and data. Each module manages a specific task in your
infrastructure, such as installing and configuring a piece of software. With Puppet Enterprise (PE), a lot of your
infrastructure is supported by modules, so it is important to learn how to install, build, and use them. To practice
working with modules, try installing the puppetlabs/iis module, which automates installing, configuring, and
managing IIS services.

Before you begin
Install PE on page 53 and at least one Windows agent node before installing the iis module.

Tip: You can write your own modules or download pre-built modules from the Forge. While you can use any
module on the Forge, PE customers can take advantage of supported modules. These modules are designed to
facilitate common services, and they are tested and maintained by Puppet.

1. Go to the IIS module page on the Forge.

2. Select r10k or Code Manager as the Installation Method, and follow the instructions to add the module
declaration to your Puppetfile.

By default, Code Manager installs the latest version and disables automatic updates; however, you can specify
options to install a different version or keep the module current with the latest version. To automatically
update the module when a new version is released, specify :latest (such as mod 'puppetlabs/
iis', :latest). To install a specific version of the module and prevent automatic updates, specify the
version number as a string (such as mod 'puppetlabs/iis, '7.0.0').

3. Make sure your Puppetfile includes module declarations for the puppetlabs/pwshlib module, which is
a dependency of the iis module. Dependencies for each module are listed on the Dependencies tab on the
module’s Forge page, and you can specify the desired version in the same way you did for the primary module.

For example, this code installs version 7.0.0 of the iis module, installs the module's dependency, and prevents
automatic updates (due to specified version numbers):

mod 'puppetlabs/iis, '7.0.0'
mod ‘puppetlabs/pwshlib’, ‘0.4.0’

4. SSH into your primary server and deploy code running the puppet-code deploy --all command.

You installed the iis module. Installing a module makes it available in PE so you can use it to manage nodes.

To continue managing IIS configuration on Windows targets, Set up IIS node groups on page 73.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/
https://forge.puppet.com/puppetlabs/iis

pe | Getting started with Puppet Enterprise | 73

Related information
Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.

Set up IIS node groups
Tell Puppet Enterprise (PE) your desired infrastructure configuration by grouping and classifying nodes based on
their function. Before you begin, decide which of your inventory nodes you want to have IIS services.

Important: Setting up a node group does not install software or configure the individual nodes in the node group.
A node group is a categorical designation for related nodes (in this case, nodes running the IIS module), and you use
the node group to manage nodes in bulk. After creating a node group, you must apply a role to the group so the nodes
have some specifications to inherit.

Create your classification group
A classification node group is a parent group for other node groups that contain classification data. You only need to
set up the classification node group once.

The classification group distinguishes classification node groups from environment node groups.

1. In the console, click Node groups, and click Add group.

2. Specify options for the new node group:

• Parent name: All Nodes
• Group name: All Classification
• Environment: production
• Environment group: Do not select

3. Click Add.

You created the classification group.

Create a node group and add it as a child of the classification group.

Create your iis node group
After creating the parent classification group, make the iis node group as a child of the classification group.

1. In the console, click Node groups, and click Add group.

2. Specify options for the iis node group:

• Parent name: All Classification
• Group name: iis
• Environment: production
• Environment group: Do not select

3. Click Add.

You have created a node group to categorize the nodes you want to have IIS services.Next, determine which nodes
from your inventory you want to run IIS on and add them to the iis node group.

Identify nodes from your inventory that you want to run IIS on and add them to the iis node group.

Add nodes to the iis node group
Once you determine which nodes from your inventory belong in your iis node group, pin the nodes to the group.
Pinning adds nodes to a group one at a time. If you have a lot of nodes, you can create rules in the console to
dynamically add nodes to a node group.

Best practices for classifying node groups on page 453 can help you decide which nodes belong in your iis node
group.

1. In the console, click Node groups and select the iis node group.

2. On the Rules tab, under Certname, enter the certname of a node you want to add to the iis node group.

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 74

3. Click Pin node.

4. Repeat to add more nodes to the iis group.

5. When you are done pinning nodes, commit changes.

You have added your iis nodes to the iis node group.

Run Puppet.
Related information
Making changes to node groups on page 461
You can edit or remove node groups, remove nodes or classes from node groups, and edit or remove parameters and
variables.

Grouping and classifying nodes on page 452
Configure nodes by assigning classes, parameters, and variables to them. This is called classification.

Run Puppet on your IIS nodes
Run Puppet in the console to enforce your desired state on the iis node group you created.

1. In the console, on the Jobs page, click Run Puppet.

2. Under Run options, do not select anything.

3. From the list of target types, select Node group.

4. In the Chose a node group box, search for the iis node group and click Select.

5. Click Run job.
View the job status and a list of previous Puppet jobs on the Jobs page. To rerun the job, click Run again and
choose to rerun it on all nodes or only the nodes that failed during the initial run.

After running Puppet on a node group, the nodes in the group automatically check in with PE every 30 minutes to
confirm that their configuration matches what you've specified for this group. PE corrects the configuration it if it
doesn't match.

You must create roles and profiles to define specific applications, services, and configurations you want the nodes in
this group to receive, as explained in Organize webserver configurations with roles and profiles on page 74.

Important: Until you assign a role to a node group, the group has no defined configuration for the nodes to inherit.

Organize webserver configurations with roles and profiles
The roles and profiles method is a reliable way to build reusable, configurable, and refactorable system
configurations.

Roles and profiles allow you to select relevant pieces of code from modules and bundle them together to create
your own custom set of code for managing things. Profiles are the individual bundles of code. Roles gather profiles
together so you can assign them to nodes. This allows you to efficiently organize your Puppet code.

To illustrate roles and profiles, these steps demonstrate how to:

• Define a profile that configures the example.com website and includes a firewall rule.

Note: Adding a firewall rule isn’t necessary for an IIS website because the port is already open, but the purpose
of this example is to show that you can write a role that manages more than one piece of software (both IIS and
the firewall) to accomplish a task.

• Create a role to contain the profile.
• Assign the role to the iis node group.

This creates a base structure where, if you had additional websites to serve, you would create additional profiles for
those sites. When you have multiple profiles, you can combine profiles within roles or create unique roles for each
profile.

© 2024 Puppet, Inc., a Perforce company

pe | Getting started with Puppet Enterprise | 75

Because this example adds a firewall rule, make sure you add the puppet/windows_firewall module to your
Puppetfile, following the same process you used to Install the iis module on page 72. Remember to add the
firewall modules dependencies (puppetlabs/stdlib and puppetlabs/registry), such as:

mod 'puppet/windows_firewall', '2.0.2'
mod 'puppetlabs/stdlib' , '4.6.0'
mod 'puppetlabs/registry' , '1.1.1'

Related information
The roles and profiles method on page 498
The roles and profiles method is the most reliable way to build reusable, configurable, and refactorable system
configurations.

Set up your prerequisites
Before writing content for roles and profiles, you need to create modules to store them in.

1. Create one module for profile and one for role directly in your control repo. Do not put them in your
Puppetfile.

2. Make a new directory in the control repo named site. For example, /etc/puppetlabs/code/
environments/production/site.

3. Add site to the modulepath in the environment.conf file. The modulepath is the place where Puppet
looks for module information. For example: modulepath = site:modules:$basemodulepath.

4. Put the role and profile modules in the site directory.

Write a profile for your IIS website
Write a webserver profile that includes rules for your iis_site and firewall.

Before you begin
Make sure you have:

• Installed the puppetlabs/iis module, the puppet/windows_firewall module, and their dependencies
from the Forge.

• Created the role and profile modules, as explained in Set up your prerequisites.

Tip: We recommend writing your code in a code editor, such as VSCode, and then pushing to your Git server. There
is a Puppet VSCode extension that supports syntax highlighting of the Puppet language.

1. In the profile module, create the following directories and .pp file:

• manifests/

• webserver/

• example.pp

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppet/windows_firewall
https://puppet-vscode.github.io/

pe | Getting started with Puppet Enterprise | 76

2. Paste this Puppet code into the example.pp file:

class profile::webserver::example (
 String $content = 'Hello from iis',
 String $port = '80',
)
{

 windows_firewall::exception { 'http':
 ensure => present,
 direction => 'in',
 action => 'allow',
 enabled => true,
 protocol => 'TCP',
 local_port => Integer($port),
 remote_port => 'any',
 display_name => 'IIS incoming traffic HTTP-In',
 description => "Inbound rule for IIS web traffic. [TCP ${port}]",
 }

 $iis_features = ['Web-WebServer','Web-Scripting-Tools', 'Web-Mgmt-
Console']
 iis_feature { $iis_features:
 ensure => 'present',
 }

 # Delete the default website to prevent a port binding conflict.
 iis_site {'Default Web Site':
 ensure => absent,
 require => Iis_feature['Web-WebServer'],
 }

 iis_site { 'minimal':
 ensure => 'started',
 physicalpath => 'c:\\inetpub\\minimal',
 applicationpool => 'DefaultAppPool',
 bindings => [
 {
 'bindinginformation' => "${facts['ipaddress']}:${port}:",
 'protocol' => 'http',
 }
],
 require => [
 File['minimal-index'],
 Iis_site['Default Web Site']
],
 }

 file { 'minimal':
 ensure => 'directory',
 path => 'c:\\inetpub\\minimal',
 }

 file { 'minimal-index':
 ensure => 'file',
 path => 'c:\\inetpub\\minimal\\index.html',
 content => $content,
 require => File['minimal']
 }
}

This profile applies custom rules for the iis_site class that include settings for $port and $content. The
code uses file to ensure the site's main page has content. Finally, there is a firewall rule that only allows traffic
from the ports set in the $port setting.

You can add your own code to the profile as needed. For more information, go to these Forge pages:

• IIS module README
• IIS module Reference
• Windows firewall module README

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/iis/readme
https://forge.puppet.com/modules/puppetlabs/iis/reference
https://forge.puppet.com/modules/puppet/windows_firewall/readme

pe | Getting started with Puppet Enterprise | 77

Set data for the profile
Hiera is a configuration method that allows you to set defaults in your code or override defaults (in certain
circumstances). Use it to refine profile data.

Suppose you want to use the custom fact stage to represent the deployment stage of the node, which can be dev,
test, or prod. For this example, use dev and prod.

With Hiera structured data, you can set up a four-layer hierarchy consisting of:

• console_data for data defined in the console.
• nodes/%{trusted.certname} for per-node overrides.
• stage/%{facts.stage} for setting stage-specific data.
• common for global fallback data.

This structure lets you tune the settings for ports and IPs in each stage.

For example, to make webservers in the development environment have a custom message and use port 8080, you'd
create a data file with the following name, location, and code content:

/etc/puppetlabs/code/environments/production/data/stage/dev.yaml

profile::webserver::example::content: "Hello from dev"
profile::webserver::example::ports:
 - '8080'

You'd use this code to make webservers in the production environment listen to all interfaces:

/etc/puppetlabs/code/environments/production/data/stage/prod.yaml

profile::webserver::example::ips:
 - '0.0.0.0'
 - '::'

This is ta brief introduction to what you can do with structured data in Hiera. To learn more about setting up
hierarchical data, see Getting started with Hiera.

Write a role for your IIS website
Roles contain sets of profiles. To write roles, think about the machines you're managing and decide what else they
need in addition to the webserver profile.

This example shows how to write a role by combining profiles. In this example, assume you want all nodes in your
iis node group to use the webserver profile you just wrote, and that your organization assigns all machines
(including workstations) a profile called profile::base that manages basic policies and uses some conditional
logic to include operating-system-specific configuration.

1. In your control repo, open the .pp file for the role module. If it doesn't exist, create the necessary directories
and file, such as:

site-modules\role\manifests\exampleserver.pp

2. Write a role that includes both the base profile and your webserver profile:

class role::exampleserver {
 include profile::base
 include profile::webserver
}

3. You can add more profiles to this role, or create additional roles with more profile configurations based on your
needs.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/hiera_quick.html#getting_started_with_hiera

pe | Installing | 78

Assign the role to nodes
Assign the exampleserver role to the node group containing the nodes that you want to have the iis_site
configuration you wrote in the webserver::example profile.

For this example, assume you want to add role::exampleserver to all nodes in the iis node group.

1. In the console, click Node groups and select the iis node group.

2. On the Classes tab, select role::exampleserver and click Add class.

3. Commit the change.

Now, the iis node group manages your iis_site website based on the rules you wrote in your webserver
profile. When the nodes check in with PE, PE distributes the role (and the contained profiles) to the individual nodes
and ensures the individual nodes have the IIS service and the desired configurations.

Next steps
Now that you have set up some basic automated configuration management with Puppet Enterprise (PE), here are
some things you might want to do next.

• Check out the Forge to download additional modules and start managing other things, like NTP or machines
running on Azure.

• Learn how to develop high-quality modules with the Puppet VSCode extension and Puppet Development Kit
(PDK).

• Configure Puppet Enterprise to fine-tune console performance, orchestration services, Java, proxy settings, and
other aspects of your PE installation.

• Learn more about Tasks in PE on page 627 and Plans in PE on page 660.
• Refer to Managing access on page 271 for information about adding and organizing other PE users and their

permissions.
• If you have teams rolling out Puppet code changes across your infrastructure, check out Getting Started with

Continuous Delivery.
• Check out our YouTube channel to learn more about Puppet.
• Explore other parts of the PE documentation.

Installing

A typical Puppet Enterprise (PE) deployment includes infrastructure components and agents, which are installed on
nodes in your environment.

You can install infrastructure components in multiple configurations and scale up with compilers. You can install
agents on *nix, Windows, and macOS nodes.

• Supported architectures on page 79
There are several configurations available for Puppet Enterprise. The configuration you use depends on the number
of nodes in your environment and the resources required to serve agent catalogs. When you install PE using the PE
installer tarball, you begin with the standard configuration, and can then scale up by adding additional infrastructure
components as needed. Alternatively, by using Puppet Installation Manager (beta) to install PE, you can start out with
a standard, large, or extra-large configuration.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/
https://forge.puppet.com/puppetlabs/ntp
https://forge.puppet.com/puppetlabs/azure?_ga=2.25353978.697154119.1582546077-1889953873.1516136880
https://puppet-vscode.github.io/docs/getting-started/
https://puppet.com/docs/pdk/1.x/pdk.html
https://puppet.com/docs/pdk/1.x/pdk.html
https://puppet.com/docs/continuous-delivery/latest/getting_started.html
https://puppet.com/docs/continuous-delivery/latest/getting_started.html
https://www.youtube.com/channel/UCPfMWIY-qNbLhIrbZm2BFMQ

pe | Installing | 79

• System requirements on page 83
Refer to these system requirements for Puppet Enterprise installations.
• What gets installed and where? on page 102
Puppet Enterprise installs several software components, configuration files, databases, services and users, and log
files. It's useful to know the locations of these should you ever need to troubleshoot or manage your infrastructure.
• Installing PE on page 110
To install Puppet Enterprise (PE), you can use either the PE installer tarball for your operating system platform or
Puppet Installation Manager.
• Purchasing and activating your Puppet Enterprise license on page 129
The Puppet Enterprise license gives you access to Security Compliance Management (formerly Puppet Comply) and
Continuous Delivery.
• Installing agents on page 131
Puppet Enterprise (PE) agent nodes monitor your infrastructure and help keep it in your desired state. You can install
agents on *nix, Windows, and macOS nodes.
• Installing compilers on page 161
As your Puppet Enterprise infrastructure scales up to 4,000 nodes and beyond, add load-balanced compilers to your
installation to increase the number of agents you can manage.
• Installing client tools on page 168
PE client tools are a set of command line tools that let you access Puppet Enterprise services from a workstation that
might or might not be managed by Puppet.
• Uninstalling on page 172
Puppet Enterprise (PE) includes a script for uninstalling. You can uninstall infrastructure nodes or uninstall the agent
from agent nodes.

Supported architectures
There are several configurations available for Puppet Enterprise. The configuration you use depends on the number
of nodes in your environment and the resources required to serve agent catalogs. When you install PE using the PE
installer tarball, you begin with the standard configuration, and can then scale up by adding additional infrastructure
components as needed. Alternatively, by using Puppet Installation Manager (beta) to install PE, you can start out with
a standard, large, or extra-large configuration.

Existing customer deployments in the field might use other configurations, but for the best performance, scalability,
and support, we recommend using one of our three defined architectures unless specifically advised otherwise
by Puppet Support personnel. For legacy architectures, we document only upgrade procedures – not installation
instructions – in order to support existing customers.

Tip: For guidance about deploying PE in global, multi-region, or multi-network segment scenarios, see the Multi-
region Reference Architectures article.

Configuration Description Node limit

Standard installation
(Recommended)

All infrastructure components are
installed on the primary server. This
installation type is the easiest to
install, upgrade, and troubleshoot.

Up to 2,000

Large installation Similar to a standard installation, plus
one or more compilers and a load
balancer which help distribute the
agent catalog compilation workload.

2,000–20,000

Extra-large installation Similar to a large installation,
plus a database server hosting a
PE-PostgreSQL instance for the
PuppetDB database.

20,000+

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/patterns-and-tactics/latest/reference-architectures/pe-multi-region-reference-architectures.html
https://puppet.com/docs/patterns-and-tactics/latest/reference-architectures/pe-multi-region-reference-architectures.html

pe | Installing | 80

Standard installation

Large installation

Extra-large installation

The extra-large architecture scales PE deployments to 20,000+ nodes. This architecture is intended to be deployed
with the help of Puppet solutions experts. For more information about the capabilities of this architecture and how to
deploy it, reach out to your technical account manager or Puppet Professional Services.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 81

Standalone PE-PostgreSQL (legacy)

Upgrading from the retired split architecture results in a standalone PE-PostgreSQL architecture. This architecture
is similar to a large installation, but with a separate node that hosts the PE-PostgreSQL instance. Standalone PE-
PostgreSQL can't be configured with disaster recovery.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 82

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 83

System requirements
Refer to these system requirements for Puppet Enterprise installations.

• Hardware requirements on page 83
These hardware requirements are based on internal testing at Puppet and are provided as minimum guidelines to help
you determine your hardware needs.
• Supported operating systems on page 84
Puppet Enterprise supports various operating systems depending on the role a machine assumes in your infrastructure.
• Supported browsers on page 90
The following browsers are supported for use with the console.
• System configuration on page 90
Before installing Puppet Enterprise, make sure that your nodes and network are properly configured.

Hardware requirements
These hardware requirements are based on internal testing at Puppet and are provided as minimum guidelines to help
you determine your hardware needs.

Your configuration and code base can significantly affect performance. Use PE tuning and metrics tools to further
customize and refine your installation.

Tip:

If possible, address performance limitations by maximizing your hardware first, then scaling up to the next size
architecture as needed. It's often easier to upgrade your hardware than to add additional infrastructure nodes.

Related information
Tune infrastructure nodes on page 204
Use these guidelines to configure your Puppet Enterprise (PE) installation to maximize use of available system
resources (CPU and RAM).

Puppet Enterprise metrics and status monitoring on page 411
You can use Puppet Enterprise (PE) metrics and status monitoring for your own performance tuning or provide the
information to Support for troubleshooting.

View and manage Puppet Server metrics on page 413
Puppet Server tracks performance and status metrics you can use to monitor server health and performance over time.

Hardware requirements for standard installations
These are the minimum hardware requirements for the primary server in a standard architecture with up to 2,500
nodes.

Node volume Cores RAM /opt/ /var/

Trial use 2 8 GB 20 GB 24 GB

11–100 6 10 GB 50 GB 24 GB

101–500 8 12 GB 50 GB 24 GB

501–1,000 10 16 GB 50 GB 24 GB

1,000–2,500 12 24 GB 50 GB 24 GB

• Trial mode: Although the m5.large instance type is sufficient for trial use, it is not supported. A minimum of four
cores is required for production workloads.

• /opt/ storage requirements: The database should not exceed 50% of /opt/ to allow for future upgrades.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 84

• /var/ storage requirements: There are roughly 20 log files stored in /var/ which are limited in size to 1 GB each.
We recommend allocating 24 GB to avoid issues, however log retention settings generally prevent reaching the
maximum capacity.

Hardware requirements for large installations
These are the minimum hardware requirements for the primary server and compilers in a large architecture with
2,500–20,000 nodes.

Each compiler increases capacity by approximately 1,500–3,000 nodes, until you exhaust the capacity of PuppetDB
or the console, which run on the primary server.

Node volume Node Cores RAM /opt/ /var/ EC2

Primary node 16 32 GB 150 GB 10 GB c5.4xlarge2,500–20,000

Each compiler
(1,500 - 3,000
nodes)

6 12 GB 30 GB 2 GB m5.xlarge

Hardware requirements for extra-large installations
These are the minimum hardware requirements for the primary server, compilers, and PE-PostgreSQL nodes in an
extra-large architecture with 20,000+ nodes.

Node volume Node Cores RAM /opt/ /var/ EC2

Primary node 16 32 GB 150 GB 10 GB c5.4xlarge

Each compiler
(1,500 - 3,000
nodes)

6 12 GB 30 GB 2 GB m5.xlarge

20,000+

PE-
PostgreSQL
node

16 128 GB 300 GB 4 GB r5.4xlarge

If you manage more than 20,000 nodes, contact your technical account manager or Puppet Professional Services to
talk about optimizing your setup for your specific requirements.

Supported operating systems
Puppet Enterprise supports various operating systems depending on the role a machine assumes in your infrastructure.

Supported operating systems and devices
You can install PE and the agent on these supported platforms.

For details about platform support lifecycles and planned end-of-life support, see Platform support lifecycle on the
Puppet website.

Important: If you implement Linux hardening techniques, consider customizing your settings, including but not
limited to the following:

• SELinux: Grant exceptions for Puppet and the PXP agent to allow these services to run effectively.
• File Access Policy Daemon (fapolicyd): Grant exceptions for PE services to prevent potential restrictions.
• umask: Ensure your operating system's default umask is set to 022 or less restrictive. A more restrictive setting

can lead to unintended failures, as Puppet users might be denied access to necessary files.

Primary server platforms

The PE primary server can be installed on the following operating systems. All primary server platforms require an
x86_64 architecture (or amd64 for Ubuntu).

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/products/puppet-enterprise/support-lifecycle/

pe | Installing | 85

CAUTION: Major primary server OS upgrades (such as Ubuntu 20.04 to 22.04) require Back up and restore
PE on page 865.

Operating system Versions

AlmaLinux 8, 9

Amazon Linux 2

Oracle Linux 8

Red Hat Enterprise Linux 8, 9

Red Hat Enterprise Linux (FIPS 140-2 compliant) 8

Rocky Linux 8, 9

SUSE Linux Enterprise Server 15

Ubuntu (General Availability kernels) 20.04, 22.04, 24.04

Agent platforms

The agent can be installed on these operating systems and architectures.

CAUTION: Major agent OS upgrades (such as Ubuntu 20.04 to 22.04) require reinstalling the puppet-
agent package (as explained in Installing agents on page 131) and reinstalling any Ruby plugins/gems
that were added at /opt/puppetlabs/puppet/bin/gem.

Operating system Versions Architecture

AIX 7.2, 7.3

Note: We support only
technology levels that are
still under support from
IBM.

POWER

AlmaLinux 8, 9 • 8: x86_64, aarch64,
ppc64le

• 9: x86_64, aarch64

Amazon Linux 2, 2023 • 2: aarch64, ARM64
• 2023: aarch64, amd64

CentOS 7 x86_64

Debian Buster (10), Bullseye (11),
Bookworm (12)

• 10: amd64
• 11: amd64, aarch64
• 12: amd64, aarch64

Fedora 36, 40, 41 • 36: x86_64
• 40: x86_64
• 41: x86_64

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 86

Operating system Versions Architecture

macOS 11, 12, 13, 14, 15 • 11: x86_64
• 12: x86_64
• 13: x86_64, ARM
• 14: x86_64, ARM
• 15: ARM

Microsoft Windows 10, 11 • 10: x86, x64
• 11: x64

For FIPS 140-2 compliant
Microsoft Windows,
use version 10 with x64
architecture.

Microsoft Windows Server 2012, 2012 R2, 2012 R2
Core, 2016, 2016 Core,
2019, 2019 Core, 2022,
2016 FIPS

x64

For FIPS 140-2 compliant
Microsoft Windows Server,
use 2012 R2 or 2012 R2
core.

Oracle Linux 7, 8, 9 • 7: x86_64
• 8: x86_64, aarch64,

ppc64le
• 9: x86_64

Red Hat Enterprise Linux 7, 8, 9 • 7: x86_64
• 8: x86_64, aarch64,

ppc64le
• 9: x86_64, ARM64,

ppc64le

For FIPS 140-2 compliant
RHEL, use version 7, 8, or
9 with x86_64 architecture.

Rocky Linux 8, 9 • 8: x86_64, aarch64,
ppc64le

• 9: x86_64, aarch64

Scientific Linux 7 x86_64

Solaris 11 SPARC, x86_64

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 87

Operating system Versions Architecture

SUSE Linux Enterprise Server 12, 15 x86_64

Ubuntu (General Availability kernels) 18.04, 20.04, 22.04, 24.04 • 18.04: amd64, aarch64
• 20.04: amd64, aarch64
• 22.04: amd64, aarch64
• 24.04: amd64, aarch64

Platform dependencies
When you install PE or an agent, certain package dependencies are required to ensure the node is operational.

In most cases, dependencies are automatically set up during installation. You might need to manually install
dependencies in these cases:

• If you're installing on AIX or Solaris.
• If the node doesn't have internet access.

Note: Some operating systems require an active subscription with the vendor's package management system (for
example, the Red Hat Network) to install dependencies.

CentOS dependencies

All nodes Primary server

cronie x x

dmidecode x x

libxml2 x x

logrotate x x

net-tools x x

pciutils x x

tar x x

which x x

zlib x x

curl x

libjpeg x

libtool-ltdl (versions 7 and later) x

libxslt x

mailcap x

RHEL dependencies

All nodes Primary server

cronie x x

dmidecode x x

libxml2 x x

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 88

All nodes Primary server

logrotate x x

net-tools x x

pciutils x x

tar x x

which x x

zlib x x

curl x

libjpeg x

libtool-ltdl (versions 7 and later) x

libxslt x

mailcap x

initscripts x

SUSE Linux Enterprise Server dependencies

Tip: If you encounter problems installing dependencies, inspect the error messages for packages that require
other SUSE Linux Enterprise Server packaging modules to be enabled, and use zypper package-search
<PACKAGE NAME> to locate them for manual installation.

All nodes Primary server

cron x x

libxml2 x x

libxslt x x

logrotate x x

net-tools x x

pciutils x x

pmtools x x

tar x x

zlib x x

curl x

db43 x

libjpeg x

unixODBC x

Ubuntu dependencies

All nodes Primary server

cron x x

dmidecode x x

gnupg x x

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 89

All nodes Primary server

hostname x x

libldap-2.4-2 x x

libreadline5 x x

libxml2 x x

logrotate x x

pciutils x x

tar x x

zlib x x

ca-certificates-java x

curl x

file x

libcap2 x

libgtk2.0-0 x

libjpeg62 x

libmagic1 x

libossp-uuid16 x

libpcre3 x

libxslt1.1 x

mime-support x

perl x

AIX dependencies
AIX is a supported platform for the agent only. Before installing the agent on AIX systems, install these packages.

• bash
• curl
• openssl
• readline
• tar
• zlib

For information about installing these packages, see AIX Toolbox for Open Source Software.

Restriction: For OpenSSL, you must use the version provided by IBM Marketing Registration Services (MRS).
For more information, see the IBM support docs about Downloading and Installing or Upgrading OpenSSL and
OpenSSH.

Solaris dependencies and limitations
Solaris support is agent only.

For Solaris 11 these packages are required:

• system/readline
• system/library/gcc-45-runtime
• library/security/openssl
• tar

© 2024 Puppet, Inc., a Perforce company

https://www.ibm.com/support/pages/aix-toolbox-open-source-software-downloads-alpha
https://www.ibm.com/support/pages/downloading-and-installing-or-upgrading-openssl-and-openssh
https://www.ibm.com/support/pages/downloading-and-installing-or-upgrading-openssl-and-openssh

pe | Installing | 90

These packages are available in the Solaris release repository, which is enabled by default in version 11. The installer
automatically installs these packages; however, if the release repository is not enabled, the packages must be installed
manually.

Upgrade your operating system with PE installed
If you have PE installed, take extra precautions before performing a major upgrade of your machine's operating
system.

Performing major upgrades of your operating system with PE installed can cause errors and issues with PE. A major
operating system upgrade is an upgrade to a new whole version, such as an upgrade from RHEL 6.0 to 7.0; it does not
refer to a minor version upgrade, like RHEL 6.5 to 6.6. Major upgrades typically require a new version of PE.

1. Back up your databases and other PE files.

2. Perform a complete uninstall (using the -p and -d uninstaller options).

3. Upgrade your operating system.

4. Install PE.

5. Restore your backup.

Related information
Back up your infrastructure on page 866
The backup process creates a copy of your primary server, including configuration, certificates, code, and PuppetDB.
Backup can take several hours depending on the size of PuppetDB.

Restore your infrastructure on page 867
Use the restore process when you migrate your primary server to a new operating system or to a new host. You can
also use the restore process to recover your installation after a system failure.

Uninstalling on page 172
Puppet Enterprise (PE) includes a script for uninstalling. You can uninstall infrastructure nodes or uninstall the agent
from agent nodes.

Installing PE on page 110
To install Puppet Enterprise (PE), you can use either the PE installer tarball for your operating system platform or
Puppet Installation Manager.

Supported browsers
The following browsers are supported for use with the console.

Browser Supported versions

Google Chrome Current version as of release

Mozilla Firefox Current version as of release

Microsoft Edge Current version as of release

Apple Safari Current version as of release

System configuration
Before installing Puppet Enterprise, make sure that your nodes and network are properly configured.

Note: Port numbers are Transmission Control Protocols (TCP), unless noted otherwise.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 91

Network considerations
Before installing, consider these network requirements

Timekeeping

Use NTP or an equivalent service to ensure that time is in sync between your primary server, which acts as the
certificate authority, and any agent nodes. If time drifts out of sync in your infrastructure, you might encounter issues
such as agents recieving outdated certificates. A service like NTP (available as a supported module) ensures accurate
timekeeping.

Name resolution

Decide on a preferred name or set of names that agent nodes can use to contact the primary server. Ensure that the
primary server can be reached by domain name lookup by all future agent nodes.

You can simplify configuration of agent nodes by using a CNAME record to make the primary server reachable at the
hostname puppet, which is the default primary server hostname that is suggested when installing an agent node.

Web URLs used for deployment and management

PE uses some external web URLs for certain deployment and management tasks. You might want to ensure these
URLs are reachable from your network prior to installation, and be aware that they might be called at various stages
of configuration.

URL Enables

forgeapi.puppet.com Puppet module downloads.

pm.puppetlabs.com Agent module package downloads.

s3.amazonaws.com Agent module package downloads (redirected from
pm.pupptlabs.com).

rubygems.org Puppet and Puppet Server gem downloads.

github.com Third-party module downloads not served by the Forge
and access to control repositories.

Antivirus and antimalware considerations
Antivirus and antimalware software can impact or prevent the proper functioning of PE. To avoid issues, exclude
the directories /etc/puppetlabs and /opt/puppetlabs from antivirus and antimalware tools that scan disk
write operations.

• Exclude the /etc/puppetlabs and /opt/puppetlabs directories from antivirus and antimalware tools
that scan disk write operations to avoid performance issues.

• Some antivirus and antimalware software requires a lot of system processing power. Tune your system resources
(infrastructure nodes) to accommodate the software so it doesn't slow your performance.

• Some antivirus and antimalware software defaults to using port 8081, which is the same port PuppetDB uses.
When installing the software, consider which port it uses so it doesn't conflict with PuppetDB communications.

• For agents, you can exclude C:\ProgramData\PuppetLabs\pe_patch if your antivirus is holding a lock
on log files and causing patching failures.

Related information
Tune infrastructure nodes on page 204
Use these guidelines to configure your Puppet Enterprise (PE) installation to maximize use of available system
resources (CPU and RAM).

The PuppetDB default port conflicts with another service on page 883

© 2024 Puppet, Inc., a Perforce company

http://forgeapi.puppet.com/
http://pm.puppetlabs.com/
http://s3.amazonaws.com/
http://rubygems.org/
http://github.com/

pe | Installing | 92

By default, PuppetDB communicates over port 8081. In some cases, this might conflict with other services, such as
McAfee ePolicy Orchestrator.

Firewall configuration
Follow these guidelines for firewall configuration based on your installation type.
Firewall configuration for standard installations
These are the port requirements for standard installations.

Port Use

22 • Code Manager uses this port to tell a git to clone and
fetch content via SSH.

443 • Code Manager uses this port to tell a git to clone and
fetch content via HTTPS.

• This port provides host access to the console.
• The console accepts HTTPS traffic from end users on

this port.
• Classifier group: PE Console

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 93

Port Use

4433 • This port is used as a classifier / console services API
endpoint.

• The primary server communicates with the console
over this port.

• Classifier group: PE Console

5432 • This port is used to replicate PostgreSQL data
between the primary server and replica.

8081 • PuppetDB accepts traffic/requests on this port.
• The primary server and console send traffic to

PuppetDB on this port.
• PuppetDB status checks are sent over this port.
• Classifier group: PE PuppetDB

8140 • The primary server uses this port to accept inbound
traffic/requests from agents.

• The console sends requests to the primary server on
this port.

• Certificate requests are passed over this port unless
ca_port is set differently.

• Puppet Server status checks are sent over this port.
• Classifier group: PE Master

8142 • Orchestrator and the Run Puppet button use this
port on the primary server to accept inbound traffic/
responses from agents via the Puppet Execution
Protocol agent.

• Classifier group: PE Orchestrator

8143 • Orchestrator uses this port to accept connections
from Puppet Communications Protocol brokers to
relay communications. The orchestrator client also
uses this port to communicate with the orchestration
services running on the primary server. If you install
the orchestrator client on a workstation, port 8143
on the primary server must be accessible from the
workstation.

• Classifier group: PE Orchestrator

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 94

Port Use

8147 • This is the port used for the licensing service
and the host-action-collector-service.
Traffic is restricted to local access on the Primary
only unless external integrations require access to the
license service. The Service Now integration is one
example of that requirement.

8170 • Code Manager uses this port to deploy environments,
run webhooks, and make API calls.

Firewall configuration for large installations
These are the port requirements for large installations with compilers.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 95

Port Use

22 • Code Manager uses this port to tell a git to clone and
fetch content via SSH.

443 • Code Manager uses this port to tell a git to clone and
fetch content via HTTPS.

• This port provides host access to the console.
• The console accepts HTTPS traffic from end users on

this port.
• Classifier group: PE Console

4433 • This port is used as a classifier / console services API
endpoint.

• The primary server communicates with the console
over this port.

• Classifier group: PE Console

5432 • This port is used to replicate PostgreSQL data
between the primary server and replica.

• The PuppetDB service running on compilers uses this
port to communicate with PE-PostgreSQL.

8081 • PuppetDB accepts traffic/requests on this port.
• The primary server and console send traffic to

PuppetDB on this port.
• PuppetDB status checks are sent over this port.
• Classifier group: PE PuppetDB

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 96

Port Use

8140 • The primary server uses this port to accept inbound
traffic/requests from agents.

• The console sends requests to the primary server on
this port.

• Certificate requests are passed over this port unless
ca_port is set differently.

• Puppet Server status checks are sent over this port.
• The primary server uses this port to send status

checks to compilers. (Not required to run PE.)
• Classifier group: PE Master

8142 • Orchestrator and the Run Puppet button use this
port on the primary server to accept inbound traffic/
responses from agents via the Puppet Execution
Protocol agent.

• Classifier group: PE Orchestrator

8143 • Orchestrator uses this port to accept connections
from Puppet Communications Protocol brokers to
relay communications. The orchestrator client also
uses this port to communicate with the orchestration
services running on the primary server. If you install
the orchestrator client on a workstation, port 8143
on the primary server must be accessible from the
workstation.

• Classifier group: PE Orchestrator

8147 • This is the port used for the licensing service
and the host-action-collector-service.
Traffic is restricted to local access on the Primary
only unless external integrations require access to the
license service. The Service Now integration is one
example of that requirement.

8170 • Code Manager uses this port to deploy environments,
run webhooks, and make API calls.

Firewall configuration for extra-large installations
These are the port requirements for extra-large installations with compilers.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 97

Port Use

22 • Code Manager uses this port to tell a git to clone and
fetch content via SSH.

443 • Code Manager uses this port to tell a git to clone and
fetch content via HTTPS.

• This port provides host access to the console.
• The console accepts HTTPS traffic from end users on

this port.
• Classifier group: PE Console

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 98

Port Use

4433 • This port is used as a classifier / console services API
endpoint.

• The primary server communicates with the console
over this port.

• Classifier group: PE Console

5432 • The primary server and replica use this port to
replicate PostgreSQL data on PE-PostgreSQL nodes.

• The PuppetDB service running on compilers uses this
port to communicate with PE-PostgreSQL.

8081 • PuppetDB accepts traffic/requests on this port.
• The primary server and console send traffic to

PuppetDB on this port.
• PuppetDB status checks are sent over this port.
• Classifier group: PE PuppetDB

8140 • The primary server uses this port to accept inbound
traffic/requests from agents.

• The console sends requests to the primary server on
this port.

• Certificate requests are passed over this port unless
ca_port is set differently.

• Puppet Server status checks are sent over this port.
• The primary server uses this port to send status

checks to compilers. (Not required to run PE.)
• Classifier group: PE Master

8142 • Orchestrator and the Run Puppet button use this
port on the primary server to accept inbound traffic/
responses from agents via the Puppet Execution
Protocol agent.

• Classifier group: PE Orchestrator

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 99

Port Use

8143 • Orchestrator uses this port to accept connections
from Puppet Communications Protocol brokers to
relay communications. The orchestrator client also
uses this port to communicate with the orchestration
services running on the primary server. If you install
the orchestrator client on a workstation, port 8143
on the primary server must be accessible from the
workstation.

• Classifier group: PE Orchestrator

8147 • This is the port used for the licensing service
and the host-action-collector-service.
Traffic is restricted to local access on the Primary
only unless external integrations require access to the
license service. The Service Now integration is one
example of that requirement.

8170 • Code Manager uses this port to deploy environments,
run webhooks, and make API calls.

Firewall configuration for standalone PE-PostgreSQL installations
These are the port requirements for installations with compilers and standalone PE-PostgreSQL

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 100

Port Use

22 • Code Manager uses this port to tell a git to clone and
fetch content via SSH.

443 • Code Manager uses this port to tell a git to clone and
fetch content via HTTPS.

• This port provides host access to the console.
• The console accepts HTTPS traffic from end users on

this port.
• Classifier group: PE Console

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 101

Port Use

4433 • This port is used as a classifier / console services API
endpoint.

• The primary server communicates with the console
over this port.

• Classifier group: PE Console

5432 • The standalone PE-PostgreSQL node uses this port
to accept inbound traffic/requests from the primary
server.

• The PuppetDB service running on compilers uses this
port to communicate with PE-PostgreSQL.

8081 • PuppetDB accepts traffic/requests on this port.
• The primary server and console send traffic to

PuppetDB on this port.
• PuppetDB status checks are sent over this port.
• Classifier group: PE PuppetDB

8140 • The primary server uses this port to accept inbound
traffic/requests from agents.

• The console sends requests to the primary server on
this port.

• Certificate requests are passed over this port unless
ca_port is set differently.

• Puppet Server status checks are sent over this port.
• The primary server uses this port to send status

checks to compilers. (Not required to run PE.)
• Classifier group: PE Master

8142 • Orchestrator and the Run Puppet button use this
port on the primary server to accept inbound traffic/
responses from agents via the Puppet Execution
Protocol agent.

• Classifier group: PE Orchestrator

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 102

Port Use

8143 • Orchestrator uses this port to accept connections
from Puppet Communications Protocol brokers to
relay communications. The orchestrator client also
uses this port to communicate with the orchestration
services running on the primary server. If you install
the orchestrator client on a workstation, port 8143
on the primary server must be accessible from the
workstation.

• Classifier group: PE Orchestrator

8147 • This is the port used for the licensing service
and the host-action-collector-service.
Traffic is restricted to local access on the Primary
only unless external integrations require access to the
license service. The Service Now integration is one
example of that requirement.

8170 • Code Manager uses this port to deploy environments,
run webhooks, and make API calls.

What gets installed and where?
Puppet Enterprise installs several software components, configuration files, databases, services and users, and log
files. It's useful to know the locations of these should you ever need to troubleshoot or manage your infrastructure.

Software components installed
PE installs several software components and dependencies. These tables show which version of each component is
installed for releases dating back to the previous long term supported (LTS) release.

The functional components of the software are separated between those packaged with the agent and those packaged
on the server side (which also includes the agent).

Note: PE also installs other dependencies, as documented in the system requirements.

This table shows the components installed on all agent nodes.

PE Version Puppet and the
Puppet agent

Facter Ruby OpenSSL

2023.8.2 8.11.0 4.10 • MRI Ruby: 3.2.7
(Puppet agent)

• JRuby: 9.4.8.0 (Puppet
server)

3.0.15

2023.8.1 8.10.0 4.10 • MRI Ruby: 3.2.5
(Puppet agent)

• JRuby: 9.4.8.0 (Puppet
server)

3.0.15

2023.8.0 8.8.1 4.8.0 • MRI Ruby: 3.2.4
(Puppet agent)

• JRuby: 9.4.8.0 (Puppet
server)

3.0.14

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 103

PE Version Puppet and the
Puppet agent

Facter Ruby OpenSSL

2023.7 8.6.0 4.7.0 3.2.3 3.0.13

2023.6 8.4.0 4.5.2 3.2.2 3.0.12

2023.5 8.3.1 4.5.1 3.2.2 3.0.11

2023.4 8.2.0 4.4.3 3.2.2 3.0.10

2023.2 7.24.0 4.3.1 2.7.7 1.1.1t

2023.1 7.24.0 4.3.1 2.7.7 1.1.1t

2023.0 7.21.0 4.2.14 2.7.7 1.1.1q

2021.7.10 7.35.0 4.8.0 2.7.8 1.1.1v

2021.7.9 7.32.1 4.8.0 2.7.8 1.1.1v

2021.7.8 7.30.0 4.7.0 2.7.8 1.1.1v

2021.7.7 7.28.0 4.5.2 2.7.8 1.1.1v

2021.7.6 7.27.0 4.5.1 2.7.8 1.1.1v

2021.7.5 7.26.0 4.4.3 2.7.8 1.1.1v

2021.7.4 7.24.0 4.3.1 2.7.7 1.1.1t

2021.7.3 7.24.0 4.3.1 2.7.7 1.1.1t

2021.7.2 7.21.0 4.2.14 2.7.7 1.1.1q

2021.7.1 7.20.0 4.2.13 2.7.6 1.1.1q

2021.7.0 7.18.0 4.2.11 2.7.6 1.1.1q

This table shows components installed on server nodes.

PE Version Puppet
Server

PuppetDB r10k Bolt
Services

Agentless
Catalog
Executor
(ACE)
Services

PostgreSQL Java Nginx

2023.8.2 8.8.0 8.9.0 5.0.0 3.30.0 1.2.4 14.16 17.0.14.71.26.3

2023.8.1 8.7.1 8.8.1 5.0.0 3.30.0 1.2.4 14.15 17.0.13.111.26.2

2023.8.0 8.6.3 8.7.0 4.1.0 3.30.0 1.2.4 14.13 17.0.12.71.26.2

2023.7 8.6.0 8.5.1 4.1.0 3.29.0 1.2.4 14.11 17.0.11.91.25.1

2023.6 8.4.0 8.3.0 4.0.1 3.27.4 1.2.4 14.10 17.0.10.71.25.1

2023.5 8.3.0 8.2.0 4.0.0 3.27.4 1.2.4 14.8 17.0.9.91.25.1

2023.4 8.2.3 8.1.1 4.0.0 3.27.2 1.2.4 14.8 17.0.8.71.25.1

2023.2 7.11.0 7.13.0 3.15.4 3.26.2 1.2.4 14.5 17.0.7.61.22.0

2023.1 7.11.0 7.13.0 3.15.4 3.26.2 1.2.4 14.5 17.0.7.61.22.0

2023.0 7.9.4 7.12.1 3.15.4 3.26.2 1.2.4 14.5 17.0.5.81.22.0

2021.7.10 7.17.4 7.21.0 3.16.2 3.30.0 1.2.4 14.13 11.0.26.41.26.2

2021.7.9 7.17.2 7.19.1 3.16.2 3.30.0 1.2.4 14.13 11.0.24.81.26.2

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 104

PE Version Puppet
Server

PuppetDB r10k Bolt
Services

Agentless
Catalog
Executor
(ACE)
Services

PostgreSQL Java Nginx

2021.7.8 7.17.1 7.18.0 3.16.1 3.29.0 1.2.4 14.11 11.0.23.91.25.1

2021.7.7 7.15.0 7.16.0 3.16.0 3.27.4 1.2.4 14.10 11.0.22.71.25.1

2021.7.6 7.14.0 7.15.0 3.16.0 3.27.4 1.2.4 14.8 11.0.21.91.25.1

2021.7.5 7.13.1 7.14.0 3.16.0 3.27.2 1.2.4 14.8 11.0.20.81.25.1

2021.7.4 7.11.0 7.13.0 3.15.4 3.27.1 1.2.4 14.5 11.0.19.61.22.0

2021.7.3 7.11.0 7.13.0 3.15.4 3.27.1 1.2.4 14.5 11.0.19.61.22.0

2021.7.2 7.9.4 7.12.1 3.15.4 3.26.2 1.2.4 14.5 11.0.17.81.22.0

2021.7.1 7.9.2 7.11.2 3.15.2 3.26.1 1.2.4 14.5 11.0.6 1.22.0

2021.7.0 7.9.0 7.11.1 3.15.1 3.26.1 1.2.4 14.5 11.0 1.22.0

Executable binaries and symlinks installed
PE installs executable binaries and symlinks for interacting with tools and services.

On *nix nodes, all software is installed under /opt/puppetlabs.

On Windows nodes, all software is installed in Program Files at Puppet Labs\Puppet.

Executable binaries on *nix are in /opt/puppetlabs/bin and /opt/puppetlabs/sbin.

Tip: To include binaries in your default $PATH, manually add them to your profile or export the path:

export PATH=$PATH:/opt/puppetlabs/bin

To make essential Puppet tools available to all users, the installer automatically creates symlinks in /usr/local/
bin for the facter, puppet, pe-man, r10k, and hiera binaries. Symlinks are created only if /usr/local/
bin is writeable. Users of AIX and Solaris 11 must add /usr/local/bin to their default path.

For macOS agents, symlinks aren't created until the first successful run that applies the agents' catalogs.

Tip: You can disable symlinks by changing the manage_symlinks setting in your default Hiera file:

puppet_enterprise::manage_symlinks: false

Binaries provided by other software components, such as those for interacting with the PostgreSQL server,
PuppetDB, or Ruby packages, do not have symlinks created.

Modules and plugins installed
PE installs modules and plugins for normal operations.

Modules included with the software are installed on the primary server in /opt/puppetlabs/puppet/
modules. Don't modify anything in this directory or add modules of your own. Instead, install non-default modules
in /etc/puppetlabs/code/environments/<environment>/modules.

Configuration files installed
PE installs configuration files that you might need to interact with from time to time.

On *nix nodes, configuration files live at /etc/puppetlabs.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 105

On Windows nodes, configuration files live at <COMMON_APPDATA>\PuppetLabs. The location of this folder
varies by Windows version; in 2008 and 2012, its default location is C:\ProgramData\PuppetLabs\puppet
\etc.

The agent software's confdir is in the puppet subdirectory. This directory contains the puppet.conf file,
auth.conf, and the SSL directory.

Tools installed
PE installs several suites of tools to help you work with the major components of the software.

• Puppet tools — Tools that control basic functions of the software such as puppet agent and puppet ssl.
• Puppet Server tools — The primary server contains a tool to manage and interact with the provided certificate

authority, puppetserver ca.
• Client tools — The pe-client-tools package collects a set of CLI tools that extend the ability for you to access

services from the primary server or a workstation. This package includes:

• Orchestrator — The orchestrator is a set of interactive command line tools that provide the interface to the
orchestration service. Orchestrator also enables you to enforce change on the environment level. Tools include
puppet job and puppet task.

• Puppet Access — Users can generate tokens to authenticate their access to certain command line tools and
API endpoints.

• Code Manager CLI — The puppet-code command allows you to trigger Code Manager from the
command line to deploy your environments.

• PuppetDB CLI — This a tool for working with PuppetDB, including building queries and handling exports.
• Module tool — The module tool is used to access and create modules, which are reusable chunks of Puppet code

users have written to automate configuration and deployment tasks. For more information, and to access modules,
visit the Forge.

• Console — The console is the web user interface for PE. The console provides tools to view and edit resources on
your nodes, view reports and activity graphs, and more.

Databases installed
PE installs several default databases, all of which use PostgreSQL as a database backend.

The PE PostgreSQL database includes the following databases:

Database Contents

pe-activity Activity data from the classifier, including who, what,
and when

pe-classifier Classification data, all node group information

pe-hac Node activity counts

pe-inventory Connection information and credentials for agentless
node connections

pe-orchestrator Orchestrator data, including details about job runs

pe-puppetdb PuppetDB data, including exported resources, catalogs,
facts, and reports

pe-rbac RBAC data, including users, permissions, and AD/LDAP
info

Use the native PostgreSQL tools to perform database exports and imports. At a minimum, perform backups to a
remote system nightly, or as dictated by your company policy.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 106

Services installed
PE installs several services used to interact with the software during normal operations.

Service Definition

pe-console-services Manages and serves the console.

pe-puppetserver Runs the primary server.

pe-nginx Nginx, serves as a reverse-proxy to the console.

puppet (on Enterprise Linux and Debian-based platforms) Runs
the agent daemon on every agent node.

pe-puppetdb, pe-postgresql Daemons that manage and serve the database
components. The pe-postgresql service is created only if
the software installs and manages PostgreSQL.

pxp-agent Runs the Puppet Execution Protocol agent process.

pe-orchestration-services Runs the orchestration process.

pe-ace-server Runs the Agentless Catalog Executor (ACE) server.

pe-bolt-server Runs the Bolt server.

pe-host-action-collector Collects information from other Puppet Enterprise
services about node activity.

User and group accounts installed
These are the user and group accounts installed.

User Definition

pe-puppet Runs the primary server processes spawned by pe-
puppetserver.

pe-webserver Runs Nginx.

pe-puppetdb Has root access to the database.

pe-postgres Has access to the pe-postgreSQL instance. Created
only if the software installs and manages PostgreSQL.

pe-console-services Runs the console process.

pe-orchestration-services Runs the orchestration process.

pe-ace-server Runs the ace server.

pe-bolt-server Runs the Bolt server.

pe-host-action-collector pe-host-action-collector runs the host action collector
process.

Log files installed
The software distributed with PE generates log files that you can collect for compliance or use for troubleshooting.

Primary server logs

Code Manager access log

Location: /var/log/puppetlabs/puppetserver/code-manager-access.log

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 107

File sync access log

Location: /var/log/puppetlabs/puppetserver/file-sync-access.log

Puppet Communications Protocol (PCP) broker log

This is the log file for PCP brokers on compilers.

Location: /var/log/puppetlabs/puppetserver/pcp-broker.log

General Puppet Server log

This is where the primary server logs its activity, including compilation errors and deprecation warnings.

Location: /var/log/puppetlabs/puppetserver/puppetserver.log

Puppet Server access log

Location: /var/log/puppetlabs/puppetserver/puppetserver-access.log

Puppet Server daemon log

This is where you can find fatal errors and crash reports.

Location: /var/log/puppetlabs/puppetserver/puppetserver-daemon.log

Puppet Server status log

Location: /var/log/puppetlabs/puppetserver/puppetserver-status.log

Agent logs

The agent log locations depend on the agent node's operating system.

On *nix nodes, the agent service logs activity to the syslog service. The node's operating system and syslog
configuration determines where these messages are saved. The default locations are as follows:

• Linux: /var/log/messages
• macOS: /var/log/system.log
• Solaris: /var/adm/messages

On Windows nodes, the agent service logs its activity to the Event Log. Browse the Event Viewer to view those
messages. You might need to enable Logging and debugging on page 888.

Console and console services logs

General console services log

Location: /var/log/puppetlabs/console-services/console-services.log

Console services API access log

Location: /var/log/puppetlabs/console-services/console-services-api-access.log

Console services access log

Location: /var/log/puppetlabs/console-services-access.log

Console services daemon log

This is where you can find fatal errors and crash reports.

Location: /var/log/puppetlabs/console-services-daemon.log

NGINX access log

Location: /var/log/puppetlabs/nginx/access.log

NGINX error log

Contains console errors that aren't logged elsewhere and errors related to NGINX.

Location: /var/log/puppetlabs/nginx/error.log

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 108

Installer logs

HTTP log

Contains web requests sent to the installer.

Only exists on machines from which a web-based installation was performed.

Location: /var/log/puppetlabs/installer/http.log

Orchestrator info log

Contains run details about puppet infrastructure commands that use the orchestrator. This includes
commands to provision and upgrade compilers, convert legacy compilers, and regenerate agent and compiler
certificates.

Location: /var/log/puppetlabs/installer/orchestrator_info.log

Last installer run logs, by hostname

Contains the contents of the last installer run.

There can be multiple log files, labeled by hostname.

Location: /var/log/puppetlabs/installer/install_log.lastrun.<HOSTNAME>.log

Installer operation logs, by timestamp

Captures operations performed during installation and any errors that occurred.

There can be multiple log files, labeled by timestamp.

/var/log/puppetlabs/installer/installer-<TIMESTAMP>.log

Disaster recovery command logs, by action, timestamp, and description

Contains details about disaster recovery command execution.

There can be multiple log files for each command because each action triggers multiple Puppet runs (Some on the
primary server and some on the replica).

Location:/var/log/puppetlabs/installer/<ACTION-NAME>_<TIMESTAMP>_<RUN-
DESCRIPTION>.log

Bolt info log

Can be valuable when Troubleshooting disaster recovery on page 879.

Location: /var/log/puppetlabs/installer/bolt_info.log

Database logs

Database logs include PostgreSQL and PuppetDB logs.

PostgreSQL startup log

Can be valuable when Troubleshooting the databases on page 882.

Location: /var/log/puppetlabs/postgresql/14/pgstartup.log

PostgreSQL daily logs, by weekday

There is one log file for each day of the week. Log file names use short names, such as Mon for Monday, Tue for
Tuesday, and so on.

Location: /var/log/puppetlabs/postgresql/14/postgresql-<WEEKDAY>.log

General PuppetDB log

Location: /var/log/puppetlabs/puppetdb/puppetdb.log

PuppetDB access log

Location: /var/log/puppetlabs/puppetdb/puppetdb-access.log

PuppetDB status log

Location: /var/log/puppetlabs/puppetdb/puppetdb-status.log

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 109

Orchestration logs

Orchestrator logs include orchestration services and related components, such as PXP agent and Bolt server.

Aggregate node count log

Location: /var/log/puppetlabs/orchestration-services/aggregate-node-count.log

Puppet Communications Protocol (PCP) broker log

This is the log file for PCP brokers on the primary server.

Location: /var/log/puppetlabs/orchestration-services/pcp-broker.log

Puppet Communications Protocol (PCP) broker access log

Location: /var/log/puppetlabs/orchestration-services/pcp-broker-access.log

Orchestration services access log

Location: /var/log/puppetlabs/orchestration-services/orchestration-services-
access.log

Orchestration services daemon log

This is where you can find fatal errors and crash reports.

Location: /var/log/puppetlabs/orchestration-services/orchestration-services-
daemon.log

Orchestration services status log

Location: /var/log/puppetlabs/orchestration-services/orchestration-services-
status.log

Puppet Execution Protocol (PXP) agent log

*nix location: /var/log/puppetlabs/pxp-agent/pxp-agent.log

Windows location: C:/ProgramData/PuppetLabs/pxp-agent/var/log/pxp-agent.log

Bolt server log

Can be valuable when Troubleshooting connections between components on page 880.

Location: /var/log/puppetlabs/bolt-server/bolt-server.log

Node inventory service log

Location: /var/log/puppetlabs/orchestration-services/orchestration-services.log

Host action collector logs

The PE host action collector aggregates usage information for diagnostic and license compliance purposes. These
files are organized in the data directory with 35 days of daily logs, and monthly and yearly summaries.

General host action collector log

Location: /var/log/puppetlabs/host-action-collector.log

Host action collector access log

Location: /var/log/puppetlabs/host-action-collector-access.log

Host action collector status log

Location: /var/log/puppetlabs/host-action-collector-status.log

Host action collector data logs

The data directory contains 35 days of past aggregated host/day activity and monthly and yearly summaries.

Location: /var/log/puppetlabs/host-action-collector-data.log

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 110

Certificates installed
During installation, the software generates and installs a number of SSL certificates so that agents and services can
authenticate themselves.

These certs can be found at /etc/puppetlabs/puppet/ssl/certs.

A certificate with the same name as the agent that runs on the primary server is generated during installation. This
certificate is used by PuppetDB and the console.

Services that run on the primary server — for example, pe-orchestration-services and pe-console-
services — use the agent certificate to authenticate.

The certificate authority, if active, stores its certificate information at /etc/puppetlabs/puppetserver/ca.
You can learn more about the certificate authority service on the PE software architecture on page 7 page.

Related information
SSL and certificates on page 855
Network communications and security in Puppet Enterprise are based on HTTPS, which secures traffic using X.509
certificates. PE includes its own CA tools, which you can use to regenerate certs as needed.

Use an independent intermediate certificate authority on page 860
The built-in Puppet certificate authority automatically generates a root and intermediate certificate, but if you need
additional intermediate certificates or prefer to use a public authority CA, you can set up an independent intermediate
certificate authority. You must complete this configuration during installation.

Use a custom SSL certificate for the console on page 862
The Puppet Enterprise (PE) console uses a certificate signed by PE's built-in certificate authority (CA). Because
this CA is specific to PE, web browsers don't know it or trust it, and you have to add a security exception in order to
access the console. If you find that this is not an acceptable scenario, you can use a custom CA to create the console's
certificate.

Secret key file installed
During installation, the software generates secret key files that are used to encrypt and decrypt sensitive data.

The inventory service secret key is used to encrypt and decrypt sensitive data stored in the inventory service. This key
is stored at:

/etc/puppetlabs/orchestration-services/conf.d/secrets/keys.json

The console services secret key is used to encrypt and decrypt passwords used for LDAP connections. This key is
stored at:

/etc/puppetlabs/console-services/conf.d/secrets/keys.json

Installing PE
To install Puppet Enterprise (PE), you can use either the PE installer tarball for your operating system platform or
Puppet Installation Manager.

• Install PE using the installer tarball on page 111
This installer employs default settings to install PE infrastructure components on a single node, creating a standard PE
architecture. You can use a standard installation to try out PE with up to 10 nodes, or to manage up to 4,000 nodes.
From there, you can scale up to the large or extra-large installation as your infrastructure grows, or customize your
configuration as needed.
• Install PE using PIM on page 125
Puppet Installation Manager (PIM) supports the deployment of standard, large, and extra-large PE architectures.
For an interactive experience, choose the guided installation and follow the step-by-step process in your terminal to
configure and install the PE infrastructure you require. Alternatively, if you do not require guidance, you can create a
JSON file containing your custom installation parameters, and run the installation from the command line.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 111

Install PE using the installer tarball
This installer employs default settings to install PE infrastructure components on a single node, creating a standard PE
architecture. You can use a standard installation to try out PE with up to 10 nodes, or to manage up to 4,000 nodes.
From there, you can scale up to the large or extra-large installation as your infrastructure grows, or customize your
configuration as needed.

A standard PE installation consists of the following components installed on a single node:

• The primary server: The central hub of activity. It is where Puppet code is compiled to create agent catalogs and
where SSL certificates are verified and signed.

• The console: The graphical web user interface. It has configuration and reporting tools.
• PuppetDB: The data store for data generated throughout your Puppet infrastructure.

Important: The primary server can only run on a *nix machine. However, Windows machines can be Puppet
agents, and you can manage them with your *nix primary server. Furthermore, you can operate your *nix primary
server remotely from a Windows machine. To do this, before you install PE on your *nix primary server, you must
configure an SSH client (such as PuTTY) with the hostname or IP address and port of the *nix machine that you'll use
as your primary server. When you open an SSH session to install PE on the *nix primary server, log in as root or use
sudo.

To install a FIPS-enabled PE primary server, install the appropriate FIPS-enabled PE tarball (such as puppet-
enterprise-2023.8.2-redhatfips-7-x86_64.tar) on a third-party Supported operating system with
FIPS mode enabled. The node must be configured with sufficient available entropy for the installation process to
succeed.

Related information
What gets installed and where? on page 102
Puppet Enterprise installs several software components, configuration files, databases, services and users, and log
files. It's useful to know the locations of these should you ever need to troubleshoot or manage your infrastructure.

Supported operating systems on page 84
Puppet Enterprise supports various operating systems depending on the role a machine assumes in your infrastructure.

Commands with elevated privileges on page 27
Some commands in PE require elevated privileges. Depending on the operating system, youc an use either sudo,
runas, or a root or admin user.

FIPS 140-2 enabled PE on page 16
Puppet Enterprise (PE) is available in a FIPS (Federal Information Processing Standard) 140-2 enabled version. This
version is compatible with select third party FIPS-compliant platforms.

Verify the installation package
This task is only required if your organization requires you to verify authenticity before installing packages. These
steps explain how to use GnuPG (GPG) to verify the PE installation tarball.

Before you begin
You must have GnuPG (GPG) installed to be able to sign for the release key. GPG is an open source program you can
use to safely encrypt and sign digital communications. You can download GPG from the GnuPG website or use your
package management system to install it by running something like: yum install gnupg

1. Download the tarball appropriate to your operating system and architecture.

Tip: To download packages from the command line, run wget --content-disposition "<URL>" or
curl -JLO "<URL>", using the URL for the tarball you want to download.

© 2024 Puppet, Inc., a Perforce company

https://putty.org/
https://gnupg.org/
https://puppet.com/try-puppet/puppet-enterprise/download/

pe | Installing | 112

2. To import the Puppet public key, run:

uri='https://downloads.puppet.com/puppet-gpg-signing-key-20250406.pub'

curl "$uri" | gpg --import

Tip: For general information about forming curl commands, go to Using example commands on page 25.

3. To print the key fingerprint, run:

gpg --fingerprint 0x4528B6CD9E61EF26

This command returns the primary key fingerprint. For example:

D681 1ED3 ADEE B844 1AF5 AA8F 4528 B6CD 9E61 EF26

4. Download the GPG SIGNATURE .asc file corresponding to your PE tarball. You can find links to these files
on the PE Download page.

5. To verify the installation package release signature, run:

gpg --verify puppet-enterprise-<VERSION>-<PLATFORM>.tar.gz.asc

The gpg --verify command returns something similar to:

gpg: Signature made <DATE_AND_TIME>
gpg: using RSA key <KEY_ID>
gpg: Good signature from "Puppet, Inc. Release Key (Puppet, Inc. Release
 Key) <release@puppet.com>"

Tip:

If you receive a warning that a valid key path couldn't be found, this means you don't have a trusted path to one of the
signatures on the release key.

If you receive a warning that the key is not certified with a trusted signature, this means you haven't told GPG to trust
the imported key. Refer to the GPG documentation for more information.

If you received the Good signature message, you can proceed to unpack the installation tarball and complete the
installation, as outlined in Install PE from tarball on page 112.

Install PE from tarball

Before you begin

Review the Hardware requirements for standard installations on page 83 to make sure your system capacity can
handle the standard PE installation.

Log in as root on your target primary server. If you're installing on a system that doesn't allow root login, you must
use sudo su - to complete these steps.

1. Download the tarball appropriate to your operating system and architecture.

Tip: To download packages from the command line, run wget --content-disposition "<URL>" or
curl -JLO "<URL>", using the URL for the tarball you want to download.

2. To unpack the installation tarball, run:

tar -xzf <TARBALL_FILENAME>

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/try-puppet/puppet-enterprise/download/
https://www.gnupg.org/gph/en/manual/r899.html
https://puppet.com/try-puppet/puppet-enterprise/download/

pe | Installing | 113

3. From the installer directory, run ./puppet-enterprise-installer and follow the CLI instructions to
complete the installation.

4. Optional: Restart the shell to use client tool commands.

After completing the standard installation, you can scale or customize your installation, if needed. For information
and requirements for large and extra-large installations, go to Supported architectures on page 79 and System
requirements on page 83. You can use Configuration parameters and the pe.conf file on page 113 to customize
your installation.

Configuration parameters and the pe.conf file
A pe.conf file is a HOCON formatted file that declares parameters and values used to install, upgrade, or configure
Puppet Enterprise (PE). A default pe.conf file is available in the conf.d directory in the installer tarball.

Tip: You can use a custom pe.conf file when installing PE by running: ./puppet-enterprise-
installer -c <PATH_TO_pe.conf>

The following table lists the value types you can use in the pe.conf file, along with examples of each type:

Type Parameter-value format example

FQDN "puppet_enterprise::puppet_master_host":
"primary.example.com"

String "console_admin_password": "mypassword"

Array ["puppet",
"puppetlb-01.example.com"]

Boolean "puppet_enterprise::profile::orchestrator::run_service":
true

Restriction: The only valid Boolean values are true
and false. These are not case sensitive, and these are
the only values that don't use quotation marks. Don't use
Yes (y), No (n), 1, or 0 for Booleans.

JSON hash "puppet_enterprise::profile::orchestrator::java_args":
{"Xmx": "256m", "Xms": "256m"}

Integer "puppet_enterprise::profile::console::rbac_session_timeout":
"60"

Important: With the exception of Booleans, always use double quotes (") around parameter values.

Related information
Configuration file syntax on page 215
Puppet supports two formats for configuration files: valid JSON and Human-Optimized Config Object Notation
(HOCON), which is a JSON superset. We've provided these syntax examples to guide you when you're writing
configuration files.

Installation parameters
These parameters must be present in the pe.conf file to install Puppet Enterprise (PE).

puppet_enterprise::puppet_master_host

Specify the FQDN of the node hosting your PE primary server, such as primary.example.com.

Default: %{::trusted.certname}

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 114

Tip: To simplify installation, keep the default value and then provide a console administrator password after you
run the installer.

Related information
PE ACE server configuration on page 615
The PE ACE server is a service that allows for tasks and catalogs to run against remote targets that can't run a Puppet
agent, such as network switches and firewalls.

PE Bolt server configuration on page 614
The PE Bolt server provides an API for running tasks over SSH and WinRM using Bolt, which is the technology
underlying PE tasks. You do not need to have Bolt installed to configure the Bolt server or run tasks in PE. The API
server for tasks is available as pe-bolt-server.

Agent platform parameter
When setting up automated provisioning of an installation, you can define this optional parameter in pe.conf
to specify the agent platforms you want to support in your installation. If your primary server is connected
to the internet when you install or upgrade PE, then the packages for the agent platforms you specified in
pe.conf are automatically downloaded to the primary server and the platform tags are automatically added as
pe_repo::platform:: classes in the PE Master node group, so the agent packages are available to install on
nodes in your inventory.

agent_platform

Define the parameter using an array containing platform tags like "ubuntu-22.04-amd64". You must
format the platform tags you include in the array to match the platform_tag fact values referenced in
puppet-agent packages.

Related information
Installing agents on page 131
Puppet Enterprise (PE) agent nodes monitor your infrastructure and help keep it in your desired state. You can install
agents on *nix, Windows, and macOS nodes.

Database configuration parameters
These parameters and values are supplied for Puppet Enterprise (PE) databases.

CAUTION: Don't change these parameters. This list is provided only for reference purposes.

puppet_enterprise::activity_database_name

The activity database name.

Default: pe-activity

puppet_enterprise::activity_database_read_user

An activity database user that can perform only read functions.

Default: pe-activity-read

puppet_enterprise::activity_database_write_user

An activity database user that can perform read and write functions.

Default: pe-activity-write

puppet_enterprise::activity_database_super_user

The activity database superuser.

Default: pe-activity

puppet_enterprise::activity_service_migration_db_user

An activity service database user used for migrations.

Default: pe-activity

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 115

puppet_enterprise::activity_service_regular_db_user

An activity service database user used for normal operations.

Default: pe-activity-write

puppet_enterprise::classifier_database_name

The classifier database name.

Default: pe-classifier

puppet_enterprise::classifier_database_read_user

A classifier database user that can perform only read functions.

Default: pe-classifier-read

puppet_enterprise::classifier_database_write_user

A classifier database user that can perform read and write functions.

Default: pe-classifier-write

puppet_enterprise::classifier_database_super_user

The classifier database superuser.

pe-classifier

puppet_enterprise::classifier_service_migration_db_user

A classifier service user used for migrations.

Default: pe-classifier

puppet_enterprise::classifier_service_regular_db_user

A classifier service user used for normal operations.

Default: pe-classifier-write

puppet_enterprise::orchestrator_database_name

The orchestrator database name.

Default: pe-orchestrator

puppet_enterprise::orchestrator_database_read_user

An orchestrator database user that can perform only read functions.

Default: pe-orchestrator-read

puppet_enterprise::orchestrator_database_write_user

An orchestrator database user that can perform read and write functions.

Default: pe-orchestrator-write

puppet_enterprise::orchestrator_database_super_user

The orchestrator database superuser.

Default: pe-orchestrator

puppet_enterprise::orchestrator_service_migration_db_user

An orchestrator service user used for migrations.

Default: pe-orchestrator

puppet_enterprise::orchestrator_service_regular_db_user

An orchestrator service user used for normal operations.

Default: pe-orchestrator-write

puppet_enterprise::puppetdb_database_name

The PuppetDB database name.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 116

Default: pe-puppetdb

puppet_enterprise::puppetdb_database_user

The PuppetDB database user.

Default: pe-puppetdb

Tip: If necessary, you can Change the PuppetDB user password on page 223.

puppet_enterprise::rbac_database_name

The role-based access control (RBAC) database name.

Default: pe-rbac

puppet_enterprise::rbac_database_read_user

An RBAC database user that can perform only read functions.

Default: pe-rbac-read

puppet_enterprise::rbac_database_write_user

An RBAC database user that can perform read and write functions.

Default: pe-rbac-write

puppet_enterprise::rbac_database_super_user

The RBAC database superuser.

Default: pe-rbac

puppet_enterprise::rbac_service_migration_db_user

An RBAC service user used for migrations.

pe-rbac

puppet_enterprise::rbac_service_regular_db_user

An RBAC service user used for normal operations.

Default: pe-rbac-write

External PostgreSQL parameters
These parameters are required to install an external PostgreSQL instance. If necessary, you can add password
parameters to standard installations.

puppet_enterprise::database_host

The agent certname of the node hosting the database component.

Important: Don't use an alt name for the database_host value.

puppet_enterprise::database_port

The port that the database is running on.

Default: 5432

puppet_enterprise::database_ssl

A Boolean indicating whether SSL authentication is used.

Default: true

Important: Don't use SSL security for unmanaged PostgreSQL installations. Make sure you set
database_ssl to false.

puppet_enterprise::database_cert_auth

A Boolean indicating whether certificate authentication is used.

Default: true

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 117

Important: Don't use SSL security for unmanaged PostgreSQL installations. Make sure you set
database_cert_auth to false.

puppet_enterprise::puppetdb_database_password

Specify a password, as a string, for the PuppetDB database user.

For example: mypassword

puppet_enterprise::classifier_database_password

Specify a password, as a string, for the classifier database user.

For example: mypassword

puppet_enterprise::classifier_service_regular_db_user

A database user the classifier service can use for normal operations.

Default: pe-classifier

puppet_enterprise::classifier_service_migration_db_user

A database user the classifier service can use for migrations.

Default: pe-classifier

puppet_enterprise::activity_database_password

Specify a password, as a string, for the activity database user.

For example: mypassword

puppet_enterprise::activity_service_regular_db_user

A database user the activity service can use for normal operations.

Default: pe-activity

puppet_enterprise::activity_service_migration_db_user

A database user the activity service can use for migrations.

Default: pe-activity

puppet_enterprise::rbac_database_password

Specify a password, as a string, for the RBAC database user.

For example: mypassword

puppet_enterprise::rbac_service_regular_db_user

A database user the RBAC service can use for normal operations.

Default: pe-rbac

puppet_enterprise::rbac_service_migration_db_user

A database user the RBAC service can use for migrations.

Default: pe-rbac

puppet_enterprise::orchestrator_database_password

Specify a password, as a string, for the orchestrator database user.

For example: mypassword

puppet_enterprise::orchestrator_service_regular_db_user

A database user the orchestrator service can use for normal operations.

Default: pe-orchestrator

puppet_enterprise::orchestrator_service_migration_db_user

A database user the orchestrator service can use for migrations.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 118

Default: pe-orchestrator

Primary server parameters
Use these parameters to configure and tune the primary server.

pe_install::puppet_master_dnsaltnames

An array of strings representing DNS altnames to add to the primary server's SSL certificate.

Default: ["puppet"]

pe_install::install::classification::pe_node_group_environment

A string indicating the environment that infrastructure nodes are running in.

Specify this parameter if you moved your primary server and other infrastructure nodes from the default
production environment after install. With non-default environments, this setting ensures that your
configuration settings are backed up.

Default: production

puppet_enterprise::ip_version

Accepts either 4 or 6 to specify a preference for IPv4 or IPv6, but this does not restrict the non-preferred option.

The default is 4 (prefer IPv4). You can set it to 6 if you prefer IPv6.

puppet_enterprise::ipv6_only

You can set this to true to force NGINX to listen only on IPv6.

The default is false, which allows both IPv4 and IPv6.

puppet_enterprise::master::recover_configuration::pe_environment

A string indicating the environment that infrastructure nodes are running in.

Specify this parameter if you moved your primary server and other infrastructure nodes from the default
production environment after installation. With non-default environments, this setting ensures that your
configuration settings are backed up.

Default: production

puppet_enterprise::profile::certificate_authority

An array of additional certificates to be allowed access to the /certificate_statusAPI endpoint. This list
is added to the base certificate list.

puppet_enterprise::profile::master::check_for_updates

A Boolean indicating whether to check for updates when the pe-puppetserver service restarts.

The default is true (check for updates). You can set it to false to not check for updates.

puppet_enterprise::profile::master::code_manager_auto_configure

Set to true to automatically configure the Code Manager service; otherwise, set it to false.

puppet_enterprise::profile::master::r10k_known__hosts

An array of hashes with each hash containing "name":"<HOSTNAME>", "type":"<HOST_KEY_TYPE>",
and "key":"<HOST_PUBLIC_KEY>".

Optionally, each hash can accept values for "title", "ensure", and "host_aliases".

The r10k_known_hosts parameter manages your known_hosts file to allow SSH host key verification,
which is required when you use Code Manager or r10k.

puppet_enterprise::profile::master::r10k_remote

A string representing the Git URL to be passed to the r10k.yaml file, for example:
git@your.git.server.com:puppet/control.git

The URL can be any URL supported by r10k and Git.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 119

This parameter is only required if you want r10k configured when you install PE, and you must also specify
puppet_enterprise::profile::master::r10k_private_key.

puppet_enterprise::profile::master::r10k_private_key

A string representing the local file path on the primary server where the SSH private key can be found and used
by r10k, for example: /etc/puppetlabs/puppetserver/ssh/id-control_repo.ed25519

This parameter is only required if you want r10k configured when you install PE, and you must also specify
puppet_enterprise::profile::master::r10k_remote.

Console and console-services parameters
In the PE Console node group, these parameters customize the behavior of the console and the console-
services service.

You can modify parameters that begin with puppet_enterprise::profile in the PE console.

puppet_enterprise::profile::console::classifier_synchronization_period

An integer representing, in seconds, the classifier synchronization period. This controls how long the node
classifier can take to retrieve classes from the primary server.

Default: 600

puppet_enterprise::profile::console::ldap_sync_period_seconds

An integer specifying, in seconds, the interval at which LDAP user details and group membership associations
are synchronized.

The default value is 1800 (30 minutes).

This synchronization refreshes the user details and group membership for every LDAP user in the system,
regardless of the last time the user logged in. If a user is no longer present in LDAP, all user-group associations
are removed from the user and all of the user's known tokens are revoked.

To disable automatic synchronization, set the value to 0 or a negative integer. When disabled, user details and
group membership only refresh when the user logs in.

When enabled, various entries are recorded to console-services.log that indicate whether the service is
enabled and when each synchronization event has completed.

puppet_enterprise::profile::console::ldap_cipher_suites

An array specifying the ciphers to use when establishing connections to configured LDAP servers.

Default: $puppet_enterprise::ssl_cipher_suites. This default value captures the array of ciphers
specified by the puppet_enterprise::ssl_cipher_suites parameter. For information on ciphers you
can use for console services, see Compatible ciphers.

puppet_enterprise::profile::console::rbac_failed_attempts_lockout

An integer specifying how many failed login attempts are allowed on an account before the account is revoked.

Default: 10

puppet_enterprise::profile::console::rbac_password_reset_expiration

An integer representing the number of hours that password reset tokens are valid.

An administrator generates these token for users to reset their passwords.

Default: 24

puppet_enterprise::profile::console::rbac_session_timeout

An integer representing, in minutes, how long a user's session can last.

The session length is the same for node classification, RBAC, and the console.

Default: 60

puppet_enterprise::profile::console::session_maximum_lifetime

A string representing how long a console session can last.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 120

The value is formatted as a string consisting of a number and an optional suffix representing a unit of time: s
(seconds), m (minutes), h (hours), d (days), or y (years).

Example: "1d" (one day)

If the suffix is omitted, the default unit of time is seconds.

A value of "0" sets an unlimited console session time.

To prevent console sessions from expiring before the maximum RBAC token lifetime, set this parameter to "0".

puppet_enterprise::profile::console::session_timeout_warning_seconds

An integer specifying, in seconds, the interval after the timeout warning message appears until the console
session expires due to inactivity.

Default: 120

puppet_enterprise::profile::console::session_timeout_polling_frequency_seconds

An integer specifying, in seconds, the interval at which the UI polls the server to determine whether the user is
active.

Default: 60

puppet_enterprise::profile::console::rbac_token_auth_lifetime

A string representing the default authentication lifetime for a token.

The value is formatted as a string consisting of a number followed by a suffix representing a unit of time: y
(years), d (days), h (hours), m (minutes), or s (seconds).

Important: This value cannot exceed the rbac_token_maximum_lifetime.

Default: "1h" (one hour)

puppet_enterprise::profile::console::rbac_token_maximum_lifetime

A string representing the maximum allowable lifetime for all tokens.

The value is formatted as a string consisting of a number followed by a suffix representing a unit of time: y
(years), d (days), h (hours), m (minutes), or s (seconds).

Default: 10y (10 years)

puppet_enterprise::profile::console::console_ssl_listen_port

An integer representing the port that the console listens on.

Default: 443

puppet_enterprise::profile::console::ssl_listen_address

A string containing an IP address repesenting the console's NGINX listen address.

Default: "0.0.0.0"

puppet_enterprise::profile::console::classifier_prune_threshold

An integer representing the number of days to wait before pruning the node classifier database. The node
classifier database contains node check-in history if classifier_node_check_in_storage is enabled.

Set the value to 0 to never prune the node classifier database.

Default: 7 (days), but only has data to prune if classifier_node_check_in_storage is true.

puppet_enterprise::profile::console::classifier_node_check_in_storage

A Boolean specifying whether to create records when nodes check in with the node classifier. These records
describe how nodes match the node groups they're classified into.

Set to true to enable node check-in storage. Enabling this parameter is required to use Nodes check-in history
endpoints on page 560.

Set to false to disable node check-in storage.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 121

Default: false

puppet_enterprise::profile::console::display_local_time

A Boolean indicating whether to show timestamps in the local time or UTC.

Set to true to display timestamps in local time with hover text showing the equivalent UTC time.

Set to false to show timestamps in UTC time with no hover text.

Default: false

puppet_enterprise::profile::console::disclaimer_content_path

Specifies the location of the disclaimer.txt file containing disclaimer content that can appear on the
console login page if you Create a custom login disclaimer on page 270.

Default: "/etc/puppetlabs/console-services"

Tip: You can also use the RBAC API Disclaimer endpoints on page 366 to configure the disclaimer without
needing to reference a specific file location on disk.

The parameters must be set in Hiera or pe.conf, not the console:

puppet_enterprise::api_port

An integer specifying the SSL port that the node classifier is served on.

Default: 4433

puppet_enterprise::console_services::no_longer_reporting_cutoff

Length of time, in seconds, before a node is considered unresponsive.

Default: 3600 (seconds)

For more information, refer to Node run statuses on page 393.

console_admin_password

The password to log into the console as the admin.

Example: "myconsolepassword"

Default: Specified during installation.

Tip: You can also Reset the console administrator password on page 270 from the command line.

Related information
Create a custom login disclaimer on page 270
You can add a custom banner to console login page. For example, you can add a disclaimer about authorized or
unauthorized use of private information found in the console.

Configure RBAC and token-based authentication settings on page 227
You can configure RBAC and token-based authentication settings, such as setting the number of failed attempts a
user has before they are locked out of the console or the amount of time tokens are valid.

Orchestrator and orchestration services parameters
Use these parameters to configure and tune the orchestrator and orchestration services.

puppet_enterprise::profile::agent::pxp_enabled

Boolean used to enable or disable the Puppet Execution Protocol (PXP) service.

Set to true to enable the PXP service, which is required to use the orchestrator and run Puppet from the console.

Set to false to disable the PXP service. If false, you can’t use the orchestrator or the Run Puppet button in
the console.

Must be true to Configure PXP agent parameters on page 242.

Default: true

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 122

puppet_enterprise::profile::bolt_server::concurrency

An integer that determines the maximum number of simultaneous task or plan requests the orchestrator can make
to bolt-server.

This setting only limits task or plan executions on nodes with SSH or WinRM transport methods, because these
are the only tasks and plans requiring requests to bolt-server.

Default: 100 requests

CAUTION: Do not set a concurrency limit that is higher than the bolt-server limit. This can cause
timeouts that lead to failed task runs.

puppet_enterprise::profile::orchestrator::global_concurrent_compiles

An integer specifying how many concurrent compile requests can be outstanding to the primary server across all
orchestrator jobs.

Default: 8 requests

puppet_enterprise::profile::orchestrator::job_prune_threshold

An integer of 2 or greater, which specifies the number of days to retain job reports.

This parameter sets the corresponding parameter job-prune-days-threshold.

While job_prune_threshold itself has no default value, job-prune-days-threshold has a default
of 30 (30 days).

puppet_enterprise::profile::orchestrator::pcp_timeout

An integer representing how long, in seconds, an agent can spend attempting to connect to a PCP broker during a
Puppet run triggered by the orchestrator. If the agent can’t connect to the broker in the specified time frame, the
Puppet run times out.

Default: 30

puppet_enterprise::profile::orchestrator::run_service

A Boolean used to enable (true) or disable (false) orchestration services.

Default: true

puppet_enterprise::profile::orchestrator::task_concurrency

An integer representing the number of simultaneous task or plan actions that can run at the same time. All task
and plan actions are limited by this concurrency limit regardless of transport type (WinRM, SSH, PCP).

If a task or plan action runs on multiple nodes, each node consumes one action. For example, if a task needs to
run on 300 nodes, and your task_concurrency is set to 200, then the task can run on 200 nodes while the
remaining 100 nodes wait in queue.

Default: 1000 actions

puppet_enterprise::pxp_agent::ping_interval

An integer specifying the frequency, in seconds, that PXP agents ping PCP brokers. If the broker doesn't respond,
the agent tries to reconnect.

Default: 120

More information: Configure PXP agent parameters on page 242

puppet_enterprise::pxp_agent::pxp_logfile

The path, as a string, to the PXP agent log file. This file can be used to debug orchestrator issues.

The default value varies by OS.

• *nix: "/var/log/puppetlabs/pxp-agent/pxp-agent.log"
• Windows: "C:\Program Data\PuppetLabs\pxp-agent\var\log\pxp-agent.log"

More information: Configure PXP agent parameters on page 242

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 123

You might need to configure these parameters depending on your infrastructure. You can always tune them later if
you find you need to make adjustments.

puppet_enterprise::profile::orchestrator::allowed_pcp_status_requests

An integer that defines how many times an orchestrator job allows status requests to time out before a
job is considered failed. Status requests wait 12 seconds between timeouts, so multiply the value of the
allowed_pcp_status_requests by 12 to determine how many seconds the orchestrator waits on targets
that aren’t responding to status requests.

Default: 35 timeouts

puppet_enterprise::profile::orchestrator::default_plan_timeout

An integer specifying how long a plan can run before being force stopped. This represents a timeout limit for the
entire plan, not individual plan jobs.

CAUTION: Force stopping plans can result in incomplete Puppet runs, partial configuration changes,
and other issues. When setting the default timeout limit, consider average plan scope, run time, and your
infrastructure's capacity (such as concurrency limits).

Default: 3600 (60 minutes)

Plans triggered by puppet infra commands always have a one year timeout limit, regardless of the value of
default_plan_timeout.

puppet_enterprise::profile::orchestrator::default_task_node_timeout

An integer specifying how many seconds a task can run on a single node before being force stopped.

CAUTION: Force stopping tasks can result in incomplete Puppet runs, partial configuration changes,
and other issues. When setting the default timeout limit, consider average task scope, run time, and your
infrastructure's capacity (such as concurrency limits).

Default: 2400 (40 minutes)

Tasks triggered by puppet infra commands always have a one year timeout limit, regardless of the value of
default_task_node_timeout.

puppet_enterprise::profile::orchestrator::java_args

Specifies the Java heap on page 209 size, which is the amount of JVM memory that each Java process is
allowed to request from the OS for orchestration services to use.

The value is formatted as a JSON hash, where the maximum and minimum are usually the same. For example:
{"Xmx": "256m", "Xms": "256m"}

Default: 704 MB

puppet_enterprise::profile::orchestrator::jruby_max_active_instances

An integer that determines the maximum number of JRuby instances that the orchestrator creates
to execute plans. Because each plan uses one JRuby to run, this value is effectively the maximum
number of concurrent plans. Setting the orchestrator heap size (java_args) automatically sets the
jruby_max_active_instances using the formula $java_args ÷ 1024. If the result is less than one,
the default is one JRuby instance.

Default: 1 instance

Note: The jruby_max_active_instances pool for the orchestrator is separate from the Puppet Server
pool. Refer to JRuby max active instances on page 207 for more information.

puppet_enterprise::profile::plan_executor::versioned_deploys

A Boolean used for Running plans alongside code deployments on page 667.

Set to true to enable versioned deployments of environment code.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 124

Default: false

Important: Setting this to true disables the file sync client's locking mechanism that usually enforces a
consistent environment state for your plans. This can cause Puppet functions and plans that call other plans to
behave unexpectedly if a code deployment occurs while a plan is running.

Related information
Configuring Puppet orchestrator on page 609
Once you've installed PE or the client tools package, there are a few tasks you need to do to prepare your PE
infrastructure for orchestration services.

PuppetDB parameters
Use these parameters to configure and tune PuppetDB.

puppet_enterprise::profile::master::puppetdb_host

An array containing a string representing the certname of the node running the PuppetDB service, which is
usually the primary server.

Default: ["<PRIMARY_SERVER_CERTNAME>"]

The value is set on the PE Infrastructure node group on page 468 and inherited by all child infrastructure node
groups.

puppet_enterprise::profile::master::puppetdb_port

An array containing an integer representing the SSL port that PuppetDB listens on.

Default: [8081]

You might need to change this value if The PuppetDB default port conflicts with another service on page 883.
The value is set on the PE Infrastructure node group on page 468 and inherited by all child infrastructure node
groups.

puppet_enterprise::profile::master::puppetdb::report_processor_ensure

Specifies if you want the primary server to generate agent run reports after each Puppet run.

Accepts a string of either "present" or "absent".

Default: "present" (enabled)

Set to "absent" to Disable agent run reports on page 223.

puppet_enterprise::profile::puppetdb::node_purge_ttl

Set the length of time before PE automatically removes deactivated or expired nodes, along with their facts,
catalogs, and reports, from PuppetDB.

Specify a string representing an amount of time. For example, "14d" sets the retention time to 14 days.

Default: "14d"

For more information, refer to Set the deactivated node retention time on page 223.

puppet_enterprise::profile::master::submit_catalog_edges

A Boolean determining whether to include catalog resource edges in the catalogs that are submitted to PuppetDB.
Set to false if you do not require resource edge data and want to reduce the amount of data stored by
PuppetDB.

Default: true

puppet_enterprise::puppetdb::command_processing_threads

Integer representing how many command processing threads PuppetDB uses to sort incoming data. Each thread
can process one command at a time.

If the PuppetDB service runs on compilers, the default value is 25% of the number of cores in your system.
Otherwise, the default value is half the number of cores in your system. The minimum is 1.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 125

For more information, refer to PuppetDB command processing threads on page 210.

Related information
Database configuration parameters on page 114
These parameters and values are supplied for Puppet Enterprise (PE) databases.

Java parameters
Use these parameters to configure and tune Java.

puppet_enterprise::profile::master::java_args

JVM (Java Virtual Machine) memory, specified as a JSON hash, that is allocated to the Puppet Server service, for
example {"Xmx": "4096m", "Xms": "4096m"}.

puppet_enterprise::profile::puppetdb::java_args

JVM memory, specified as a JSON hash, that is allocated to the PuppetDB service, for example {"Xmx":
"512m", "Xms": "512m"}.

puppet_enterprise::profile::console::java_args

JVM memory, specified as a JSON hash, that is allocated to console services, for example {"Xmx": "512m",
"Xms": "512m"}.

puppet_enterprise::profile::orchestrator::java_args

JVM memory, set as a JSON hash, that is allocated to orchestration services, for example, {"Xmx": "256m",
"Xms": "256m"}.

Related information
Java heap on page 209
The java_args settings specify heap size, which is the amount of memory that each Java process can request
from the operating system. You can specify a heap size for each PE service that uses Java, including Puppet Server,
PuppetDB, the console, and the orchestrator

Install PE using PIM
Puppet Installation Manager (PIM) supports the deployment of standard, large, and extra-large PE architectures.
For an interactive experience, choose the guided installation and follow the step-by-step process in your terminal to
configure and install the PE infrastructure you require. Alternatively, if you do not require guidance, you can create a
JSON file containing your custom installation parameters, and run the installation from the command line.

Regardless of the installation process you choose, you can use PIM on a jump host to install PE infrastructure
components on remote nodes that run a supported PE operating system. Alternatively, you can install PE locally
by using PIM on a machine running a supported PE operating system. In this scenario, if you require additional
infrastructure nodes to host PE components, your local machine can serve as a jump host.

PE infrastructure nodes are the hosts where PE components are installed. The following table lists the infrastructure
nodes you can include in your installation when you use PIM to install PE.

PE infrastructure node Description

Primary server (required) Essential for a PE installation. Can host all components
and services for smaller scale environments that include
up to 2,000 nodes.

Primary server replica (optional) To set up disaster recovery, install a replica of the
primary server. If your primary server fails, the replica
takes over to continue critical operations.

Database server In an extra-large PE installation, a dedicated database
server hosts a PostgreSQL instance containing the
PuppetDB database.

Database server replica (optional) Provides backup support during failovers.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 126

PE infrastructure node Description

Compilers Compilers process Puppet code and convert it into
catalogs that can be applied to agent nodes. The primary
server can handle requests and compile catalogs for
up to 2,000 agent nodes. In large and extra-large PE
installations, dedicated compiler nodes help accelerate
catalog compilation.

Related information
Supported architectures on page 79
There are several configurations available for Puppet Enterprise. The configuration you use depends on the number
of nodes in your environment and the resources required to serve agent catalogs. When you install PE using the PE
installer tarball, you begin with the standard configuration, and can then scale up by adding additional infrastructure
components as needed. Alternatively, by using Puppet Installation Manager (beta) to install PE, you can start out with
a standard, large, or extra-large configuration.

What gets installed and where? on page 102
Puppet Enterprise installs several software components, configuration files, databases, services and users, and log
files. It's useful to know the locations of these should you ever need to troubleshoot or manage your infrastructure.

Supported operating systems on page 84
Puppet Enterprise supports various operating systems depending on the role a machine assumes in your infrastructure.

Install PE using the guided process
For an interactive experience, use the guided installation process. Based on information you provide about your
environment and requirements, PIM automatically configures your PE installation.

Before you begin

• Ensure that you have the required access to the nodes where you want to install PE infrastructure.

• To install the primary server locally on the machine where PIM is running, you must log in as the root user.
• To install PE components on remote nodes, the machine running PIM must have SSH access to the target

nodes, and the user executing the installation must have superuser privileges for those nodes.

• Ensure that Puppet is not already installed on any of the nodes where you want to install PE infrastructure.

• Check system requirements:

• Hardware requirements
• Supported operating systems
• Supported browsers
• System configuration

Important: Security-Enhanced Linux (SELinux) is enabled and enforced by default on Red Hat Enterprise Linux 9
(RHEL 9) operating systems. In order to use PIM, users must provide permission for PIM binary.

To install PE by using the PIM guided process:

1. Download PIM.

Go to the Puppet Installation Manager download page and download the binary for your operating system.

2. Start the guided installation process.

In your terminal, navigate to the pim directory and run the following command:

./pim wizard

3. Follow the guided steps in your terminal to complete the installation.

If you require additional guidance during the installation process, you can view help content by pressing Ctrl+H.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/downloads/puppet-installation-manager-beta

pe | Installing | 127

Install PE with your defined parameters
If you know which PE infrastructure components you want to install and you do not require guidance, you can specify
your installation parameters in a JSON file. Then use PIM to start the installation by running a single command.

Before you begin

• Ensure that you have the required access to the nodes where you want to install PE infrastructure.

• To install the primary server locally on the machine where PIM is running, you must log in as the root user.
• To install PE components on remote nodes, the machine running PIM must have SSH access to the target

nodes, and the user executing the installation must have superuser privileges for those nodes. You can
configure SSH, or use the -b flag to pass the SSH key or SSH credentials when you run the installation
command.

• Ensure that Puppet is not already installed on any of the nodes where you want to install PE infrastructure.

• Check system requirements:

• Hardware requirements
• Supported operating systems
• Supported browsers
• System configuration

To install PE from the PIM command line:

1. Download PIM.

Go to the Puppet Installation Manager download page and download the binary for your operating system.

2. Create a JSON file specifying the installation parameters you require.

For examples illustrating the JSON properties required for different PE architectures, see Creating an installation
parameters file.

3. Start the installation.

In your terminal, navigate to the pim directory and run one of the following commands, replacing
parameters.json with the actual file name (including the file path, if necessary):

• To run the installation without debugging and without configuring SSH, use a command like the following
example:

./pim install parameters.json

• To enable debug logging, add -d or --debug. For example:

./pim install parameters.json --debug

• To pass an SSH key or SSH credentials for accessing remote nodes, use the -b flag with the installation
command as shown in the following examples:

./pim install -b user=root -b private-key=~/.ssh/ssh_key params.json

./pim install -b user=root -b password=ssh_password params.json

4. Follow the CLI prompts to complete the installation process.

Note: PIM uses the Puppet Enterprise Administration Module (PEADM), which depends on Puppet Bolt, a tool
for automating Puppet infrastructure maintenance tasks. When you run the ./pim install command, PIM
checks whether Bolt is present and, if necessary, provides the option to install Bolt.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/downloads/puppet-installation-manager-beta

pe | Installing | 128

Creating an installation parameters file
To install PE from the Puppet Installation Manager (PIM) command line, you must create a JSON file containing
your installation parameters and pass that file with the install command. The JSON file defines your installation
architecture, including the option for disaster recovery.

Important: Creating a JSON file containing installation parameters is not required if you use the guided installation
process. With the guided process, PIM automatically configures your installation based on the information you
provide about your environment and requirements.

Installation configuration examples

The following examples illustrate how to structure the JSON file for different PE configurations.

Installation parameters for an extra-large architecture with disaster recovery

{
 "primary_host": "pe-xl-core-0.lab1.puppet.vm",
 "primary_postgresql_host": "pe-xl-core-1.lab1.puppet.vm",
 "replica_host": "pe-xl-core-2.lab1.puppet.vm",
 "replica_postgresql_host": "pe-xl-core-3.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-xl-compiler-0.lab1.puppet.vm",
 "pe-xl-compiler-1.lab1.puppet.vm"
],
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for an extra-large architecture without disaster recovery

{
 "primary_host": "pe-xl-core-0.lab1.puppet.vm",
 "primary_postgresql_host": "pe-xl-core-1.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-xl-compiler-0.lab1.puppet.vm",
 "pe-xl-compiler-1.lab1.puppet.vm"
],
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for a large architecture with disaster recovery

{
 "primary_host": "pe-l-core-0.lab1.puppet.vm",
 "replica_host": "pe-l-core-2.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-l-compiler-0.lab1.puppet.vm",
 "pe-l-compiler-1.lab1.puppet.vm"
],
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for a large architecture without disaster recovery

{
 "primary_host": "pe-l-core-0.lab1.puppet.vm",

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 129

 "compiler_hosts": [
 "pe-l-compiler-0.lab1.puppet.vm",
 "pe-l-compiler-1.lab1.puppet.vm"
],
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for a standard architecture with disaster recovery

{
 "primary_host": "pe-core-0.lab1.puppet.vm",
 "replica_host": "pe-core-2.lab1.puppet.vm",
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Installation parameters for a standard architecture without disaster recovery

{
 "primary_host": "pe-core-0.lab1.puppet.vm",
 "console_password": "puppetlabs",
 "dns_alt_names": ["puppet", "puppet.lab1.puppet.vm"],
 "version": "2023.6.0"
}

Purchasing and activating your Puppet Enterprise license
The Puppet Enterprise license gives you access to Security Compliance Management (formerly Puppet Comply) and
Continuous Delivery.

With the Puppet Enterprise Advanced license, you gain access to additional premium features: Security Compliance
Enforcement, and advanced capabilities for the Impact Analysis feature in Continuous Delivery.

Security Compliance Enforcement and advanced Impact Analysis capabilities are also available for individual
purchase with a standard license.

Your license must support the number of nodes that you want to manage with Puppet Enterprise.

Trial license

To try out Puppet Enterprise (PE), you can manage up to 10 nodes at no charge, and no license key is needed. When
you have 11 or more active nodes and no license key, license warnings appear in the console until you install an
appropriate license key.

Note: PE agents and repo tarballs are stored in a private repository, however as a PE trial user you have access to the
agent on the operating system you’ve installed the Puppet server on.

Purchased license

To manage 11 or more active nodes, you must purchase a license. After you purchase a license and install a license
key file, your licensed node count and subscription expiration date appear on the License page.

Note: To support occasional spikes in node usage, you have a bursting quota. This means that on up to four days
each calendar month you can exceed your licensed node count up to your bursting limit, which is double the number
of your licensed nodes. If you exceed the bursting quota by using additional nodes on more than four days in a

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 130

calendar month, or exceed the bursting limit at any time, you must purchase more nodes for your license. In these
cases, license warnings appear in the console until you contact your Puppet representative.

Related information
How nodes are counted on page 449
Your node count is the number of nodes in your inventory. A node is a single network-connected device such as a
server, desktop, or laptop. Virtual machines that have unique IP addresses are counted separately from the physical
machines where they reside.

Getting a license
Contact our sales team to purchase a new license, renew your license, upgrade to Puppet Enterprise Advanced, or
increase your licensed nodes.

A standard Puppet Enterprise license includes Security Compliance Management (formerly Comply) and Continuous
Delivery. You can choose the Puppet Enterprise Advanced license to unlock the following premium features:

• Impact Analysis: By enabling the advanced capabilities of this feature within Continuous Delivery, you can
generate reports to analyze the potential impact and risks before merging new Puppet code.

• Security Compliance Enforcement (formerly CEM): Ensure that your server configurations comply with the
security best practices outlined in the Center for Internet Security (CIS) benchmarks.

Note: Security Compliance Enforcement and advanced Impact Analysis capabilities are also available for individual
purchase with a standard license.

Tip: To reduce your active node count and free up licenses, remove inactive nodes from your deployment. By
default, nodes with Puppet agents are automatically deactivated after seven days with no activity (no new facts,
catalog, or reports).

Related information
Remove agent nodes on page 445
Purging a node removes it from your inventory so it is no longer managed by Puppet Enterprise (PE) and allows you
to use the node's license on another node.

Install a license key
Install the suite-license.lic file to upgrade from a trial installation.

1. Install the license key by copying the file to /etc/puppetlabs/suite-license.lic on the primary
server node.

2. Verify that Puppet has permission to read the license key by checking its ownership and permissions:

ls -la /etc/puppetlabs/suite-license.lic

3. If the ownership is not root and permissions are not -rw-r--r-- (octal 644), set them:

sudo chown root:root /etc/puppetlabs/suite-license.lic
sudo chmod 644 /etc/puppetlabs/suite-license.lic

View your license details
Check the number of active nodes in your deployment, the number of licensed nodes you purchased, and the
expiration date for your license.

Procedure

• In the console, click License.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/contact-sales/

pe | Installing | 131

The License page opens with information on your licensed nodes, bursting quota, and subscription expiration date.
Any license warnings that appear in the console navigation are explained on the License page. For example, warning
messages appear if your license is expired or out of compliance.
Related information
Usage endpoints on page 769
Use the usage endpoint to view details about your deployment's active nodes.

Remove agent nodes on page 445
Purging a node removes it from your inventory so it is no longer managed by Puppet Enterprise (PE) and allows you
to use the node's license on another node.

Installing agents
Puppet Enterprise (PE) agent nodes monitor your infrastructure and help keep it in your desired state. You can install
agents on *nix, Windows, and macOS nodes.

There are multiple ways to install agents. We recommend using the install script or installing agents from the console,
and we have provided instructions for other cases, such as non-root agents, offline installation, and manually-
transferred certificates. After installing agents, you must accept their certificate signing requests (CSRs).

You usually install agents from the PE package management repository on your primary server, which is created
when you install your primary server. This repository serves packages over HTTPS using the same port as the
primary server (port 8140). This means agent nodes don't require you to open any ports other than the one they
already use to communicate with the primary server.

You can find agent packages on the primary server at /opt/puppetlabs/server/data/packages/
public/<PE VERSION>/. This directory contains the platform-specific repository file structure for agent
packages. For example, if your primary server runs on CentOS 7, in the agent packages directory there is a directory
named el-7-x86_64. This directory contains multiple subdirectories with the packages needed to install an agent.

To install FIPS-enabled PE agents, install the appropriate FIPS-enabled agent on a third party supported platform with
FIPS mode enabled. You can use FIPS-enabled agents with a non-FIPS enabled primary server.

Tip:

After installing agents, you can edit node configuration settings in each node's puppet.conf file at /etc/
puppetlabs/puppet/puppet.conf. You can edit this file directly or use the puppet config set sub-
command.

For example, to point an agent at a primary server called primary.example.com, run puppet config set
server primary.example.com. This command adds server = primary.example.com to the main
section of the node's puppet.conf file.

The Puppet Configuration Reference explains the configuration settings you can specify in puppet.conf.

All agent installation instructions assume your nodes use Supported operating systems on page 84.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html

pe | Installing | 132

• Install agents with the install script on page 132
You can use the install script for *nix, Windows, and macOS nodes. The install script installs and configures the
agent on target nodes using installation packages from the Puppet Enterprise (PE) package management repo.
• Install agents from the console on page 136
You can use the Puppet Enterprise (PE) console to install agents in *nix, macOS, and Windows nodes.
• Install *nix agents on page 141
You can install agents on *nix nodes with the install script, from the Puppet Enterprise (PE) console, with PE package
management, your own package management, with or without internet access, and more.
• Install Windows agents on page 146
There are many ways you can install agents on Windows nodes, including PowerShell scripts, the Puppet Enterprise
(PE) console, the MSI installer, and the msiexec command.
• Install macOS agents on page 154
On macOS, agents have core Puppet functionality and platform-specific capabilities like package installation,
LaunchD service management, System Profiler facts inventory, and directory services integration. You can install
agents on macOS nodes with the install script, from the Puppet Enterprise (PE) console, from Finder, and more.
• Install non-root agents on page 157
You can configure non-root agents on *nix and Windows nodes. Running agents without root privileges allows teams
to perform some, but not all, administrative actions in Puppet Enterprise (PE) that would otherwise require root
privileges.
• Managing certificate signing requests on page 160
When you install a Puppet agent on a node, the agent must submit a certificate signing request (CSR) to the primary
server, and you must accept the CSR to add the node to your Puppet Enterprise (PE) inventory. Accepting the CSR
allows Puppet to run on the node and enforce your configuration, which in turn adds node information to PuppetDB
and makes the node available throughout the PE console.

Related information
Upgrading agents on page 197
Upgrade your agents as new versions of Puppet Enterprise (PE) become available. The puppet_agent module
helps automate upgrades, and provides the safest upgrade. Alternatively, you can use a script to upgrade individual
nodes.

Set a proxy for agent traffic on page 231
General proxy settings in an agent node's puppet.conf file are used to manage HTTP connections directly
initiated by the agent node.

Adding and removing agent nodes on page 445
You can add nodes you want to manage with Puppet Enterprise (PE) and remove nodes you no longer need.

FIPS 140-2 enabled PE on page 16
Puppet Enterprise (PE) is available in a FIPS (Federal Information Processing Standard) 140-2 enabled version. This
version is compatible with select third party FIPS-compliant platforms.

Agent platform parameter on page 114
When setting up automated provisioning of an installation, you can define this optional parameter in pe.conf
to specify the agent platforms you want to support in your installation. If your primary server is connected
to the internet when you install or upgrade PE, then the packages for the agent platforms you specified in
pe.conf are automatically downloaded to the primary server and the platform tags are automatically added as
pe_repo::platform:: classes in the PE Master node group, so the agent packages are available to install on
nodes in your inventory.

Uninstall agents on page 173
You can remove the puppet-agent package from nodes that you no longer want Puppet Enterprise (PE) to
manage.

Install agents with the install script
You can use the install script for *nix, Windows, and macOS nodes. The install script installs and configures the
agent on target nodes using installation packages from the Puppet Enterprise (PE) package management repo.

The agent install script performs these actions:

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 133

• Detects the operating system on which it's running, sets up an apt, yum, or zipper repo that refers back to the
primary server, and then pulls down and installs the puppet-agent packages. If the install script can't find
agent packages corresponding to the agent's platform, it fails with an error telling you which pe_repo class you
need to declare on the primary server (in the console at Node Groups > PE Master > Classes).

• Downloads a plug-in tarball from the primary server. This feature is controlled by the
pe_repo::enable_bulk_pluginsync and pe_repo::enable_windows_bulk_pluginsync
settings, which are set to true (enabled) by default.

Note: Depending on how many modules you have installed, bulk plug-in sync can improve agent installation
speed. However, if your primary server runs on a different platform than your agent nodes, bulk plug-in sync
might be less beneficial. The plug-in tarball is based on the plug-ins running on the primary server's agent, which
might not match the plug-ins required for agents on other platforms.

• Creates a basic puppet.conf file containing the node's configuration settings. This file is stored at /etc/
puppetlabs/puppet/puppet.conf.

• Kicks off a Puppet run.

Use the install script

Before you begin: The agent node must have an internet connection to download the agent installer packages and
plug-ins.

If you're installing an agent with a different OS than your primary server, you must declare the corresponding
pe_repo class on the primary server, such as pe_repo::platform::el_7_x86_64. Declare these classes in
the console at Node Groups > PE Master > Classes.

If your primary server is airgapped or uses a proxy server to access the internet, before installing agents, you must
specify pe_repo::http_proxy_host and pe_repo::http_proxy_port in the PE Master node group's
pe_repo class. For information about how to download agent installation packages through a proxy, see Configure
proxies on page 230.

1. In the PE console, go to Nodes > Add nodes > Install agents.
2. Under Manual installation, copy the command corresponding with your node's OS. You can use the *nix nodes

script for *nix and macOS nodes.
3. Launch the install script by running the command you copied. For Windows nodes, run the command in an

administrative PowerShell window.

Remember: If the install script can't find agent packages corresponding to the agent's OS, it fails with an error
telling you which pe_repo::platform class you need to declare on the primary server (at Node Groups >
PE Master > Classes).

4. Run puppet agent -t to add the node to the node inventory and generate the CSR.
5. Accept the CSR as explained in Managing certificate signing requests on page 160.

Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Customize the install script
If necessary, you can use these options to modify the install script to define specific agent configuration settings,
CSR attributes, or MSI properties. You can also control whether the Puppet service is running or enabled after agent
installation.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 134

puppet.conf settings

You can use the install script to specify agent configuration settings in the node's puppet.conf file, which is
generated by the install script.

The Puppet Configuration Reference explains the configuration settings you can specify in puppet.conf and
provides tips for successfully defining settings. Some commonly-specified settings include:

• server

• certname

• environment

• splay

• splaylimit

• noop

You can specify an unlimited number of settings in any order. In the install script command, use the
section:key=value pattern to define each setting and leave one space between settings. In the *nix install script
command, use -s to introduce the assortment of settings.

For example, for an Enterprise Linux system with a proxy between the agent and primary server, you can specify the
http_proxy_host setting by adding the following code to the install script command:

-s agent:http_proxy_host=<PROXY_FQDN>

As another example, the following code specifies the splay, certname, and environment settings in the main
and agent sections of the puppet.conf file:

main:certname=node1.company.com \
agent:splay=true \
agent:environment=development

The puppet.conf file resulting from this code contains:

[main]
certname = node1.corp.net

[agent]
splay = true
environment = development

Tip: You can also edit node configuration settings after running the script by editing the puppet.conf file directly
(at /etc/puppetlabs/puppet/puppet.conf) or using the puppet config set sub-command.

For example, to point an agent at a primary server called primary.example.com, run puppet config
set server primary.example.com. This command adds server = primary.example.com to the
[main] section of the node's puppet.conf file.

CSR attribute settings

Certificate signing request attribute settings are added to the node's puppet.conf file and are included in the
custom_attributes and extension_requests sections of the csr_attributes.yaml file. The Puppet
csr_attributes.yaml: Certificate extensions reference provides details about these settings.

You can specify an unlimited number of settings in any order. In the install script command, use the
section:key=value pattern to define each setting and leave one space between settings. In the *nix install script
command, use -s to introduce the assortment of settings.

For example, these commands specify agent and certificate signing settings:

-s main:certname=<CERTNAME_OTHER_THAN_FQDN> \

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html
https://puppet.com/docs/puppet/latest/config_file_csr_attributes.html

pe | Installing | 135

custom_attributes:challengePassword=<PASSWORD_FOR_AUTOSIGNER_SCRIPT> \
extension_requests:pp_role=<PUPPET_NODE_ROLE>

The above code adds the main:certname setting to the puppet.conf file and a csr_attributes.yaml
file containing:

custom_attributes:
 challengePassword: <PASSWORD_FOR_AUTOSIGNER_SCRIPT>
extension_requests:
 pp_role: <PUPPET_NODE_ROLE>

Tip: If you can't run the install script, you can set CSR attributes by manually creating a csr_attributes.yaml
file in the Puppet confdir (at C:\ProgramData\PuppetLabs\puppet\etc\csr_attributes.yaml)
prior to installing the Puppet agent package with another agent installation method.

MSI properties (Windows only)

For the Windows install script, you can set these MSI properties with or without additional agent configuration
settings.

MSI Property PowerShell flag

INSTALLDIR -InstallDir

PUPPET_AGENT_ACCOUNT_USER -PuppetAgentAccountUser

PUPPET_AGENT_ACCOUNT_PASSWORD -PuppetAgentAccountPassword

PUPPET_AGENT_ACCOUNT_DOMAIN -PuppetAgentAccountDomain

For example, adding this code to the Windows install script runs the Puppet service as pup_adm with the defined
password:

-PuppetAgentAccountUser ‘pup_adm’ -PuppetAgentAccountPassword ‘<PASSWORD>’ -
PuppetAgentAccountDomain '<DOMAIN>'

Important: If you specify PUPPET_AGENT_ACCOUNT_USER, you must also specify
PUPPET_AGENT_ACCOUNT_PASSWORD and PUPPET_AGENT_ACCOUNT_DOMAIN unless the node is under a
gMSA.

For gMSAs, you must specify PUPPET_AGENT_ACCOUNT_USER (the user for the gMSA) and
PUPPET_AGENT_ACCOUNT_DOMAIN. Do not specify PUPPET_AGENT_ACCOUNT_PASSWORD.

If you need to specify additional MSI properties, you might need to Install Windows agents with the .msi package on
page 149.

Puppet service status

By default, the install script starts the Puppet agent service and kicks off a Puppet run. If you want to manually trigger
the Puppet run, or you're using a provisioning system that requires non-default behavior, you can control whether the
service is running or enabled.

• ensure controls whether the Puppet service is running.

• Accepts values of running or stopped.
• *nix format: --puppet-service-ensure <VALUE>
• Windows format: -PuppetServiceEnsure <VALUE>

© 2024 Puppet, Inc., a Perforce company

https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview

pe | Installing | 136

• enable controls whether the Puppet service is enabled.

• Accepts values of true, false, mask, or manual (Windows only).
• *nix format: --puppet-service-enable <VALUE>
• Windows format: -PuppetServiceEnable <VALUE>

For example, to stop the Puppet service, ensure it doesn't boot after installation, and prevent a Puppet run from
occurring after the agent is installed, include these settings in the *nix install script command:

-s --puppet-service-ensure stopped --puppet-service-enable false

To do this in the Windows install script command, include:

-PuppetServiceEnsure stopped -PuppetServiceEnable false

Install agents from the console
You can use the Puppet Enterprise (PE) console to install agents in *nix, macOS, and Windows nodes.

Before you begin
If you're installing an agent with a different OS than your primary server, you must declare the corresponding
pe_repo class on the primary server, such as pe_repo::platform::el_7_x86_64. Declare these classes in
the console at Node Groups > PE Master > Classes.

You must have permission to run the pe_boostrap task to install agents on nodes. The pe_boostrap::linux
task is for *nix and macOS targets, while the pe_boostrap::windows task is for Windows targets.

Refer to the Limitations section of the pe_bootstrap task's Forge page for platform, PowerShell, and Microsoft .NET
Framework requirements.

1. In the PE console, go to Nodes > Add nodes > Install agents.

Tip: These steps use the default pe_boostrap task to immediately install agents using one transport method
(SSH or WinRM). If you want to schedule the installation, use SSH and WinRM concurrently, or specify task
parameters (such as a custom certname or other parameters described on the pe_boostrap task's Forge page), click
Advanced install. Make sure you accept the CSRs after installing agents.

2. Select a transport method to remotely install the agent on the target node.

• SSH for *nix and macOS
• WinRM for Windows

3. Enter the target host names and the credentials required to access them. You can specify multiple targets, but only
one set of credentials.

Important: If you use an SSH key, include the begin and end tags.

4. Click Add nodes to install agents on the specified nodes. You can click Installation job started to view the task's
job details.
Agents are installed on the target nodes and then they automatically submit certificate signing requests (CSRs) to
the primary server.

5. After installing agents, CSRs are added to the Unsigned certificates list in the console. You must accept the
certificates, as explained in Managing certificate signing requests on page 160.

Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Download and install agents using Puppet Plan

You can use the Puppet Enterprise (PE)#console to download and install agents for your specified platform. To
download and install an agent:

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/bootstrap#limitations
https://forge.puppet.com/modules/puppetlabs/bootstrap/readme#example-specify-a-custom-certname

pe | Installing | 137

1. Go to ORCHESTRATION#>#Plans.

2. In the Plans#text field add enterprise_tasks::add_platforms.

3. Under Plan parameters# enter parameters and values for your plan. See Puppet Plan parameters on page 137
and Puppet Plan parameters and possible values to fetch a Puppet agent on page 138.

4. Run the plan to download the Puppet agent.

5. SSH into the agent node you want to upgrade.

6. Run the install script command to install the agent:

cacert="$(puppet config print localcacert)"
uri="https://$(puppet config print server):8140/packages/current/
install.bash"

curl --cacert "$cacert" "$uri" | sudo bash

Puppet Plan parameters
The following table lists supported platforms and the expected input types for the fields.

Platforms Fields Required (R)/ Optional
(O)

Validation

os R Can’t be blank

os_version R Can’t be blank

target R Can’t be blank

architecture R Can’t be blank

agent_version O If provided, the puppet-
agent of the given version
will get fetched

AIX

Amazon

Redhat

Fedora

RedhatFIPS

SLES

Solaris
codename O Not applicable

os R Can’t be blank

os_version R Can’t be blank

target R Can’t be blank

architecture R Can’t be blank

codename R Can’t be blank

Debian

OSX

Ubuntu

agent_version O If provided, the puppet-
agent of the given version
will get fetched

os R Can’t be blank

os_version R Can’t be blank

target R Can’t be blank

architecture R Can’t be blank

agent_version O If provided, the puppet-
agent of the given version
will get fetched

Windows

WindowsFIPS

codename O Not applicable

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 138

Puppet Plan parameters and possible values to fetch a Puppet agent
The following table lists supported platforms, and the expected values required for each platform to fetch a Puppet
agent using Puppet Plan.

Platforms (R / O) fields Expected value

R os aix

R os_version (should be passed in
double quotes [“”])

7.2

R architecture power

R target Server machine’s host name

O agent_version

AIX

O codename

R os amazon

R os_version (should be passed in
double quotes [“”])

2023

R architecture x86_64

aarch64

R target Server machine’s host name

O agent_version

Amazon

O codename

R os debian

R os_version (should be passed in
double quotes [“”])

10

11

12

R architecture amd64

aarch64

R target Server machine’s host name

R codename buster

bullseye

bookworm

Debian

O agent_version

Redhat R os el

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 139

Platforms (R / O) fields Expected value

R os_version (should be passed in
double quotes [“”])

7

8

9

R architecture x86_64

aarch64

ppc64le

R target Server machine’s host name

O agent_version

O codename

R os fedora

R os_version (should be passed in
double quotes [“”])

36

40

R architecture x86_64

R target Server machine’s host name

O agent_version

Fedora

O codename

R os osx

R os_version (should be passed in
double quotes [“”])

11

12

13

14

R architecture x86_64

arm64

R target Server machine’s host name

OSX

R codename bigsur

monterey

ventura

sonoma

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 140

Platforms (R / O) fields Expected value

O agent_version

R os redhatfips

R os_version (should be passed in
double quotes [“”])

7

8

9

R architecture x86_64

R target Server machine’s host name

O agent_version

RedhatFIPS

O codename

R os sles

R os_version (should be passed in
double quotes [“”])

12

15

R architecture x86_64

R target Server machine’s host name

O agent_version

SLES

O codename

R os solaris

R os_version (should be passed in
double quotes [“”])

11

15

R architecture i386

sparc

R target Server machine’s host name

O agent_version

Solaris

O codename

R os ubuntu

R os_version (should be passed in
double quotes [“”])

18.04

20.04

22.04

Ubuntu

R architecture amd64

aarch64

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 141

Platforms (R / O) fields Expected value

R target Server machine’s host name

R codename bionic

focal

jammy

O agent_version

R os windows

R os_version (should be passed in
double quotes [“”])

2016 (Field is required but the value
is not used)

R architecture x64

x86

R target Server machine’s host name

O agent_version

Windows

O codename

R os windowsfips

R os_version (should be passed in
double quotes [“”])

2016 (Field is required but the value
is not used)

R architecture x64

R target Server machine’s host name

O agent_version

WindowsFIPS

O codename

Install *nix agents
You can install agents on *nix nodes with the install script, from the Puppet Enterprise (PE) console, with PE package
management, your own package management, with or without internet access, and more.

We recommend you Install agents with the install script on page 132 or Install agents from the console on page
136 whenever possible, and we've described other cases here for your reference. For non-root agents, refer to
Install non-root *nix agents on page 158.

You must enable TLSv1 to install agents on these platforms:

• AIX
• Solaris 11

Related information
Enable TLSv1 on page 864

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 142

To comply with security regulations, TLSv1 and TLSv1.1 are disabled by default.

Install *nix agents with PE package management
Puppet Enterprise (PE) provides its own package management to help you install agents on *nix and macOS nodes.
You can use this process with or without internet access.

Before you begin

If you're installing an agent with a different OS than your primary server, you must declare the corresponding
pe_repo class on the primary server, such as pe_repo::platform::el_8_x86_64. You can declare these
classes in the console at Node Groups > PE Master > Classes.

If the primary server does not have internet access, download the appropriate agent tarball, and copy the agent tarball
to this location on the primary server:

/opt/puppetlabs/server/data/staging/pe_repo-puppet-agent-<AGENT_VERSION>

For example, the directory for agent version 8.11.0 is:

/opt/puppetlabs/server/data/staging/pe_repo-puppet-agent-8.11.0/

Client URL (curl) and World Wide Web Get (Wget) commands can be used to download PE repo tarballs from PE’s
private repository. These commands modify the standard agent install script for specific platforms or air-gapped
environments. If you do not have a specific need for these commands, follow the procedure in Install agents with the
install script.

Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Using example commands on page 25
These guidelines can help you understand and customize the example commands you'll find in the Puppet Enterprise
(PE) docs.

Commands with elevated privileges on page 27
Some commands in PE require elevated privileges. Depending on the operating system, youc an use either sudo,
runas, or a root or admin user.

Authentication credentials
Because#Puppet Enterprise agent#packages are stored in a private repository, you must authenticate to access and
download the packages.

Use the string literallicense-id as your username and use your#PE License ID as the password. Your PE License
ID is provided with the license file or available in the#PE#console by selecting License from the navigation bar.

Note: If your PE License ID is not provided with your license, please Contact our sales team.

Authentication procedures
You can use either of the following procedures to authenticate:

• Create and configure a.netrc#file
• Export credentials to environment variables

Create and configure a#.netrc#file
A.netrc#file is a configuration file used by many command-line tools and programs, including curl, FTP, and Git.
The primary purpose of the file is to store login credentials.

Complete the following steps to create and configure a.netrc#file:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/misc/pe-files/pe_repo
https://www.puppet.com/contact?utm_term=trendemon

pe | Installing | 143

1. Create a file named.netrc#by running the following commands:

touch ~/.netrc
chmod 600 ~/.netrc

2. Edit the file to add your credentials, wherelicense-id is a string literal and<PE_License_ID> is your PE
License ID:

machine artifacts-puppetcore.puppet.com
 login license-id
 password <PE_License_ID>

3. Run a command with the--netrc#option so that the credentials stored in the.netrc #file are used for
authentication, as shown in the following example:

curl --netrc 'https://artifacts-puppetcore.puppet.com/v1/download?
version=8.11.0&type=perepo&os_name=el&os_version=9&os_arch=x86_64' -J -O

Export credentials to environment variables
You can directly curl the endpoints with credentials by completing the following steps: Export the credentials,
where#license-id is a string literal and<PE_License_ID> is your PE License ID:

1. Export the credentials, wherelicense-id is a string literal and <PE_License_ID> is your PE License ID:

export USERNAME=license-id
export PASSWORD=<PE_License_ID>

2. Call the credentials from the URL, as shown in the following example:

curl -u $USERNAME:$PASSWORD 'https://artifacts-puppetcore.puppet.com/v1/
download?
version=8.11.0&type=perepo&os_name=el&os_version=9&os_arch=x86_64' -J -O

Request parameters
The following request parameters are accepted by the artifact download endpoint.

Note: To directly copy URLs and download agent and agent repo, see puppet releases.

Name Type Default Example Description

version String None 8.11.0 The package version.

os_name String None amazon The name of the
operating system. For a
list of valid names, see
operating systems.

os_version String None 2023 The operating system
version. For a list of
valid versions, see
operating systems.

os_arch String None aarch64 The operating system
architecture. For a list
of valid architectures,
see operating systems.

Operating system names, versions, and architectures

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/releases/

pe | Installing | 144

The following table lists currently valid values for theos_name,os_version, andos_arch parameters.

To specify an operating system, use the values in theName#column. TheFull name#column is for informational
purposes only.

Name Full name Version Architecture

aix AIX 7.2 architecture ppc

amazon Amazon#Linux 2, 2023, and so on x86_64, aarch64

debian Debian 10, 11, and so on amd64, arm64

el Red Hat Enterprise Linux 7, 8, and so on x86_64, aarch64, ppc64le

fedora Fedora#Linux 40 and so on x86_64

osx macOS 14 and so on x86_64, arm64

redhatfips Redhat (FIPS) 7, 8, 9 x86_64

sles SUSE Linux Enterprise
Server

12, 15 x86_64

solaris Solaris 11 11: x86_64, SPARC

ubuntu Ubuntu 22.04 and so on amd64, arm64

windows Microsoft#Windows Ignored x86, x64

windowsfips Windows (FIPS) Ignored x64

Example

A download link for#Ubuntu#Linux#22.04 would be similar to the following example, where:

• <username>#is a string literal,license-id
• <password>#is the PE License ID

Content disposition
Content disposition is enabled for these packages and can be used while downloading packages to store them with
their default name. Use–J –O#only with curl. For wget, use the following structure:

wget --content-disposition <URL>

Note: The <PRIMARY_HOSTNAME> portion of the installer script—as provided in the following example—refers
to the FQDN of the primary server. The FQDN must be fully resolvable by the machine on which you're installing or
upgrading the agent.

1. SSH into the node where you want to install the agent and run the command appropriate to your environment:

Choose from:

• curl:

uri='https://<PRIMARY_HOSTNAME>:8140/packages/current/install.bash'
curl -k "$uri" | sudo bash

• wget:

wget -O - -q --no-check-certificate https://<PRIMARY_HOSTNAME>:8140/
packages/current/install.bash | sudo bash

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 145

• Solaris

sudo export PATH=$PATH:/opt/sfw/bin
wget -O - -q --no-check-certificate --secure-protocol=TLSv1 https://
<PRIMARY_HOSTNAME>:8140/packages/current/install.bash | bash

2. Run puppet agent -t to add the node to the node inventory and generate the CSR.
3. Accept the CSR as explained in Managing certificate signing requests.

Install *nix agents with your own package management
You can use your own package management tools, instead of Puppet Enterprise (PE) package management, to install
agents. You can use this method with or without internet access.

Before you begin

Download the appropriate agent tarball.

1. Add the agent package to your own package management and distribution system.

2. Configure the package manager on your agent node (such as YUM or APT) to point to that repo.

3. Install the agent using the command appropriate to your environment:

• YUM:

sudo yum install puppet-agent

• APT:

sudo apt-get install puppet-agent

In offline environments, you might need to disable the PE-hosted package management repo if the installer
gets stuck trying to connect to the primary server. To do this, in the PE console, go to Node groups > PE
Infrastructure > PE Master. On the Classes tab, find the pe_repo::platform class corresponding with
your node's platform, click Remove this class, and commit changes.

4. Run puppet agent -t to add the node to the node inventory and generate the CSR.

5. Accept the CSR as explained in Managing certificate signing requests on page 160.

Install *nix agents using a manually-transferred certificate
If you can't, or don't, use -k or --insecure to trust the primary server during agent installation, you can manually
copy the primary server CA certificate to any *nix machines you want to install agents on, and then run a variation of
the agent install script against that cert.

For general information about forming curl commands and authentication in commands, go to Using example
commands on page 25.

1. On the machine where you want to install the agent, create this directory: /etc/puppetlabs/puppet/ssl/
certs

2. On the primary server, navigate to /etc/puppetlabs/puppet/ssl/certs/ and copy ca.pem to the
certs directory you created on the agent node.

3. On the agent node, verify file permissions by running:

chmod 444 /etc/puppetlabs/puppet/ssl/certs/ca.pem

© 2024 Puppet, Inc., a Perforce company

https://about:blankmanaging_certificate_signing_requests.dita/
https://puppet.com/misc/pe-files/pe_repo

pe | Installing | 146

4. Run the agent install script command, using the --cacert flag to point to the cert, such as:

cacert='/etc/puppetlabs/puppet/ssl/certs/ca.pem'
uri='https://<PRIMARY_HOSTNAME>:8140/packages/current/install.bash'

curl --cacert "$cacert" "$uri" | sudo bash

For more information about the agent install script, go to Install agents with the install script on page 132.

5. Run puppet agent -t to add the node to the node inventory and generate the CSR.

6. Accept the CSR as explained in Managing certificate signing requests on page 160.

Install *nix agents from compilers using your own package management
If your infrastructure relies on compilers to install agents, you don’t have to copy the agent package to each compiler.
Instead, you can use the console to specify a path to the agent package on your package management server.

Before you begin

Download the appropriate agent tarball.

1. Add the agent package to your own package management and distribution system.

2. Set the base_path parameter of the pe_repo class to point to your package management server.

a) In the console, click Node groups, and in the PE Infrastructure group, select the PE Master group.
b) On the Classes tab, find the pe_repo class, and set the base_path parameter to your package management

server's FQDN.
c) Click Add parameter and commit changes.

3. Follow the steps to Install *nix agents with your own package management on page 145.

Install Windows agents
There are many ways you can install agents on Windows nodes, including PowerShell scripts, the Puppet Enterprise
(PE) console, the MSI installer, and the msiexec command.

We recommend you Install agents with the install script on page 132 or Install agents from the console on page
136 whenever possible, and we've described other cases here for your reference. For non-root agents, refer to
Install non-root Windows agents on page 159.

Install Windows agents with PE package management
Puppet Enterprise (PE) provides its own package management to help you install agents on Windows nodes. You can
use this method with or without internet access.

Before you begin
If your primary server doesn't have internet access, download the appropriate agent tarball and save it to the
appropriate agent package directory on your primary server.

• For 32-bit systems, save the tarball at /opt/puppetlabs/server/data/packages/public/
<PE_VERSION>/windows-i386-<AGENT_VERSION>/

• For 64-bit systems, save the tarball at /opt/puppetlabs/server/data/packages/public/
<PE_VERSION>/windows-x86_64-<AGENT_VERSION>/

Client URL (curl) and World Wide Web Get (Wget) commands can be used to download PE repo tarballs from PE’s
private repository. These commands modify the standard agent install script for specific platforms or air-gapped
environments. If you do not have a specific need for these commands, follow the procedure in Install agents with the
install script.

Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Configure proxies on page 230

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/misc/pe-files/pe_repo
https://puppet.com/misc/pe-files/pe_repo

pe | Installing | 147

If you have components with limited (or no) internet access, you can configure proxies at various points in your
infrastructure, depending on your connectivity limitations.

Authentication credentials
Because#Puppet Enterprise agent#packages are stored in a private repository, you must authenticate to access and
download the packages.

Use the string literallicense-id as your username and use your#PE License ID as the password. Your PE License
ID is provided with the license file or available in the#PE#console by selecting License from the navigation bar.

Note: If your PE License ID is not provided with your license, please Contact our sales team.

Authentication procedures
You can use either of the following procedures to authenticate:

• Create and configure a.netrc#file
• Export credentials to environment variables

Create and configure a#.netrc#file
A.netrc#file is a configuration file used by many command-line tools and programs, including curl, FTP, and Git.
The primary purpose of the file is to store login credentials.

Complete the following steps to create and configure a.netrc#file:

1. Create a file named.netrc#by running the following commands:

touch ~/.netrc
chmod 600 ~/.netrc

2. Edit the file to add your credentials, wherelicense-id is a string literal and<PE_License_ID> is your PE
License ID:

machine artifacts-puppetcore.puppet.com
 login license-id
 password <PE_License_ID>

3. Run a command with the--netrc#option so that the credentials stored in the.netrc #file are used for
authentication, as shown in the following example:

curl --netrc 'https://artifacts-puppetcore.puppet.com/v1/download?
version=8.11.0&type=perepo&os_name=el&os_version=9&os_arch=x86_64' -J -OO

Export credentials to environment variables
You can directly curl the endpoints with credentials by completing the following steps: Export the credentials,
where#license-id is a string literal and<PE_License_ID> is your PE License ID:

1. Export the credentials, wherelicense-id is a string literal and <PE_License_ID> is your PE License ID:

export USERNAME=license-id
export PASSWORD=<PE_License_ID>

2. Call the credentials from the URL, as shown in the following example:

curl -u $USERNAME:$PASSWORD 'https://artifacts-puppetcore.puppet.com/v1/
download?
version=8.11.0&type=perepo&os_name=el&os_version=9&os_arch=x86_64' -J -O

Request parameters
The following request parameters are accepted by the artifact download endpoint.

Note: To directly copy URLs and download agent and agent repo, see puppet releases.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/contact?utm_term=trendemon
https://www.puppet.com/releases/

pe | Installing | 148

Name Type Default Example Description

version String None 11 The package version.

os_name String None windows The name of the
operating system.

os_version String None 11 The operating system
version.

os_arch String None x64 The operating system
architecture.

Content disposition
Content disposition is enabled for these packages and can be used while downloading packages to store them with
their default name. Use–J –O#only with curl. For wget, use the following structure:

wget --content-disposition <URL>

Note: The <PRIMARY_HOSTNAME> portion of the installer script—as provided in the following example—refers
to the FQDN of the primary server. The FQDN must be fully resolvable by the machine on which you're installing or
upgrading the agent.

1. On the agent node, open an administrative PowerShell window, and run the appropriate agent install script
command:

For Microsoft Windows Server 2022:

[Net.ServicePointManager]::ServerCertificateValidationCallback = {$true};
 $webClient = New-Object System.Net.WebClient; `
$webClient.DownloadFile('https://<PRIMARY_HOSTNAME>:8140/packages/current/
install.ps1', 'install.ps1'); .\install.ps1 -v

For all other Windows platforms:

[System.Net.ServicePointManager]::SecurityProtocol =
 [Net.SecurityProtocolType]::Tls12; `
[Net.ServicePointManager]::ServerCertificateValidationCallback = {$true};
 $webClient = New-Object System.Net.WebClient; `
$webClient.DownloadFile('https://<PRIMARY_HOSTNAME>:8140/packages/current/
install.ps1', 'install.ps1'); .\install.ps1 -v

After running the install script, the following output indicates the agent was installed successfully:

Notice: /Service[puppet]/ensure: ensure changed 'stopped' to 'running'
service { 'puppet':
 ensure => 'running',
 enable => 'true',
}

2. Run puppet agent -t to add the node to the node inventory and generate the CSR.
3. Accept the CSR as explained in Managing certificate signing requests on page 160.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 149

Install Windows agents using a manually-transferred certificate
If you need to perform a secure installation on Windows nodes, you can manually transfer the primary server CA
certificate to any Windows machines you want to install agents on, and then run a variation of the agent install script
against that cert.

1. Transfer the CA certificate:

a) On the machine where you want to install the agent, create this directory: C:\ProgramData
\PuppetLabs\puppet\etc\ssl\certs\

b) On the primary server, navigate to: /etc/puppetlabs/puppet/ssl/certs/
c) Copy ca.pem to the certs directory you created on the agent node.

2. Transfer the agent install script:

a) On the primary server, navigate to: /opt/puppetlabs/server/data/packages/public/
b) Copy install.ps1 to any accessible local directory on the agent node.

3. In an administrative PowerShell window, run the install script with the -UsePuppetCA flag: .\install.ps1
-UsePuppetCA

4. Run puppet agent -t to add the node to the node inventory and generate the CSR.

5. Accept the CSR as explained in Managing certificate signing requests on page 160.

Install Windows agents with the .msi package
You can use the Windows MSI installer or the msiexec command to install the agent .msi package if you need
to specify agent configuration details during installation or if you need to install Windows agents locally without
internet access.

Before you begin
Download the appropriate agent .msi package.

To install agents on Windows nodes without internet access, save the .msi package to the appropriate agent package
directory:

• For 32-bit systems, save the package at /opt/puppetlabs/server/data/packages/public/
<PE_VERSION>/windows-i386-<AGENT_VERSION>/

• For 64-bit systems, save the package at /opt/puppetlabs/server/data/packages/public/
<PE_VERSION>/windows-x86_64-<AGENT_VERSION>/

Related information
Configure proxies on page 230
If you have components with limited (or no) internet access, you can configure proxies at various points in your
infrastructure, depending on your connectivity limitations.

Install Windows agents with the MSI installer
Use the MSI installer for an automated installation process. The installer can configure puppet.conf, configure
CSR attributes, and connect the agent to your primary server.

1. Run the MSI installer as administrator.

2. When prompted, provide your primary server's hostname, for example puppet.company.com.

3. Once the agent is installed, you must accept the node's CSR as explained in Managing certificate signing requests
on page 160.

Install Windows agents using msiexec from the command line
You can install the .msi package manually from the command line if you need to customize puppet.conf, CSR
attributes, or certain agent properties.

If you Install agents with the install script on page 132 (with PowerShell), you can Customize the install script on
page 133 by specifying CSR attribute settings and some MSI properties. The msiexec command does not require
PowerShell and allows you to specify more MSI properties.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/misc/pe-files/pe_repo

pe | Installing | 150

1. Identify the MSI properties on page 150 you want to include in the msiexec command and prepare the syntax
for those properties.

2. If you need to set CSR attributes, create a csr_attributes.yaml file in the Puppet confdir (at C:
\ProgramData\PuppetLabs\puppet\etc\csr_attributes.yaml) prior to installing the Puppet
agent package.

Customize the install script on page 133 explains how to specify CSR attribute settings.

3. To log installation progress to an install.txt log file, include /l*v install.txt in your msiexec
command.

4. On the command line of the node where you want to install the agent, run your msiexec command.

The basic command is:

msiexec /qn /norestart /i <PACKAGE_NAME>.msi

Your command likely includes additional arguments, such as /l*v, PUPPET_AGENT_CERTNAME, or any other
valid MSI properties on page 150. For example, this msiexec command installs the agent with a primary
server located at puppet.acme.com:

msiexec /qn /norestart /i <PACKAGE_NAME>.msi PUPPET_SERVER=puppet.acme.com

This msiexec command installs the agent to a domain user account called bob on the ExampleCorp domain
with the account password of password:

msiexec /qn /norestart /i <PACKAGE_NAME>.msi
 PUPPET_AGENT_ACCOUNT_DOMAIN=ExampleCorp PUPPET_AGENT_ACCOUNT_USER=bob
 PUPPET_AGENT_ACCOUNT_PASSWORD=password

5. Run puppet agent -t to add the node to the node inventory and generate the CSR.

6. Accept the CSR as explained in Managing certificate signing requests on page 160.

MSI properties
You can use these MSI properties if you install Windows agents with the msiexec command.

Important: The following MSI properties define puppet.conf settings:

• PUPPET_SERVER corresponds with server
• PUPPET_CA_SERVER corresponds with ca_server
• PUPPET_AGENT_CERTNAME corresponds with certname
• PUPPET_AGENT_ENVIRONMENT corresponds with environment

If you use msiexec to specify a non-default value for these properties, the installer replaces the default value in
puppet.conf and re-uses your specified value at upgrade. Therefore, if you need to change these properties after
setting them with msiexec, don't change them directly in puppet.conf; instead, you need to re-run the installer
and set a new value.

Customize the install script on page 133 provides more details on puppet.conf settings.

Property Definition Default value

INSTALLDIR Location to install Puppet and its
dependencies.

For 32-bit systems: C:\Program
Files\Puppet Labs\Puppet

For 64-bit systems: C:\Program
Files \Puppet Labs\Puppet

PUPPET_SERVER Hostname where the primary server
can be reached.

puppet

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 151

Property Definition Default value

PUPPET_CA_SERVER Hostname where the CA primary
server can be reached if you're using
multiple primary servers and only
one of them is acting as the CA.

Value of PUPPET_SERVER

PUPPET_AGENT_CERTNAME The agent node's certificate name
and the name it uses when requesting
catalogs.

Important: Only use lowercase
letters, numbers, periods,
underscores, and dashes.

Value of facter fdqn

PUPPET_AGENT_ENVIRONMENT The agent node's environment.

Important: If the node already has
a puppet.conf file containing
a value for the environment
variable, specifying it during
installation doesn't override that
value.

production

PUPPET_AGENT_STARTUP_MODE Whether and how the agent service is
allowed to run. Allowed values are:

• Automatic: The agent service
when Windows starts and remains
running in the background.

• Manual: The agent service can
be started in the services console
or with net start on the
command line.

• Disabled: The agent service
is installed but disabled. You
must change its startup type in the
services console before you can
start the service.

Automatic

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 152

Property Definition Default value

PUPPET_AGENT_ACCOUNT_USER The Windows user account the agent
service uses.

Use this property when the agent
needs to access files on UNC shares,
because the default LocalService
account can't access these network
resources.

The user account must already exist
and can be either a local or domain
user. The installer:

• Allows domain users even if they
have not accessed the machine
before.

• Grants Logon as Service to
the user.

• Add the user to the
Administrators group,
if the user isn't already a local
administrator.

Important: If you specify this
property, you must also specify
PUPPET_AGENT_ACCOUNT_PASSWORD
and
PUPPET_AGENT_ACCOUNT_DOMAIN
unless the node is under a gMSA.

For gMSAs, you must also specify
PUPPET_AGENT_ACCOUNT_DOMAIN,
but do not specify
PUPPET_AGENT_ACCOUNT_PASSWORD.

LocalSystem

© 2024 Puppet, Inc., a Perforce company

https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview

pe | Installing | 153

Property Definition Default value

PUPPET_AGENT_ACCOUNT_PASSWORDPassword for the agent's user
account.

Do not specify this property for
nodes running under gMSAs.

No value

PUPPET_AGENT_ACCOUNT_DOMAINDomain of the agent's user account. .

REINSTALLMODE A default MSI property that controls
file copy behavior during installation.

Important: If you need
to downgrade agents, use
REINSTALLMODE=amus when
calling msiexec.exe at the
command line to prevent removing
required files.

From puppet-agent version
1.10.10 and 5.3.4: amus

Prior releases: omus

About Windows agents
Windows nodes can fetch configurations from the primary server and apply manifests locally, and respond to
orchestration commands.

After installing a Windows node, the Start Menu contains a Puppet folder with shortcuts for running the agent
manually, running Facter, and opening a command prompt to use Puppet tools.

Remember: You must run Puppet with elevated privileges. Select Run as administrator when opening the
command prompt.

The agent runs as a Windows service. By default, the agent fetches and applies configurations every 30 minutes. The
agent service can be started and stopped independently using either the service control manager UI or the command
line sc.exe utility.

Puppet is automatically added to the machine's PATH environment variable, so you can open any command line and
run puppet, facter and the other batch files that are in the Puppet installation's bin directory. Items necessary for
the Puppet environment are also added to the shell, but only for the duration of each command's execution.

The installer includes Ruby, Ruby gems, and Facter. If you have existing copies of these applications, such as Ruby,
they aren't affected by the re-distributed version included with Puppet.

Program files directory

Unless overridden during installation, PE and its dependencies are installed in Program Files at \Puppet
Labs\Puppet.

You can locate the Program Files directory using the PROGRAMFILES variable or the PROGRAMFILES(X86)
variable.

The program files directory contains these subdirectories:

Subdirectory Contents

bin Scripts for running Puppet and Facter

facter Facter source

hiera Hiera source

misc Resources

© 2024 Puppet, Inc., a Perforce company

https://docs.microsoft.com/en-us/windows/win32/msi/reinstallmode

pe | Installing | 154

Subdirectory Contents

puppet Puppet source

service Code to run the agent as a service

sys Ruby and other tools

Data directory

PE stores settings, manifests, and generated data (such as logs and catalogs) in the data directory. The data
directory contains two subdirectories:

• etc (the $confdir): Contains configuration files, manifests, certificates, and other important files.
• var (the $vardir): Contains generated data and logs.

When you run Puppet with elevated privileges, the data directory is located in the COMMON_APPDATA.aspx
directory. This direcotry is typically located at C:\ProgramData\PuppetLabs\. Because the
COMMAN_APPDATA.aspx directory is a system folder, it is hidden by default.

If you run Puppet without elevated privileges, it uses a .puppet directory in the current user's home directory as
its data directory, which can result in unexpected settings. We recommend always running Puppet with elevated
privileges, unless otherwise specified for specific scenarios.

Install macOS agents
On macOS, agents have core Puppet functionality and platform-specific capabilities like package installation,
LaunchD service management, System Profiler facts inventory, and directory services integration. You can install
agents on macOS nodes with the install script, from the Puppet Enterprise (PE) console, from Finder, and more.

We recommend you Install agents with the install script on page 132 or Install agents from the console on page
136 whenever possible. If you want to install macOS agents with PE package management, follow the steps to
Install *nix agents with PE package management on page 142. If you want to install agents from Finder or the
macOS command line, follow the steps below.

Install macOS agents from Finder
You can use Finder to install agents on macOS nodes.

Before you begin
Client URL (curl) and World Wide Web Get (Wget) commands can be used to download PE repo tarballs from PE’s
private repository.
Authentication credentials
Because#Puppet Enterprise agent#packages are stored in a private repository, you must authenticate to access and
download the packages.

Use the string literallicense-id as your username and use your#PE License ID as the password. Your PE License
ID is provided with the license file or available in the#PE#console by selecting License from the navigation bar.

Note: If your PE License ID is not provided with your license, please Contact our sales team.

Authentication procedures
You can use either of the following procedures to authenticate:

• Create and configure a.netrc#file
• Export credentials to environment variables

Create and configure a#.netrc#file
A.netrc#file is a configuration file used by many command-line tools and programs, including curl, FTP, and Git.
The primary purpose of the file is to store login credentials.

Complete the following steps to create and configure a.netrc#file:

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/contact?utm_term=trendemon

pe | Installing | 155

1. Create a file named.netrc#by running the following commands:

touch ~/.netrc
chmod 600 ~/.netrc

2. Edit the file to add your credentials, wherelicense-id is a string literal and<PE_License_ID> is your PE
License ID:

machine artifacts-puppetcore.puppet.com
 login license-id
 password <PE_License_ID>

3. Run a command with the--netrc#option so that the credentials stored in the.netrc #file are used for
authentication, as shown in the following example:

curl --netrc 'https://artifacts-puppetcore.puppet.com/v1/download?
version=8.11.0&type=perepo&os_name=el&os_version=9&os_arch=x86_64' -J -O

Export credentials to environment variables
You can directly curl the endpoints with credentials by completing the following steps: Export the credentials,
where#license-id is a string literal and<PE_License_ID> is your PE License ID:

1. Export the credentials, wherelicense-id is a string literal and <PE_License_ID> is your PE License ID:

export USERNAME=license-id
export PASSWORD=<PE_License_ID>

2. Call the credentials from the URL, as shown in the following example:

curl -u $USERNAME:$PASSWORD 'https://artifacts-puppetcore.puppet.com/v1/
download?
version=8.11.0&type=perepo&os_name=el&os_version=9&os_arch=x86_64' -J -O

Request parameters
The following request parameters are accepted by the artifact download endpoint.

Note: To directly copy URLs and download agent and agent repo, see puppet releases.

Name Type Default Example Description

version String None 8.11.0 The package version.

os_name String None amazon The name of the
operating system. For
a list of valid names,
see operating systems.

os_version String None 2023 The operating system
version. For a list of
valid versions, see
operating systems.

os_arch String None aarch64 The operating system
architecture. For a list
of valid architectures,
see operating systems

Operating system names, versions, and architectures

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/releases/

pe | Installing | 156

The following table lists currently valid values for theos_name, os_version, andos_arch parameters.

To specify an operating system, use the values in theName#column. TheFull name#column is for informational
purposes only.

Name Full name Version Architecture

aix AIX 7.2 architecture ppc

amazon Amazon#Linux 2, 2023, and so on x86_64, aarch64

debian Debian 10, 11, and so on amd64, arm64

el Red Hat Enterprise Linux 7, 8, and so on x86_64, aarch64, ppc64le

fedora Fedora#Linux 40 and so on x86_64

osx macOS 14 and so on x86_64, arm64

redhatfips Redhat (FIPS) 7, 8, 9 x86_64

sles SUSE Linux Enterprise
Server

12, 15 x86_64

solaris Solaris 11 11: x86_64, SPARC

ubuntu Ubuntu 22.04 and so on amd64, arm64

windows Microsoft#Windows Ignored x86, x64

windowsfips Windows (FIPS) Ignored x64

Example

A download link for# macOS 14 would be similar to the following example, where:

• <username>#is a string literal,license-id
• <password>#is the PE License ID

curl -J -O -u <username>:<password> "https://
artifacts-puppetcore.puppet.com/v1/download?
version=8.11.0&os_name=osx&os_version=14&os_arch=x86_64"

Content disposition
Content disposition is enabled for these packages and can be used while downloading packages to store them with
their default name. Use–J –O#only with curl. For wget, use the following structure:

wget --content-disposition <URL>

1. Download the appropriate agent tarball.
2. Open the agent package .dmg and click the installer .pkg.
3. Follow installer dialog prompts. You must provide the primary server's hostname and the agent's certname.
4. For macOS agents, the certname is derived from the machine's name. For best compatibility, make sure the

node's name doesn't include capital letters (for example, My-Example-Mac must be my-example-mac). If
you don’t want to change the computer’s name, enter the agent certname in all lowercase letters when prompted
by the installer.

5. Run puppet agent -t to add the node to the node inventory and generate the CSR.
6. Accept the CSR as explained in Managing certificate signing requests.

Install macOS agents from the command line
You can use the command line to install agents on macOS nodes.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/releases?utm_term=trendemon

pe | Installing | 157

1. Download the appropriate agent tarball.

2. SSH into the target node as root or sudo.

3. To mount the disk image, run: sudo hdiutil mount <DMGFILE>

4. Locate a line ending with /Volumes/puppet-agent-<VERSION>. This directory location is the mount
point for the virtual volume created from the disk image.

5. Change to the mount point directory, such as with: cd /Volumes/puppet-agent-<VERSION>

6. To install the agent package, run: sudo installer -pkg puppet-agent-installer.pkg -
target /

7. To verify the installation, run: /opt/puppetlabs/bin/puppet --version

8. To set the primary server's hostname in the node's puppet.conf file, run: /opt/puppetlabs/bin/
puppet config set server <PRIMARY_HOSTNAME>

Go to Customize the install script on page 133 for more information about cpuppet.conf.

9. To set the agent's certname in the node's puppet.conf file, run: /opt/puppetlabs/bin/puppet
config set certname <AGENT_CERTNAME>

For macOS agents, the certname is derived from the machine's name. For best compatibility, make sure the
node's name doesn't include capital letters (for example, My-Example-Mac must be my-example-mac). If
you don’t want to change the computer’s name, enter the agent certname in all lowercase letters.

10. Run puppet agent -t to add the node to the node inventory and generate the CSR.

11. Accept the CSR as explained in Managing certificate signing requests on page 160.

Install non-root agents
You can configure non-root agents on *nix and Windows nodes. Running agents without root privileges allows teams
to perform some, but not all, administrative actions in Puppet Enterprise (PE) that would otherwise require root
privileges.

For example, assume a team with root privileges maintains your infrastructure’s platform, and a separate team with
diminished privileges maintains your infrastructure’s applications. If the application team needs to manage their part
of the infrastructure independently, they can do this by running Puppet without root privileges.

Non-root users can perform a reduced set of management tasks, including configuring settings, configuring Facter
external facts, running puppet agent --test, and running Puppet with non-privileged cron jobs or a similar
scheduling service. Non-root users can also classify nodes by writing or editing manifests in directories where they
have write privileges.

By default, PE is installed with root privileges; therefore, a root user must install the agent and configure non-root
access to the primary server. The root user also sets up non-root users on the primary server and relevant agent nodes.

Note: In Windows, the administrator is equivalent to the root user. For the sake of simplicity, our documentation
might use root to refer to either the root user or the administrator.

Non-root user functionality
Non-root users can use a subset of administrative functionality. Non-root agents can't perform any operations
requiring root privileges, such as installing system packages.

*nix non-root functionality

Non-root users on *nix agents can enforce these resource types, with some caveats as noted:

• augeas

• cron: Can only view or set non-root cron jobs

• If you run a cron job as non-root user and you use the -u flag to sets a user with root privileges, the
job fails with this error message: Notice: /Stage[main]/Main/Node[nonrootuser]/
Cron[illegal_action]/ensure: created must be privileged to use -u

• exec: Cannot run as another user or group

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/misc/pe-files/pe_repo

pe | Installing | 158

• file: Non-root user must have read/write privileges
• notify

• schedule

• service

• ssh_authorized_key

• ssh_key

Non-root users on *nix agents can inspect host, mount, and package resource types with the puppet
resource <RESOURCE_TYPE> command.

Windows non-root functionality

Windows non-root agents are limited in comparison to *nix non-root agents. While you can enforce and inspect some
resource types, you are limited to what the agent user has permission to do, which isn't much by default. For example,
you can't create a file or directory in C:\Windows unless the agent user has permission to do so.

Non-root users on Windows agents can enforce exec and file resource types.

Non-root users on Windows agents can use the puppet resource <RESOURCE_TYPE> command to inspect
these resource types:

• host

• package

• user

• group

• service

Install non-root *nix agents
To configure a *nix agent node to run without root privileges, a root user must install the agent, configure non-root
access to the primary server, and set up non-root users on the primary server and relevant agent nodes.

Before you begin
Install the agent on each node you want to operate without root privileges. You can Install agents with the install
script on page 132, Install agents from the console on page 136, or use one of the other methods to Install *nix
agents on page 141.

Note: Unless specified otherwise, perform these steps as a root user or with sudo.

1. Log in to the agent node and run this command to add the non-root user:

sudo puppet resource user <UNIQUE_NON-ROOT_USERNAME> ensure=present
 managehome=true

Note: Each non-root user must have a unique name.

2. Set the non-root user password. On most *nix systems, you can use passwd <USERNAME> to do this.

3. Because the puppet service runs as an administrator by default, you must disable it. To stop the puppet service
run:

sudo puppet resource service puppet ensure=stopped enable=false

4. Disable the Puppet Execution Protocol (PXP) agent.

a) In the console, click Node groups, and in the PE Infrastructure group, select the PE Agent group.
b) On the Classes tab, select the puppet_enterprise::profile::agent class.
c) Set the pxp_enabled parameter to false.
d) Click Add parameter and commit changes.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 159

5. Switch to the non-root user.

Important: If you use su - <NON-ROOT USERNAME> to switch accounts, use the - argument (or -l, in
some Unix variants) to correctly grant full login privileges. Otherwise you might get permission denied
errors when trying to apply a catalog.

6. As the non-root user, run this command to generate a CSR:

sudo puppet agent -t --certname "<UNIQUE_NON-ROOT_USERNAME.HOSTNAME>" --
server "<PRIMARY_HOSTNAME>"

Make sure to format the certname string correctly by combining the non-root user's username and the hostname
with a period between.

7. On the primary server or in the PE console, approve the CSR.

8. On the agent node as the non-root user, run these three commands to set the node's certname, set the primary
server's hostname, and run Puppet:

sudo puppet config set certname <UNIQUE_NON-ROOT-USERNAME.HOSTNAME> --
section agent
sudo puppet config set server <PRIMARY_HOSTNAME> --section agent
sudo puppet agent -t

The certname and hostname are defined in the node's puppet.conf file.

The configuration specified in the catalog is applied to the agent node.

If you see Facter facts being created in the non-root user’s home directory, you have successfully configured a
functional non-root agent. To confirm the non-root agent's configuration, verify that:

• The agent can request certificates and apply the catalog from the primary server when a non-root user runs Puppet.
As a non-root user, try running puppet agent -t to test this.

• The agent service is not running. Run service puppet status to check this.
• Non-root users can collect existing facts by running facter on the agent.
• Non-root users can define new external facts.

Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Install non-root Windows agents
To configure a Windows agent node to run without root privileges, a root user must install the agent, configure non-
root access to the primary server, and set up non-root users on the primary server and relevant agent nodes.

Before you begin
Install the agent on each node you want to operate without root privileges. You can Install agents with the install
script on page 132, Install agents from the console on page 136, or use one of the other methods to Install
Windows agents on page 146.

Note: Unless specified otherwise, perform these steps as an administrator.

1. Log in to the agent node, open a command prompt as an administrator, and run this command to add the non-root
user:

puppet resource user <UNIQUE_NON-ADMIN_USERNAME> ensure=present
 managehome=true password="<PASSWORD>" groups="<EXISTING_GROUP>"

Note: Each non-root user must have a unique name.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 160

2. Because the puppet service runs as an administrator by default, you must disable it. To stop the puppet
service, open a command prompt as an administrator and run:

puppet resource service puppet ensure=stopped enable=false

3. Switch to the non-root user and run this command to generate a CSR:

puppet agent -t --certname "<UNIQUE_NON-ADMIN_USERNAME.hostname>" --server
 "<PRIMARY_HOSTNAME>"

Make sure to format the certname string correctly by combining the non-root user's username and the hostname
with a period between.

Important: This Puppet run submits a CSR to the primary server and creates a /.puppet directory structure
in the non-root user’s home directory. If this directory is not created automatically, you must manually create it
before continuing.

4. As the non-root user, create a puppet.conf file in the .puppet directory (at %USERPROFILE
%/.puppet/). Edit the puppet.conf file and specify the agent certname and the primary server's
hostname. For example:

[main]
certname = <UNIQUE_NON-ADMIN_USERNAME.hostname>
server = <PRIMARY_HOSTNAME>

5. As the non-root user, run puppet agent -t to submit a CSR.

6. On the primary server or in the PE console, approve the CSR.

Important: It's possible to sign the root user certificate to allow the non-admin user to also manage the node;
however, this is a security concern due to the opportunity for unwanted behavior. For example, if your site.pp
has no default node configuration, and a non-admin user runs the agent, unwanted node definitions could be
generated with alt hostnames, which is a potential security issue. If you elect to allow non-admin users to also
manage nodes, make sure you take precautions such as having clear node definitions, correctly scoping classes,
and ensuring root and non-root users never try to manage the same resources.

7. On the agent node as the non-root user, run puppet agent -t

The configuration specified in the catalog is applied to the node.

Managing certificate signing requests
When you install a Puppet agent on a node, the agent must submit a certificate signing request (CSR) to the primary
server, and you must accept the CSR to add the node to your Puppet Enterprise (PE) inventory. Accepting the CSR
allows Puppet to run on the node and enforce your configuration, which in turn adds node information to PuppetDB
and makes the node available throughout the PE console.

If you Install agents from the console on page 136, the agent automatically submits a certificate signing request
(CSR) to the primary server. If you use another method, such as Install agents with the install script on page 132,
you might need to run puppet to generate the CSR after installing the agent.

You can accept CSRs from the PE console or the command line.

Restriction: For agent nodes that use DNS altnames, you must use the command line to accept the CSR.

If necessary after installing the agent, you can edit the node's certname or other CSR attribute settings in the
node's puppet.conf and csr_attributes.yaml files. You can edit the puppet.conf file directly (at /
etc/puppetlabs/puppet/puppet.conf) or use the puppet config set sub-command. For example,
to set the certname for the agent, run /opt/puppetlabs/bin/puppet config set certname
agent.example.com. For more information about puppet.conf and csr_attributes.yaml, go to
Customize the install script on page 133 (This page is about setting these properties with the agent install script,
but you can edit these properties after installing the agent).

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 161

For information about configuring the certificate authority to automatically sign certain CSRs, refer to Autosigning
certificate requests in the Puppet documentation.

Managing CSRs in the console
In the Puppet Enterprise (PE) console, you can accept or reject CSRs individually or in batches.

Before you begin: You must have the Console: View and Certificate requests: Accept and reject permissions.

1. In the console, go to Certificates > Unsigned certificates.
2. To manage an individual CSR, click Accept or Reject.
3. To manage all unsigned CSRs at once, click Accept All or Reject All.

Important: Stay on this page while the CSRs are processed. Nodes are processed in batches, and closing your
browser or navigating to another page stops the process after the current batch.

4. To make the node available in the console, manually start a Puppet run or wait for the next scheduled Puppet run.

Related information
Run Puppet on demand on page 616
You can use the orchestrator to run jobs from the console, the command line, or through the orchestrator API
endpoints.

Managing CSRs on the command line
You can use the command line to view and sign individual CSRs.

Before you begin: You must have the Certificate requests: Accept and reject permission.

These instructions use *nix commands. For Windows, run the commands in an administrator command prompt
without sudo.

1. To view pending CSRs, run: sudo puppetserver ca list
2. To sign a CSR, run: sudo puppetserver ca sign --certname <NAME>

You can use the Puppet Server CA CLI to sign certificates with altnames or auth extensions by default.
3. To make the node available in the console, run puppet agent -t or wait for the next scheduled Puppet run.

Installing compilers
As your Puppet Enterprise infrastructure scales up to 4,000 nodes and beyond, add load-balanced compilers to your
installation to increase the number of agents you can manage.

Each compiler increases capacity by 1,500 to 3,000 nodes, until you exhaust the capacity of PuppetDB or the console.

How compilers work
A single primary server can process requests and compile code for up to 4,000 nodes. When you exceed this scale,
expand your infrastructure by adding compilers to share the workload and compile catalogs faster.

Important: Compilers must run the same OS major version, platform, and architecture as the primary server.

Compilers act as PCP brokers, conveying messages between the orchestrator and Puppet Execution Protocol (PXP)
agents. PXP agents connect to PCP brokers running on compilers over port 8142. Status checks on compilers must be
sent to port 8140, using https://<hostname>:8140/status/v1/simple.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/puppet/latest/ssl_autosign.html
https://www.puppet.com/docs/puppet/latest/ssl_autosign.html

pe | Installing | 162

Components and services running on compilers

Compilers typically run Puppet Server and PuppetDB services, as well as a file sync client. Older, legacy-style
compilers must be converted in order to add PuppetDB.

When triggered by a web endpoint, file sync takes changes from the working directory on the primary server and
deploys the code to a live code directory. File sync then deploys that code to all your compilers. By default, compilers
check for code updates every five seconds.

The certificate authority (CA) service is disabled on compilers. A proxy service running on the compiler Puppet
Server directs CA requests to the primary server, which hosts the CA in default installations.

Compilers also have:

• The repository for agent installation, pe_repo
• The controller profile used with PE client tools
• Puppet Communications Protocol (PCP) brokers to enable orchestrator scale

Logs for compilers are located at /var/log/puppetlabs/puppetserver/.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 163

Logs for PCP brokers on compilers are located at /var/log/puppetlabs/puppetserver/pcp-
broker.log. Logback configuration for PCP broker logs is part of the Orchestration services settings on page
609.

Using load balancers with compilers
When using more than one compiler, a load balancer can help distribute the load between the compilers and provide a
level of redundancy.

Specifics on how to configure a load balancer infrastructure falls outside the scope of this document, but examples of
how to leverage haproxy for this purpose can be found on the HAproxy module Forge page.

Calculating load balancing

For load balancing between the Puppet agent and the Puppet primary server, implement a load balancing algorithm
that distributes traffic among compilers based on the number of open connections. Traffic is directed to the compiler
with the smallest number of open connections. This strategy is known as “balancing by least connections.”

For load balancing between PCP brokers and PXP agents, a different method is used. PXP agents establish TCP
connections to PCP brokers over port 8142. PCP brokers are built on web sockets and require many persistent
connections. PCP brokers depend on maintaining connectivity to the Puppet orchestrator, but if the brokers become
disconnected from the orchestrator, the brokers can fail at the HTTP level while still accepting TCP connections.
Follow these guidelines:

• If you are using HTTP health checks, use a "least connections" algorithm to distribute load evenly.
• If you are not using HTTP health checks, use a round robin or random load balancing algorithm to avoid directing

all traffic to an unhealthy PCP broker. You can check connections for possible errors by using the /status/
v1/simple endpoint.

Using health checks

The Puppet REST API exposes a status endpoint that can be used for load balancer health checks to ensure that
unhealthy hosts don’t receive agent requests.

To check the health of your hosts, issue HTTP GET requests to the following endpoints:

• For Puppet agent traffic on port 8140, use https://<hostname>:8140/status/v1/simple/server.
This endpoint checks the health of the pe-puppetserver service and returns an HTTP 200 status when the
server is fully operational. It does not check the health of other services such as the broker-service.

• For pxp-agent traffic on port 8142, use https://<hostname>:8140/status/v1/simple/
broker-service. This endpoint checks the health of the broker-service and returns an HTTP 200
status code when the service is fully operational.

If your load balancer doesn't support HTTP health checks, you can use a TCP connection tests on port 8140 to check
whether a host is listening. This test is useful for verifying that the port is open, but does not confirm whether the host
is running a Puppet service.

Related information
Firewall configuration for large installations on page 94
These are the port requirements for large installations with compilers.

GET /status/v1/simple on page 437
Returns a cumulative status reflecting all services the status service knows about.

Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/haproxy

pe | Installing | 164

Load balancing for multi-region installations
If you have load balancers in multiple regions, use a global DNS proximity-based service address.

Tip: For guidance about deploying PE in global, multi-region, or multi-network segment scenarios, see the Multi-
region Reference Architectures article.

When using a centralized Puppet deployment with multiple regional proxies or load balancers, create a global DNS
proximity-based service address for Puppet and use that to route agents to the appropriate regional load balancer
based on their location. Set the global DNS proximity-based address as the compiler pool address in Hiera.

For example, in your common.yaml file:

pe_repo::compile_master_pool_address: "<PUPPET-GLOBAL-SERVICE-ADDRESS>"

Some suitable global DNS proximity-based service address implementations include:

• BIG-IP DNS
• Route 53 Geolocation routing in AWS
• TCP Proxy Global Load Balancing in GCP
• Traffic Manager in Azure

Install compilers
Installing a compiler adds the specified node to the PE Infrastructure Agent and PE Compiler node groups and
installs the PuppetDB service on the node.

Before you begin
The node you want to provision as a compiler must have a Puppet agent installed, or you must be able to connect to a
non-agent node with SSH.

Ensure that you have a valid admin RBAC token. For instructions, see Token-based authentication on page 308.

Important: Before you install compilers in multi-region installations, contact Support for guidance. If your primary
server and compilers are connected with high-latency links or congested network segments, you might experience
better PuppetDB performance with legacy compilers.

To install a FIPS-compliant compiler, install the compiler on a supported platform with FIPS mode enabled. The node
must be configured with sufficient available entropy or the installation process fails.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/patterns-and-tactics/latest/reference-architectures/pe-multi-region-reference-architectures.html
https://puppet.com/docs/patterns-and-tactics/latest/reference-architectures/pe-multi-region-reference-architectures.html

pe | Installing | 165

1. Configure the agent on infrastructure nodes to connect to the primary server.

a) In the console, click Node groups, and in the PE Infrastructure group, select the PE Agent > PE
Infrastructure Agent group.

b) If you manage your load balancers with agents, on the Rules tab, pin load balancers to the group.

Pinning load balancers to the PE Infrastructure Agent group ensures that they communicate directly with the
primary server.

c) On the Classes tab, find the puppet_enterprise::profile::agent class and specify these parameters:

Parameter Value

manage_puppet_conf Specify true to ensure that your setting for
server_list is configured in the expected
location and persists through Puppet runs.

pcp_broker_list Hostname for your primary server and replica, if you
have one. Hostnames must include port 8142, for
example ["PRIMARY.EXAMPLE.COM:8142",
"REPLICA.EXAMPLE.COM:8142"].

primary_uris

server_list

Hostname for your primary server and
replica, if you have one, for example
["PRIMARY.EXAMPLE.COM",
"REPLICA.EXAMPLE.COM"]. This setting
assumes port 8140 unless you specify otherwise with
host:port.

d) Remove any values set for pcp_broker_ws_uris.
e) Commit changes.
f) Run Puppet on all agents classified into the PE Infrastructure Agent group.

2. Pin the node that you want to provision to the PE Infrastructure Agent group, and then run Puppet on the node
(run puppet agent -t).

3. On your primary server, logged in as root, run the following command to provision a single compiler:

puppet infrastructure provision compiler <COMPILER_FQDN>

This command accepts a maximum of one compiler FQDN; this command can't provision multiple compilers at
once. Additionally, you can specify these optional parameters:

• dns-alt-names: Comma-separated list of any alternative names that agents use to connect to the compiler.
The installation uses puppet by default.

Important: If your puppet.conf file includes a dns_alt_names entry, you must include the dns-
alt-names parameter when provisioning your compiler.

• no-dns-alt-names: Prevents the installer from setting the default alternative name, puppet. Use this
parameter if you don't allow alternative names (as indicated by allow-subject-alt-names: false in
your ca.conf file).

• use-ssh: Enables installing on a node that doesn't have a Puppet agent currently installed. You must be
able to connect to the node with SSH. You can pair this flag with additional SSH parameters. Run puppet
infrastructure provision --help for details.

4. Verify that the contents of the global layer Hiera file on the new compiler, located at/etc/puppetlabs/
puppet/hiera.yaml, match the contents of the global layer Hiera file on the primary server.

• If necessary, update hiera.yaml#on the compiler to matchhiera.yaml#on the primary server.
• If you use code to manage the contents of hiera.yaml on the primary server, ensure that the new compiler

is also classified to manage the contents of its own hiera.yaml file.

Configure compilers to appropriately route communication between your primary server and agent nodes.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 166

Configure compilers
Compilers must be configured to appropriately route communication between your primary server and agent nodes.

Before you begin

• Install compilers and load balancers.
• If you need DNS altnames for your load balancers, add them to the primary server.
• Ensure port 8143 is open on the primary server or on any workstations used to run orchestrator jobs.

Restriction: This procedure is not intended for installations with load balancers in multiple locations. To configure
compilers in multi-region installations, refer to Load balancing for multi-region installations on page 164.

1. Configure pe_repo::compile_master_pool_address to send agent install requests to the load
balancer.

a) In the console, click Node groups, and in the PE Infrastructure group, select the PE Master group.
b) On the Configuration data tab, select the pe_repo class, and set the value of the

compile_master_pool_address parameter to the load balancer hostname. If you are using a single compiler,
set the compile_master_pool_address value to the compiler's fully qualified domain name (FQDN).

c) Click Add data and commit changes.
d) Run Puppet on the compiler, and then on the primary server.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 167

2. Configure Puppet agents to connect orchestration (PXP) agents to compilers through the load balancer. You can
configure these settings in the console or with Hiera.

a) In the console, click Node groups, and in the PE Infrastructure group, select the PE Agent group.
b) On the Classes tab, find the puppet_enterprise::profile::agent class and specify parameters:

Parameter Value

manage_puppet_conf Specify true to ensure that your setting for
server_list is configured in the expected
location and persists through Puppet runs.

pcp_broker_list Specify hostnames for your load balancers.
This setting configures PXP agents. Hostnames
must include port 8142, for example:
["LOADBALANCER1.EXAMPLE.COM:8142","LOADBALANCER2.EXAMPLE.COM:8142"]

primary_uris Specify hostnames for your
load balancers, for example:
["LOADBALANCER1.EXAMPLE.COM","LOADBALANCER2.EXAMPLE.COM"]

This setting configures PXP agents and assumes
port 8140 unless you specify otherwise, such as:
"LOADBALANCER1.EXAMPLE.COM:<PORT>"

server_list Specify hostnames for your
load balancers, for example:
["LOADBALANCER1.EXAMPLE.COM","LOADBALANCER2.EXAMPLE.COM"]

This setting configures Puppet agents and assumes
port 8140 unless you specify otherwise, such as:
"LOADBALANCER1.EXAMPLE.COM:<PORT>"

c) Remove any values set for pcp_broker_ws_uris.
d) Commit changes.
e) Run Puppet on the primary server, and then run Puppet on all agents or install new agents.

This Puppet run configures both Puppet agents and PXP agents to connect to the load balancer.

Related information
Firewall configuration for large installations on page 94
These are the port requirements for large installations with compilers.

Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#server-list

pe | Installing | 168

Convert existing compilers
If you have legacy compilers, you can improve their usability and scalability by adding PuppetDB. In addition to
installing the PuppetDB service, converting an existing compiler adds the node to the PE Compiler node group and
unpins it from the PE Master node group.

Before you begin
Open port 5432 from compilers to your primary server or, in extra-large installations, your PE-PostgreSQL node.

Important: Contact Support for guidance before converting compilers in multi-region installations. If your primary
server and compilers are connected with high-latency links or congested network segments, you might experience
better PuppetDB performance with legacy compilers.

On your primary server logged in as root, run: .

puppet infrastructure run convert_legacy_compiler
 compiler=<COMPILER_FQDN-1>,<COMPILER_FQDN-2>

Tip: To convert all compilers:

puppet infrastructure run convert_legacy_compiler all=true

Run puppet infrastructure tune on your primary server and adjust tuning for compilers as needed.

Installing client tools
PE client tools are a set of command line tools that let you access Puppet Enterprise services from a workstation that
might or might not be managed by Puppet.

The pe-client-tools package is included in the PE installation tarball. When you install, the client tools are
automatically installed on the same node as the primary server. When you upgrade, client tools are automatically
updated on infrastructure nodes and managed nodes, but on unmanaged nodes, you must re-install the version of
client tools that matches the PE version you upgraded to.

Client tools versions align with PE versions. For example, if you're running PE 2023.0, use the 2023.0 client tools. In
some cases, we might issue patch releases ("x.y.z") for PE or the client tools. You don't need to match complete patch
numbers between PE and the client tools; only the "x.y" numbers need to match.

Note: To see the version of client tools installed on your system, use the command appropriate for your package
manager or operating system. For example, on Red Hat: rpm -q pe-client-tools.

The package includes client tools for these services:

• Orchestrator — Allow you to control the rollout of changes in your infrastructure, and provides the interface to the
orchestration service. Tools include puppet job and puppet task.

• Puppet access — Authenticates you to the PE RBAC token-based authentication service so that you can use other
capabilities and APIs.

• Code Manager — Provides the interface for the Code Manager and file sync services. Tools include puppet-
code.

• PuppetDB CLI — Enables certain operations with PuppetDB, such as building queries and handling exports.

Because you can safely run these tools remotely, you no longer need to SSH into the primary server to execute
commands. Your permissions to see information and to take action are controlled by PE role-based access control.
Your activity is logged under your username rather than under root or the pe-puppet user.

Related information
Orchestrator configuration files on page 612

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 169

The configuration file for the orchestrator allows you to run commands from the CLI without having to pass
additional flags. Whether you are running the orchestrator from the primary server or from a separate work station,
there are two types of configuration files: a global configuration file and a user-specified configuration file.

Configure puppet-access on page 308
The puppet-access command allows users to generate and manage authentication tokens from the command
line of any workstation (Puppet-managed or not), without the need to SSH into the primary server. If you want to use
puppet-access, ensure it is configured correctly before using it to generate authentication tokens.

Installing and configuring puppet-code on page 814
Puppet Enterprise (PE) automatically installs and configures the puppet-code command on your primary server
as part of the included PE client tools package. You can also set up puppet-code on an agent node or workstation,
customize configuration for different users, or change the global configuration settings.

Supported PE client tools operating systems
The PE client tools package can be installed on the following platforms.

Operating system Versions Arch

Amazon Linux 2, 2023 • 2: x86_64
• 2023: amd64

CentOS 7 x86_64

macOS 11, 12, 13, 14 • 11: x86_64
• 12: x86_64, M1, M2
• 13: x86_64, ARM
• 14: ARM

Microsoft Windows 10, 11 • 10: x86, x64
• 11: x64

Microsoft Windows Server 2012, 2012 R2, 2012 R2 core, 2016,
2016 core, 2019, 2019 core, 2022

x64

Oracle Linux 7, 8, 9 x86_64

Red Hat Enterprise Linux 7, 8, 9 x86_64

Scientific Linux 7 x86_64

SUSE Linux Enterprise Server 12, 15 x86_64

Ubuntu 18.04, 20.04, 22.04 amd64

Install PE client tools on a managed workstation
To use the client tools on a system other than the primary server, where they're installed by default, you can install the
tools on a controller node.

Before you begin
Controller nodes must be running the same OS as your primary server and must have an agent installed.

1. In the console, create a controller classification group, for example PE Controller, and ensure that its Parent
name is set to All Nodes.

2. Select the controller group and add the puppet_enterprise::profile::controller class.

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 170

3. Pin the node that you want to be a controller to the controller group.

a) In the controller group, on the Rules tab, in the Certname field, enter the certname of the node.
b) Click Pin node and commit changes.

4. Run Puppet on the controller machine.

Related information
Create classification node groups on page 454
Classification node groups assign classification data to nodes.

Install PE client tools on an unmanaged workstation
You can install the pe-client-tools package on any workstation running a supported OS. The workstation OS
does not need to match the primary server OS.

Before you begin
Review prerequisites for timekeeping, name resolution, and firewall configuration, and ensure that these ports are
available on the workstation.

• 8143 — The orchestrator client uses this port to communicate with orchestration services running on the primary
server.

• 4433 — The Puppet access client uses this port to communicate with the RBAC service running on the primary
server.

• 8170 — If you use the Code Manager service, it requires this port.

Install PE client tools on an unmanaged Linux workstation

1. On the workstation, create the directory /etc/puppetlabs/puppet/ssl/certs.

2. On the primary server, navigate to /etc/puppetlabs/puppet/ssl/certs/ and copy ca.pem to the
directory you created on the workstation.

3. On the workstation, make sure file permissions are correct: chmod 444 /etc/puppetlabs/puppet/
ssl/certs/ca.pem

4. Verify that the checksum of ca.pem on the workstation matches the checksum of the same file on the primary
server.

5. Download the pe-client-tools package for the platform appropriate to your workstation.

6. Use your workstation's package management tools to install the pe-client-tools.
For example,on RHEL platforms: rpm -Uvh pe-client-tools-<VERSION-and-PLATFORM>.rpm

Install PE client tools on an unmanaged Windows workstation
You can install the client tools on a Windows workstation using the setup wizard or the command line.

To start using the client tools on your Windows workstation, open the PE ClientTools Console from the Start menu.

1. On the workstation, create the directory C:\ProgramData\PuppetLabs\puppet\etc\ssl\certs.

For example: mkdir C:\ProgramData\PuppetLabs\puppet\etc\ssl\certs

2. On the primary server, navigate to /etc/puppetlabs/puppet/ssl/certs/ and copy ca.pem to the
directory you created on the workstation.

3. On the workstation, make sure the file permissions are set to read-only for C:\ProgramData\PuppetLabs
\puppet\etc\ssl\certs\ca.pem.

4. Verify that the checksum of ca.pem on the workstation matches the checksum of the same file on the primary
server.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/download-puppet-enterprise-client-tools

pe | Installing | 171

5. Install the client tools using guided setup or the command line.

• Guided setup

a. Download the Windows pe-client-tools-package.
b. Double-click the pe-client-tools .msi file.
c. Follow prompts to accept the license agreement and select the installation location.
d. Click Install.

• Command line

a. Download the Windows pe-client-tools-package.
b. From the command line, run the installer:

msiexec /i <PATH TO PE-CLIENT-TOOLS.MSI> TARGETDIR="<INSTALLATION
 DIRECTORY>"

TARGETDIR is optional.

Install PE client tools on an unmanaged macOS workstation
You can install the client tools on a macOS workstation using Finder or the command line.

1. On the workstation, create the directory /etc/puppetlabs/puppet/ssl/certs.

2. On the primary server, navigate to /etc/puppetlabs/puppet/ssl/certs/ and copy ca.pem to the
directory you created on the workstation.

3. On the workstation, make sure file permissions are correct: chmod 444 /etc/puppetlabs/puppet/
ssl/certs/ca.pem

4. Verify that the checksum of ca.pem on the workstation matches the checksum of the same file on the primary
server.

5. Install the client tools using Finder or the command line.

• Finder

a. Download the macOS pe-client-tools-package.
b. Open the pe-client-tools .dmg and click the installer .pkg.
c. Follow the prompts to install the client tools.

• Command line

a. Download the macOS pe-client-tools-package.
b. Mount the disk image: sudo hdiutil mount <DMGFILE>.

A line appears ending with /Volumes/puppet-agent-VERSION. This directory location is the
mount point for the virtual volume created from the disk image.

c. Run cd /Volumes/pe-client-tools-VERSION.
d. Run sudo installer -pkg pe-client-tools-<VERSION>-installer.pkg -

target /.
e. Run cd ~ and then run sudo umount /Volumes/pe-client-tools-VERSION.

Configuring and using PE client tools
Use configuration files to customize how client tools communicate with the primary server.

For each client tool, you can create config files for individual machines (global) or for individual users. Configuration
files are structured as JSON.

Save configuration files to these locations:

• Global:

• *nix — /etc/puppetlabs/client-tools/
• Windows —%ProgramData%\puppetlabs\client-tools

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/download-puppet-enterprise-client-tools
https://puppet.com/download-puppet-enterprise-client-tools
https://puppet.com/download-puppet-enterprise-client-tools
https://puppet.com/download-puppet-enterprise-client-tools

pe | Installing | 172

• User:

• *nix — ~/.puppetlabs/client-tools/
• Windows —%USERPROFILE%\.puppetlabs\client-tools

On managed client nodes where the operating system and architecture match the primary server,
you can have PE manage Puppet code and orchestrator global configuration files using the
puppet_enterprise::profile::controller class.

For example configuration files and details about using the various client tools, go to the documentation for each
service:

Client tool Documentation

Orchestrator • How Puppet orchestrator works on page 598
• Run Puppet on demand from the CLI on page 623
• Running tasks from the command line on page

637

Puppet access Token-based authentication on page 308

Puppet code Triggering Code Manager on the command line on page
814

PuppetDB PuppetDB CLI

Related information
Orchestrator configuration files on page 612
The configuration file for the orchestrator allows you to run commands from the CLI without having to pass
additional flags. Whether you are running the orchestrator from the primary server or from a separate work station,
there are two types of configuration files: a global configuration file and a user-specified configuration file.

Configure puppet-access on page 308
The puppet-access command allows users to generate and manage authentication tokens from the command
line of any workstation (Puppet-managed or not), without the need to SSH into the primary server. If you want to use
puppet-access, ensure it is configured correctly before using it to generate authentication tokens.

Installing and configuring puppet-code on page 814
Puppet Enterprise (PE) automatically installs and configures the puppet-code command on your primary server
as part of the included PE client tools package. You can also set up puppet-code on an agent node or workstation,
customize configuration for different users, or change the global configuration settings.

Uninstalling
Puppet Enterprise (PE) includes a script for uninstalling. You can uninstall infrastructure nodes or uninstall the agent
from agent nodes.

Uninstall infrastructure nodes
The puppet-enterprise-uninstaller script is installed on the primary server. You must run the uninstaller
script on each infrastructure node you want to uninstall.

By default, the uninstaller removes the software, users, logs, cron jobs, and caches. However, the uninstaller does
not remove:

• Modules
• Manifests

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/pdb_client_tools.html

pe | Installing | 173

• Certificates
• Databases
• Configuration files
• Home directories of any removed users

If you want to uninstall and reinstall a primary server on the same system, use the appropriate Uninstaller options on
page 174 to remove the otherwise untouched files and databases.

1. On the infrastructure node that you want to uninstall, open the command line as root and navigate to the installer
directory at /opt/puppetlabs/bin/puppet-enterprise-uninstaller

2. Run the uninstall command: sudo ./puppet-enterprise-uninstaller

3. Follow the prompts to complete the uninstallation.

4. Remove the infrastructure node's certificate from the Puppet infrastructure configuration by running the following
command on the primary server:

puppet node purge <PE_COMPONENT_CERT_NAME>

Uninstall agents
You can remove the puppet-agent package from nodes that you no longer want Puppet Enterprise (PE) to
manage.

Important: Uninstalling the agent doesn't remove the node from your inventory or free up the node's license to use
on another node. To remove a node, you must purge the node.

Related information
Adding and removing agent nodes on page 445
You can add nodes you want to manage with Puppet Enterprise (PE) and remove nodes you no longer need.

Installing agents on page 131
Puppet Enterprise (PE) agent nodes monitor your infrastructure and help keep it in your desired state. You can install
agents on *nix, Windows, and macOS nodes.

Uninstall *nix agents
The *nix agent package includes an uninstall script you can use to remove the agent from the node.

1. On the agent node, run the uninstall script: /opt/puppetlabs/bin/puppet-enterprise-
uninstaller

2. Follow the prompts to complete the uninstallation.

3. Optional: If you want to reinstall the agent on the node later, make sure you remove the node's agent certificate
from the primary server. To do this, on the primary server run: puppetserver ca clean --certname
<AGENT_CERT_NAME>

If you want to remove the node from your inventory and use the node's license on another node, you must purge the
node, as explained in Remove agent nodes on page 445.

Uninstall Windows agents
To uninstall the agent from a Windows node, use the Windows Add or Remove Programs interface or the command
line.

Uninstalling the agent from a Windows node removes the Puppet program directory, the agent service, and all related
registry keys. The data directory remains intact, including all SSL keys. To completely remove the Puppet agent from
the system, you must also manually delete the data directory.

1. Uninstall the agent:

• Use the Windows Add or Remove Programs interface.
• Use the command line if you have the original .msi file or know the installed MSI's product code. For

example: msiexec /qn /norestart /x [puppet.msi|<PRODUCT_CODE>]

© 2024 Puppet, Inc., a Perforce company

pe | Installing | 174

2. Optional: If you want to reinstall the agent on the node later, make sure you remove the node's agent certificate
from the primary server. To do this, on the primary server run: puppetserver ca clean --certname
<AGENT_CERT_NAME>

If you want to remove the node from your inventory and use the node's license on another node, you must purge the
node, as explained in Remove agent nodes on page 445.

Uninstall macOS agents
Use the command line to remove the agent from macOS nodes.

1. On the agent node, run these commands:

rm -rf /var/log/puppetlabs
rm -rf /var/run/puppetlabs
pkgutil --forget com.puppetlabs.puppet-agent
launchctl remove puppet
rm -rf /Library/LaunchDaemons/com.puppetlabs.puppet.plist
launchctl remove pxp-agent
rm -rf /Library/LaunchDaemons/com.puppetlabs.pxp-agent.plist
rm -rf /etc/puppetlabs
rm -rf /opt/puppetlabs

2. Optional: If you want to reinstall the agent on the node later, make sure you remove the node's agent certificate
from the primary server. To do this, on the primary server run: puppetserver ca clean --certname
<AGENT_CERT_NAME>

If you want to remove the node from your inventory and use the node's license on another node, you must purge the
node, as explained in Remove agent nodes on page 445.

Uninstaller options
You can use these command line options to change the uninstaller's behavior.

• -p: Purge additional files. In addition to the software, users, logs, cron jobs, and caches, the uninstaller also
removes all configuration files, modules, manifests, certificates, the home directories of any users created by the
installer, and the Puppet public GPG key used for package verification.

• -d: Remove any databases created during installation.
• -h: Display a help message.
• -n: Run in noop mode and show commands that would have run during uninstallation without actually running

them.
• -y: Don't ask to confirm uninstallation. Assuming the answer is yes.

To remove every trace of PE from a system, which is required if you want to reinstall PE on the same system, run this
command:

sudo ./puppet-enterprise-uninstaller -d -p

For Windows systems, open an administrator command prompt and run the command without sudo.

Related information
Using example commands on page 25

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 175

These guidelines can help you understand and customize the example commands you'll find in the Puppet Enterprise
(PE) docs.

Upgrading

To upgrade your Puppet Enterprise deployment, you must upgrade both the infrastructure components and agents.

CAUTION:

Major primary server OS upgrades (such as Ubuntu 18.04 to 20.04) require Back up and restore PE on page
865.

Major agent OS upgrades require reinstalling the puppet-agent package (as explained in Installing agents
on page 131) and reinstalling any Ruby plugins/gems that were added at /opt/puppetlabs/puppet/
bin/gem.

• Upgrade paths on page 175
These are the valid upgrade paths for PE.
• Upgrade cautions on page 176
These are the major changes to PE since the last long-term support release, 2021.7. Review these recommendations
and plan accordingly before upgrading to this version.
• Test modules before upgrading on page 183
Before upgrading, make sure your modules work with the newest PE version by using the Puppet Development Kit
(PDK) to update and test your modules.
• Upgrading Puppet Enterprise on page 184
Upgrade your PE installation as new versions become available.
• Upgrading agents on page 197
Upgrade your agents as new versions of Puppet Enterprise (PE) become available. The puppet_agent module
helps automate upgrades, and provides the safest upgrade. Alternatively, you can use a script to upgrade individual
nodes.
• Migrate PE on page 202
As an alternative to upgrading, you can migrate your PE installation. Migrating results in little or no downtime, but it
requires additional system resources because you must configure a new primary server.

Upgrade paths
These are the valid upgrade paths for PE.

If you're on version... Upgrade to... Notes

2023.8.2 (latest) You're up to date!

2023.y 2023.8.z (LTS)

2021.7.z 2023.8.z (LTS) Review the upgrade cautions and
other information on this page.

2021.y or 2019.8.z 2021.7.z For important information about
this upgrade, refer to Upgrading
Puppet Enterprise in the 2021.7.z
documentation.

2019.y 2019.8.12

Earlier versions Refer to Upgrade paths in the
2019.8.z documentation.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/2021.7/upgrading_pe.html#upgrading_pe
https://puppet.com/docs/pe/2021.7/upgrading_pe.html#upgrading_pe
https://puppet.com/docs/pe/2021.7/upgrading_pe.html#upgrading_pe
https://puppet.com/docs/pe/2019.8/upgrading_pe.html#supported_upgrade_paths
https://puppet.com/docs/pe/2019.8/upgrading_pe.html#supported_upgrade_paths

pe | Upgrading | 176

Related information
Component versions in recent PE releases on page 14
These tables show which components are in Puppet Enterprise (PE) releases, covering recent long-term supported
(LTS) releases. Component version tables for overlap support and EOL releases are available in the Documentation
for other PE versions on page 27.

Server and agent compatibility on page 16
Use this table to verify that you're using a compatible version of the agent for your PE or Puppet Server.

Upgrade cautions
These are the major changes to PE since the last long-term support release, 2021.7. Review these recommendations
and plan accordingly before upgrading to this version.

JRuby instance flushing may cause a memory leak

JRuby instance flushing may cause a memory leak for many, if not all, of our users. We recommend that users who
have set their max-requests-per-instance settings for JRuby pools to custom, non-zero values to either
move them to be unmanaged i.e. accept the default value or explicitly set the default value to 0 (the new default).
Please do not manually flush the JRuby pool via the HTTP API.

Update puppet_agent module to support AIX

If you use the puppet_agent module and have the agent installed on any AIX nodes, then before you upgrade to
PE 2023.y, you must ensure that you are using puppet_agent module version 4.18.0 or later. This ensures that
the puppet_agent module identifies the correct directory for AIX resources and your AIX agents function as
expected.

r10k upgrade in PE 2023.4 and later

In PE 2023.4 and later, r10k is updated to version 4.0, which includes new dependencies for Puppet 8. Before
attempting upgrade, review the following information and make any necessary changes to your settings, Puppetfile
Ruby code, local repo permissions, and known_hosts file.

• Starting in PE 2023.4, if you use Code Manager or r10k, with SSH protocol for remote Git repository access, you
must set up SSH host key verification.

Important: Omitting to set up SSH host key verification for Code Manager or r10k causes code management and
deployment processes to fail.

To manage the known_hosts file and enable host key verification for Code Manager or r10k, you must define
the puppet_enterprise::profile::master::r10k_known_hosts parameter with an array of
hashes specifying "name", "type", and "key" with your hostname, key type, and public key, respectively.

For more information about how to set up SSH host key verification, see the following topics:

• If you use Code Manager, see Enable Code Manager on page 795.
• If you use r10k as your code deployment tool, see Configure r10k on page 841.

• Starting in version 4.0, r10k no longer accesses repos on local file systems not owned by the pe-puppet user.
If you use r10k on the local file system, ensure that your control repo and module repos are owned by the pe-
puppet user.

• Git-based modules no longer have a default reference such as master. Now, when pointing to Git-based
modules, you must specify the branches or revisions. Alternatively, you can use the global default_ref setting
to manually set your default reference.

• By default, the exclude_spec setting is now set to true so that spec directories are automatically deleted
from Git-based sources.

• If you use your own Ruby install, note that r10k 4.0 drops support for Ruby versions 2.3, 2.4, and 2.5.

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 177

• The purge_whitelist setting has been removed. Instead, you can use purge_allowlist when manually
configuring r10k 4.0.

• The protected method basedir is removed from the Puppetfile @librarian instance. Protected methods
should no longer be used in Puppetfile. However, if you require a temporary workaround, you can use the
environment_name accessor.

Logback upgrades in PE 2023.4 and later

In PE 2023.4, logback is upgraded to version 1.3.7, and in PE 2023.6 and later, it is upgraded to version 1.3.14.
Using a Java argument, the logappender variable is now set by default to F1 for all projects. If you customize
this setting, to avoid disruptions in logging, ensure that all logappender variable references are correctly defined.
Using invalid appender references or omitting to use a reference causes logback versions 1.3.7 and 1.3.14 to stop
logging.

Java 17 upgrade in PE 2023.0 and later

PE 2023.0 and later includes an upgrade from Java version 11 to version 17. With this upgrade, PE uses the G1
garbage collector by default, instead of Parallel.

Thoroughly test PE 2023.y in a non-production environment before upgrading if you customized PE Java services or
you use plug-ins that include Java code.

FIPS-enabled PE 2023.0 and later can't use the default system cert store

FIPS-compliant builds running PE 2023.0 and later can't use the default system cert store, which is used automatically
with some reporting services. This setting is configured by the report_include_system_store Puppet
parameter that ships with PE.

Removing the puppet-cacerts file (located at /opt/puppetlabs/puppet/ssl/puppet-cacerts) can
allow a report processor that eagerly loads the system store to continue with a warning that the file is missing.

If HTTP clients require external certs, we recommend using a custom cert store containing only the necessary certs.
You can create this cert store by concatenating existing pem files and configuring the ssl_trust_store Puppet
parameter to point to the new cert store.

Puppet upgrade in 2023.4 and later
PE 2023.4 introduced a new major version of Puppet. Consider the information presented here about changes in
Puppet 8 that might impact your Puppet Enterprise installation, and plan accordingly before upgrading.

Legacy facts no longer collected or sent to Puppet Server

Puppet 8 completes the transition away from legacy facts, which were deprecated in Puppet 7. Starting in Puppet 8,
legacy facts are no longer collected or sent to the Puppet Server. Instead of using legacy facts, which were written as
key-value pairs, Puppet 8 now uses structured facts, which are array and hash data structures.

Starting in PE 2023.4, to help ensure that nodes are classified correctly, the PE node classifier service examines your
node group rules and automatically replaces most legacy facts with exact equivalent structured facts.

Restriction: Some legacy facts cannot be mapped to an exact equivalent structured fact, so they must be manually
removed or replaced by a close equivalent structured fact. The classifier generates warning messages in the logs
prompting you to remove or replace any unmappable legacy facts that are included in your node group rules. For a list
of unmappable legacy facts together with close equivalent structured facts you can use, see the table below.

Important: Starting in PE2023.4, the installer examines your existing node group rules and if any unmappable
legacy facts are found, the installation process stops with a warning. To proceed with installation, you can manually
replace or remove unmappable legacy facts and re-run the installer.

To avoid disruptions associated with legacy facts, take the following actions as required.

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 178

• If you have Puppet code containing legacy facts, you can use the legacy_facts plugin in the puppet-lint tool
to automatically convert any legacy facts that map to an exact equivalent structured fact.

• If legacy facts are referenced in your Embedded Ruby (ERB) templates, your Embedded Puppet (EPP) templates,
or in your Hiera configuration file, you must manually find those legacy facts and either remove them or replace
them with exact or close equivalent structured facts.

• If you plan to use any of the /v*/classified/nodes endpoints, you must enter structured facts to obtain
accurate results.

• If unmappable legacy facts are included in any of your PE node group rules or in any Puppet code you use, you
must manually remove those legacy facts or replace them with close equivalent structured facts. See the table
below for more information.

The following table lists the unmappable legacy facts that cannot be automatically converted by the PE classifier or
the legacy_facts plugin in the puppet-lint tool. You can manually replace these unmappable legacy facts
with their respective close equivalent structured facts.

Unmappable legacy fact Close equivalent structured facts

memoryfree_mb

Returned a double specifying the size of the free system
memory, in mebibytes.

$facts['memory']['system'][available']

or

$facts['memory']['system']
['available_bytes']

See Facter documentation on memory.

memorysize_mb

Returned a double specifying the size of the total system
memory, in mebibytes.

$facts['memory']['system']['total']

or

$facts['memory']['system']
['total_bytes']

See Facter documentation on memory.

swapfree_mb

Returned a string specifying the size of the free swap
memory, in mebibytes.

$facts['memory']['swap']['available']

or

$facts['memory']['swap']
['available_bytes']

See Facter documentation on memory.

swapsize_mb

Returned a string specifying the size of the total swap
memory, in mebibytes.

$facts['memory']['swap']['used']

or

$facts['memory']['swap']['used_bytes']

See Facter documentation on memory.

blockdevices

Returned a string containing all block devices separated
by a comma.

Can be replicated using puppetlabs/stdlib and the
following:

join(keys($facts['disks']), ',')

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppet-lint/blob/main/lib/puppet-lint/plugins/legacy_facts/legacy_facts.rb
https://puppet.com/docs/facter/latest/core_facts.html#memory
https://puppet.com/docs/facter/latest/core_facts.html#memory
https://puppet.com/docs/facter/latest/core_facts.html#memory
https://puppet.com/docs/facter/latest/core_facts.html#memory
https://github.com/puppetlabs/puppetlabs-stdlib

pe | Upgrading | 179

Unmappable legacy fact Close equivalent structured facts

interfaces

Returned a string containing all interfaces separated by a
comma.

Can be replicated using puppetlabs/stdlib and the
following:

join(keys($facts['networking']
['interfaces']), ',')

zones

Returned a string containing all zone names separated by
a comma.

Can be replicated using puppetlabs/stdlib and the
following:

join(keys($facts['solaris_zones']
['zones']), ',')

sshfp_dsa

Returned a string containing both the SHA1 and
SHA256 fingerprint for the DSA algorithm.

Can be replicated using the following string:

"$facts['ssh']['dsa']['fingerprints']
['sha1'] $facts['ssh']['dsa']
['fingerprints']['sha256']"

See Facter documentation on SSH.

sshfp_ecdsa

Returned a string containing both the SHA1 and
SHA256 fingerprint for the ECDSA algorithm.

Can be replicated using the following string:

"$facts['ssh']['ecdsa']
['fingerprints']['sha1'] $facts['ssh']
['ecdsa']['fingerprints']['sha256']"

See Facter documentation on SSH.

sshfp_ed25519

Returned a string containing both the SHA1 and
SHA256 fingerprint for the Ed25519 algorithm.

Can be replicated using the following string:

"$facts['ssh']['ed25519']
['fingerprints']['sha1'] $facts['ssh']
['ed25519']['fingerprints']['sha256']"

See Facter documentation on SSH.

sshfp_rsa

Returned a string containing both the SHA1 and
SHA256 fingerprint for the RSA algorithm.

Can be replicated using the following string:

"$facts['ssh']['rsa']['fingerprints']
['sha1'] $facts['ssh']['rsa']
['fingerprints']['sha256']"

See Facter documentation on SSH.

Strict mode enabled by default

Starting in Puppet 8, strict validation is enabled by default through the strict=error and
strict_variables=true settings in puppet.conf. With these default settings, if your Puppet code does not
conform to strict rules, then catalog compilation fails with an error. To avoid disruption, consider the following points
and manually update your code where necessary.

• Automatic type coercion is not allowed in strict mode. For example, a string such as “1”+1 in your Puppet
code cannot be automatically converted to a numeric. For more information about automatic type coercion see,
Automatic coercion in the Open Source Puppet documentation.

• Unknown variables are not permitted with the default strict mode settings in Puppet 8. For example, if you
use modules that contain unknown variables, catalog compilations fail. Before upgrading PE, review your

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-stdlib
https://github.com/puppetlabs/puppetlabs-stdlib
https://www.puppet.com/docs/puppet/latest/core_facts.html#ssh
https://www.puppet.com/docs/puppet/latest/core_facts.html#ssh
https://www.puppet.com/docs/puppet/latest/core_facts.html#ssh
https://www.puppet.com/docs/puppet/latest/core_facts.html#ssh
https://www.puppet.com/docs/puppet/8/typecasting.html#typecasting-automatic-coercions

pe | Upgrading | 180

puppetserver.log files and address the issues identified in any existing warnings about unknown variables.
Resolving issues helps ensure that existing warnings do not become fatal errors after you run the upgrade.

• If your Hiera code references legacy facts in top-level variables, then those variables cannot be defined because
Puppet agents no longer collect or send legacy facts. When top-level variables are undefined, strict validation
causes Hiera lookups to fail. For example, when strict mode is enabled, a lookup error occurs with the following
hierarchy:

hierarchy:
 - name: "osfamily"
 path: "%{osfamily}.yaml"

To avoid Hiera lookup failures, replace the legacy fact with the equivalent structured fact as follows:

hierarchy:
 - name: "osfamily"
 path: "%{facts.os.family}.yaml".

If a hierarchy currently references an optional fact, you must use the facts hash as follows to ensure that the
Hiera lookup proceeds to the common layer when agents omit the fact:

hierarchy:
 - name: "optional"
 path: "%{facts.optional}.yaml"
 - name: "common"
 path: "common.yaml".

If you want to permit automatic type coercions after upgrading, you can disable strict mode in the console:

1. Click Node groups > PE Infrastructure > PE Agent.
2. Select the Classes tab and locate the puppet_enterprise::profile::agent class.
3. From the Parameter name dropdown, select strict and enter "warning" as the value.
4. Click Add to node group and commit your changes.

Alternatively, you can disable strict mode using the CLI:

1. On the Puppet Server host, run puppet config set strict warning --section main.
2. Restart the pe-puppetserver service by running systemctl restart pe-puppetserver.

If you want to permit unknown variables after upgrading, you must change the strict_variables setting to
false on all nodes that run pe-puppetserver. You can do this by running the following tasks on the Puppet
Server host:

puppet task run puppet_conf \
 --params '{"action":"set","setting":"strict_variables","value":"false"}' \
 --query 'resources[certname] { type = "Class" and title =
 "Puppet_enterprise::Profile::Master" }'

puppet task run service name=pe-puppetserver action=restart \
 --query 'resources[certname] { type = "Class" and title =
 "Puppet_enterprise::Profile::Master" }'

Important: If you disable strict mode settings, you must still ensure that you remove all references to legacy facts
from your global layer, environment layer, and module layer hiera.yaml files. Otherwise, Hiera lookups return
corrupted data to compilers.

Lazy resolution of deferred data types

In Puppet 7, Deferred data types were resolved eagerly at the beginning of the agent run. However, in Puppet 8,
the Deferred data type instructs the agent to call functions dynamically during the Puppet run. This functionality is

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 181

particularly useful for tasks like retrieving a password from a secret store over HTTPS and saving it in a configuration
file.

During the Puppet run in Puppet 8, the agent sequentially executes deferred functions based on their order within
resource declarations. If a deferred function requires any resources, like an SDK necessary to interact with a secret
store, these dependencies can be automatically managed before the deferred function is executed.

After upgrading to Puppet 8, if you encounter Puppet run errors due to resource compatibility issues in your Puppet
code, you can turn on the preprocess_deferred setting so the agent calls deferred functions and identifies
dependency errors before a Puppet run starts.

To turn on the preprocess_deferred setting:

1. In the PE console, click Node groups > PE Infrastructure > PE Agent.
2. Select the Classes tab and locate the puppet_enterprise::profile::agent class.
3. From the Parameter name dropdown, select preprocess_deferred and enter true as the value.
4. Click Add to node group and commit your changes.

Ruby version upgrade

The upgrade to Ruby 3.2 in Puppet 8 might result in compatibility issues that affect Puppet extensions in your code.
To check compatibility, use the latest version of PDK to update and test your modules.

Important: You must re-install third party gems when the Ruby version used by Puppet changes as part of an
upgrade. For example, if Puppet 7 (which uses Ruby 2.7), changes to Puppet 8 (which uses Ruby 3.2), as part of a PE
upgrade, third party gems must be reinstalled. Puppet agent runs fail after upgrading if gems are not re-installed. We
recommend that you review gem dependencies to identify what is in use in your environment as these are not covered
by the compatibility checks performed by the PDK.

Gems installed for use by the Puppet agent can be listed with:

• /opt/puppetlabs/puppet/bin/gem list –local

Gems installed for use by the Puppet Server can be listed with:

• /opt/puppetlabs/bin/puppetserver gem list –local

Note that the above lists contain some gems, included with PE, that must not be re-installed. Compare the output
against lists generated from a fresh PE installation or the documentation for installed modules in order to discover
third party gems that have been added.

OpenSSL version upgrade

Puppet 8 includes OpenSSL 3.0. This upgrade might result in compatibility issues when the agent is connecting to
other servers in your environment. To avoid SSL errors, ensure that the OpenSSL version used by your servers is
updated to OpenSSL 3.0.

Hiera 3 gem removed

All deprecated Hiera 3 functionality is implemented in Hiera 5, which is included in Puppet 8. If your PE
infrastructure relies on a custom Hiera 3 backend, you must manually install the Hiera 3 gem on all Puppet Server
hosts or convert your backend to Hiera 5. For further information, see Upgrading to Hiera 5.

PSON removed

In previous releases, Pure JavaScript Open Notation (PSON) was used in Puppet to serialize data for transmission.
PSON was deprecated in Puppet 7 and is removed in Puppet 8.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/puppet/latest/hiera_migrate.html

pe | Upgrading | 182

Be aware that errors may occur due to PSON removal. For example, prior to upgrading to PE 2023.8, Puppet 7 agents
may log the following message:

Info: Unable to serialize catalog to json, retrying with pson. PSON is
 deprecated and will be removed in a future release

After upgrading to PE 2023.8, the message may change to a compilation error:

Error: Could not retrieve catalog from remote server: Error 500 on SERVER:
 Server Error: Failed to serialize Puppet::Resource::Catalog for 'failing-
agent.example': Could not render to Puppet::Network::Format[rich_data_json]:
 source sequence is illegal/malformed utf-8

What to do if you get a compilation error:

1. Find all resources where the UTF-8 replacement character, \ufffd, was substituted for binary data, by running
the following SQL query on the PE primary node, or PE XL database node.

Note: This query does not find resources used by nodes that have not successfully compiled a catalog prior to an
upgrade.

cat <<'EOF' | runuser -u pe-postgres -- /opt/puppetlabs/server/bin/psql -d
 pe-puppetdb -x -f- | tee /tmp/binary-resources.txt

SELECT DISTINCT type, file, line, name AS parameter

FROM resource_params AS p

JOIN catalog_resources AS r ON p.resource = r.resource

WHERE p.value ~ '\ufffd'

EOF

2. In order to clear the errors, update the manifest files returned by the query (a report is saved to /tmp/binary-
resources.txt) and either remove binary data, or wrap it using the binary data type or binary_file()
functions as documented in the following sections:

• Binary
• Built-in function reference

Platforms removed in 2023.0 and later
Platforms that were previously deprecated have been removed in PE 2023.0 and later.

Before upgrading, remove the pe_repo::platform class for these operating systems from the PE Master node
group in the console, and from your code and Hiera.

Platforms removed in 2023.0

Removed primary server platforms

CentOS 8

Removed agent platforms

CentOS 8

Debian 9

Fedora 32

Fedora 34

Ubuntu 16.04

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/puppet/8/lang_data_binary
https://www.puppet.com/docs/puppet/8/function#binary-file

pe | Upgrading | 183

Removed client tools platforms

No client tools platforms removed.

Removed patching platforms

Debian 9

Fedora 34

Platforms removed in 2023.4

Removed agent platforms

AIX 7.1

CentOS 6

CentOS 7 aarch64

macOS 10.15

Oracle Linux 6

Oracle Linux 7 aarch64

Red Hat Enterprise Linux (RHEL) 6

Red Hat Enterprise Linux (RHEL) 7 aarch64

Scientific Linux 6

Scientific Linux 7 aarch64

Solaris 10

Removed client tool platforms

CentOS 6

macOS 10.15

Oracle Linux 6

Red Hat Enterprise Linux (RHEL) 6

Scientific Linux 6

Platforms removed in 2023.8

Removed agent platforms

macOS 12 ARM

Removed primary server platforms

Red Hat Enterprise Linux (RHEL) 7

Ubuntu 18.04 amd64

For information about supported platforms, see:

• Supported operating systems and devices on page 84
• Supported PE client tools operating systems on page 169
• Patch management OS compatibility on page 587

Test modules before upgrading
Before upgrading, make sure your modules work with the newest PE version by using the Puppet Development Kit
(PDK) to update and test your modules.

If you're already using PDK, your modules should pass validation and unit tests with your currently installed version
of PDK.

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 184

Updating PDK with each new release ensures module compatibility with new versions of PE.

1. Download and install PDK. If you already have PDK installed, this updates PDK to its latest version. For detailed
instructions and download links, go to Installing PDK in the PDK documentation.

2. If you have not previously used PDK with your modules, convert them to a PDK-compatible format. This
makes changes to your module to allow validation and unit testing with PDK. For important information, go to
Converting modules in the PDK documentation.

For example, from within the module directory, run: pdk convert

3. If your modules are already compatible with PDK, update them to the latest module template. If you converted
modules in the previous step, you do not need to update the template. To learn more about updating, go to
Updating modules with changes to the template in the PDK documentation.

For example, from within the module directory, run: pdk update

4. Validate and run unit tests for each module, specifying the version of PE you are upgrading to. When specifying
a PE version, you must included at least the first two parts of the release number, such as 2023.0. For information
about module validations and testing, go to Validating and testing modules in the PDK documentation.

For example, from within the module directory, run:

pdk validate
pdk test unit

The pdk test unit command verifies that testing dependencies and directories are present and then runs the
unit tests that you write. It does not create unit tests for your module.

5. If your module fails validation or unit tests, make any necessary changes to your code and retest.

After you've verified that your modules work with the new PE version, you can continue with your upgrade.

Upgrading Puppet Enterprise
Upgrade your PE installation as new versions become available.

• Upgrade PE using the installer tarball on page 184
Upgrade PE infrastructure components to get the latest features and fixes. Follow the upgrade instructions for
your installation type to ensure you upgrade components in the correct order. Coordinate upgrades to ensure all
infrastructure nodes are upgraded in a timely manner, because agent runs and replication fail if infrastructure nodes
are running a different agent version than the primary server.
• Upgrade PE using PIM on page 191
Puppet Installation Manager (PIM) supports the upgrading of Puppet Enterprise (PE) for all supported installation
architectures. For an interactive experience, choose the guided upgrade process and follow the steps in your terminal.
Alternatively, if you do not require guidance, you can run your upgrade from the PIM command line by passing a
JSON file containing your installation parameters.

Upgrade PE using the installer tarball
Upgrade PE infrastructure components to get the latest features and fixes. Follow the upgrade instructions for
your installation type to ensure you upgrade components in the correct order. Coordinate upgrades to ensure all
infrastructure nodes are upgraded in a timely manner, because agent runs and replication fail if infrastructure nodes
are running a different agent version than the primary server.

Before you begin

Review the upgrade cautions for major changes to architecture and infrastructure components which might affect your
upgrade.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pdk/latest/pdk_install.html
https://puppet.com/docs/pdk/latest/pdk_converting_modules.html
https://puppet.com/docs/pdk/latest/pdk_updating_modules.html
https://puppet.com/docs/pdk/latest/pdk_testing.html

pe | Upgrading | 185

Configure non-production environment for infrastructure nodes
If your infrastructure nodes are in an environment other than production, you must manually configure PE to use
your chosen environment before you upgrade.

Important: Only do this procedure if your infrastructure nodes are in an environment that is not production.

In pe.conf, set both of these parameters to the environment your infrastructure nodes are in:

pe_install::install::classification::pe_node_group_environment
puppet_enterprise::master::recover_configuration::pe_environment

Upgrade a standard installation
To upgrade a standard installation, run the PE installer on your primary server, and then upgrade any additional
components.

Before you begin

Back up your PE installation.

If you're upgrading a replica, ensure you have a valid admin RBAC token.

In Hiera, pe.conf, or the console (in the PE Master node group), remove any agent_version parameters
you set in the pe_repo class that matches your infrastructure nodes. This ensures the upgrade isn't blocked by
attempting to download non-default agent versions for your infrastructure OS and architecture.

1. Download the tarball for your operating system and architecture. Optionally, you can Verify the installation
package on page 111.

2. Run tar -xf <TARBALL> to unpack the installation tarball.

You need about 1 GB of space to untar the installer.

3. From the installer directory on your primary server, run sudo ./puppet-enterprise-installer to start
the installer, and then follow the CLI instructions to complete your server upgrade.

To specify a different pe.conf file than the existing file, use the -c flag as shown here:

sudo ./puppet-enterprise-installer -c <FULL_PATH_TO_pe.conf>

This flag tells the installer to backup the previous pe.conf file to /etc/puppetlabs/enterprise/
conf.d/<TIMESTAMP>.conf and create a new pe.conf file at /etc/puppetlabs/enterprise/
conf.d/pe.conf.

4. Upgrade the following additional PE infrastructure components:

• Agents
• PE client tools: On unmanaged nodes, you must re-install the client tools version that matches the PE version

you upgraded to. On managed nodes and infrastructure nodes, client tools are automatically updated when you
upgrade PE.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/try-puppet/puppet-enterprise/download/

pe | Upgrading | 186

5. In disaster recovery installations, upgrade your replica.

The replica is temporarily unavailable to serve as backup during this step, so time upgrading your replica to
minimize risk.

a) On your primary server logged in as root, run:

sudo puppet infrastructure upgrade replica <REPLICA_FQDN>

If you want to specify an authentication token other than the default, run:

sudo puppet infrastructure upgrade replica <REPLICA_FQDN> --token-file
 <PATH_TO_TOKEN>

b) After the replica upgrade successfully completes, verify that primary and replica services are operational. On
your primary server, run:

sudo /opt/puppetlabs/bin/puppet-infra status

c) If your replica reports errors, reinitialize the replica. On your replica, run:

sudo /opt/puppetlabs/bin/puppet-infra reinitialize replica -y

6. Optional: Remove previous PE packages from all infrastructure nodes. On your primary server, run: puppet
infrastructure run remove_old_pe_packages

All packages earlier than the current version are removed by default. To remove specific versions, append
pe_version=<VERSION_NUMBER> to the command.

Related information
Back up your infrastructure on page 866
The backup process creates a copy of your primary server, including configuration, certificates, code, and PuppetDB.
Backup can take several hours depending on the size of PuppetDB.

Generate a token using puppet-access on page 310
Use the puppet-access command to generate an authentication tokens from the command line of any workstation
(Puppet-managed or not), without the need to SSH into the primary server.

Upgrade a large installation
To upgrade a large installation, run the PE installer on your primary server, and then upgrade compilers and any
additional components.

Before you begin

Back up your PE installation.

Ensure you have a valid admin RBAC token in order to upgrade compilers or a replica.

In Hiera, pe.conf, or the console (in the PE Master node group), remove any agent_version parameters
you set in the pe_repo class that matches your infrastructure nodes. This ensures the upgrade isn't blocked by
attempting to download non-default agent versions for your infrastructure OS and architecture.

1. Download the tarball for your operating system and architecture. Optionally, you can Verify the installation
package on page 111.

2. Run tar -xf <TARBALL> to unpack the installation tarball.

You need about 1 GB of space to untar the installer.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/try-puppet/puppet-enterprise/download/

pe | Upgrading | 187

3. From the installer directory on your primary server, run sudo ./puppet-enterprise-installer to start
the installer, and then follow the CLI instructions to complete your server upgrade.

To specify a different pe.conf file than the existing file, use the -c flag as shown here:

sudo ./puppet-enterprise-installer -c <FULL_PATH_TO_pe.conf>

This flag tells the installer to backup the previous pe.conf file to /etc/puppetlabs/enterprise/
conf.d/<TIMESTAMP>.conf and create a new pe.conf file at /etc/puppetlabs/enterprise/
conf.d/pe.conf.

4. To upgrade compilers, log in to your primary server as root and run one of these commands:

• To upgrade specific compilers, run:

sudo puppet infrastructure upgrade compiler
 <COMPILER_FQDN-1>,<COMPILER_FQDN-2>

• To upgrade all compilers simultaneously, run:

sudo puppet infrastructure upgrade compiler --all

• To specify an authentication token location other than the default location, include --token-file
<PATH_TO_TOKEN> in the command as shown here:

sudo puppet infrastructure upgrade compiler <COMPILER_FQDN> --token-file
 <PATH_TO_TOKEN>

5. Upgrade the following additional PE infrastructure components:

• Agents
• PE client tools: On unmanaged nodes, you must re-install the client tools version that matches the PE version

you upgraded to. On managed nodes and infrastructure nodes, client tools are automatically updated when you
upgrade PE.

6. In disaster recovery installations, upgrade your replica.

The replica is temporarily unavailable to serve as backup during this step, so time upgrading your replica to
minimize risk.

a) On your primary server logged in as root, run:

sudo puppet infrastructure upgrade replica <REPLICA_FQDN>

If you want to specify an authentication token other than the default, run:

sudo puppet infrastructure upgrade replica <REPLICA_FQDN> --token-file
 <PATH_TO_TOKEN>

b) After the replica upgrade successfully completes, verify that primary and replica services are operational. On
your primary server, run:

sudo /opt/puppetlabs/bin/puppet-infra status

c) If your replica reports errors, reinitialize the replica. On your replica, run:

sudo /opt/puppetlabs/bin/puppet-infra reinitialize replica -y

7. Optional: Remove previous PE packages from all infrastructure nodes. On your primary server, run: puppet
infrastructure run remove_old_pe_packages

All packages earlier than the current version are removed by default. To remove specific versions, append
pe_version=<VERSION_NUMBER> to the command.

Optionally convert legacy compilers to the new style compiler running the PuppetDB service.

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 188

Related information
Back up your infrastructure on page 866
The backup process creates a copy of your primary server, including configuration, certificates, code, and PuppetDB.
Backup can take several hours depending on the size of PuppetDB.

Generate a token using puppet-access on page 310
Use the puppet-access command to generate an authentication tokens from the command line of any workstation
(Puppet-managed or not), without the need to SSH into the primary server.

Upgrade an extra-large installation
You can use the PEADM module to upgrade extra-large installations. Contact your technical account manager for
additional support.

Upgrade a standalone PE-PostgreSQL installation
To upgrade a large installation with standalone PE-PostgreSQL, run the PE installer first on your PE-PostgreSQL
node, then on your primary server, and then upgrade any additional components.

Before you begin

Back up your PE installation.

Ensure you have a valid admin RBAC token in order to upgrade compilers.

In Hiera, pe.conf, or the console (in the PE Master node group), remove any agent_version parameters
you set in the pe_repo class that matches your infrastructure nodes. This ensures the upgrade isn't blocked by
attempting to download non-default agent versions for your infrastructure OS and architecture.

1. Download the tarball for your operating system and architecture. Optionally, you can Verify the installation
package on page 111.

2. Run tar -xf <TARBALL> to unpack the installation tarball.

You need about 1 GB of space to untar the installer.

3. Upgrade your PostgreSQL node.

a) Ensure that the user_data.conf file on your PostgreSQL node is up to date by running puppet
infrastructure recover_configuration on your primary server, and then copying /etc/
puppetlabs/enterprise/conf.d to the PostgreSQL node.

b) Copy the installation tarball to the PostgreSQL node, and from the installer directory, run the installer:
sudo ./puppet-enterprise-installer

4. From the installer directory on your primary server, run sudo ./puppet-enterprise-installer to start
the installer, and then follow the CLI instructions to complete your server upgrade.

To specify a different pe.conf file than the existing file, use the -c flag as shown here:

sudo ./puppet-enterprise-installer -c <FULL_PATH_TO_pe.conf>

This flag tells the installer to backup the previous pe.conf file to /etc/puppetlabs/enterprise/
conf.d/<TIMESTAMP>.conf and create a new pe.conf file at /etc/puppetlabs/enterprise/
conf.d/pe.conf.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/peadm
https://puppet.com/try-puppet/puppet-enterprise/download/

pe | Upgrading | 189

5. To upgrade compilers, log in to your primary server as root and run one of these commands:

• To upgrade specific compilers, run:

sudo puppet infrastructure upgrade compiler
 <COMPILER_FQDN-1>,<COMPILER_FQDN-2>

• To upgrade all compilers simultaneously, run:

sudo puppet infrastructure upgrade compiler --all

• To specify an authentication token location other than the default location, include --token-file
<PATH_TO_TOKEN> in the command as shown here:

sudo puppet infrastructure upgrade compiler <COMPILER_FQDN> --token-file
 <PATH_TO_TOKEN>

6. Upgrade the following additional PE infrastructure components:

• Agents
• PE client tools: On unmanaged nodes, you must re-install the client tools version that matches the PE version

you upgraded to. On managed nodes and infrastructure nodes, client tools are automatically updated when you
upgrade PE.

7. Optional: Remove previous PE packages from all infrastructure nodes. On your primary server, run: puppet
infrastructure run remove_old_pe_packages

All packages earlier than the current version are removed by default. To remove specific versions, append
pe_version=<VERSION_NUMBER> to the command.

Optionally convert legacy compilers to the new style compiler running the PuppetDB service.

Related information
Back up your infrastructure on page 866
The backup process creates a copy of your primary server, including configuration, certificates, code, and PuppetDB.
Backup can take several hours depending on the size of PuppetDB.

Generate a token using puppet-access on page 310
Use the puppet-access command to generate an authentication tokens from the command line of any workstation
(Puppet-managed or not), without the need to SSH into the primary server.

Upgrade an unmanaged PostgreSQL installation
You can upgrade a Puppet Enterprise (PE) installation that relies on an unmanaged PostgreSQL database.

Restriction: These steps are for upgrading to PE 2023.7 or later from an earlier 2023.y version, or from PE 2021.7.z.
Due to a significant PostgreSQL upgrade in PE 2021.6, if you want to upgrade from 2021.6 or earlier, follow the
instructions linked in the Upgrade paths on page 175 topic to upgrade from 2021.6 or earlier to 2021.7.z before
continuing to 2023.y.

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 190

1. Complete setup relevant to your chosen authentication method.

• Password based authentication: In pe.conf, specify the database password for the pe-hac user as shown
in the following example (replacing PASSWORD with the actual password you want to use):

"puppet_enterprise::hac_database_password": "PASSWORD"

Then use your PostgreSQL client to run the following SQL commands (replacing <PASSWORD>):

CREATE ROLE "pe-hac" LOGIN NOCREATEROLE NOCREATEDB SUPERUSER CONNECTION
 LIMIT -1 PASSWORD '<PASSWORD>';
CREATE ROLE "pe-hac-read" LOGIN NOCREATEROLE NOCREATEDB NOSUPERUSER
 CONNECTION LIMIT -1 PASSWORD '<PASSWORD>';
CREATE ROLE "pe-hac-write" LOGIN NOCREATEROLE NOCREATEDB NOSUPERUSER
 CONNECTION LIMIT -1 PASSWORD '<PASSWORD>';
CREATE DATABASE "pe-hac" OWNER "pe-hac" ENCODING 'utf8' LC_CTYPE
 'en_US.utf8' LC_COLLATE 'en_US.utf8' template template0;
REVOKE CONNECT ON DATABASE "pe-hac" FROM public;
GRANT CONNECT ON DATABASE "pe-hac" TO "pe-hac-read";
ALTER DEFAULT PRIVILEGES FOR USER "pe-hac" IN SCHEMA "public" GRANT
 SELECT ON TABLES TO "pe-hac-read";
ALTER DEFAULT PRIVILEGES FOR USER "pe-hac" IN SCHEMA "public" GRANT ALL
 PRIVILEGES ON TABLES TO "pe-hac-write";
ALTER DEFAULT PRIVILEGES FOR USER "pe-hac" IN SCHEMA "public" GRANT ALL
 PRIVILEGES ON SEQUENCES TO "pe-hac-write";
ALTER DEFAULT PRIVILEGES FOR USER "pe-hac" IN SCHEMA "public" GRANT ALL
 PRIVILEGES ON FUNCTIONS TO "pe-hac-write";

• Certificate based authentication: Add the following entries to pg_hba.conf, replacing
<PRIMARY_CERTNAME> with the certname of your primary server:

hostssl pe-hac pe-hac 0.0.0.0/0 cert map=pe-hac-pe-hac-map
 clientcert=verify-full
hostssl pe-hac pe-hac-read 0.0.0.0/0 cert map=pe-hac-pe-hac-read-map
 clientcert=verify-full
hostssl pe-hac pe-hac-write 0.0.0.0/0 cert map=pe-hac-pe-hac-write-map
 clientcert=verify-full

Add the following lines to pg_ident.conf (replacing <PRIMARY_CERTNAME>):

pe-hac-pe-hac-map <PRIMARY_CERTNAME> pe-hac
pe-hac-pe-hac-read-map <PRIMARY_CERTNAME> pe-hac-read
pe-hac-pe-hac-write-map <PRIMARY_CERTNAME> pe-hac-write

Then use your PostgreSQL client to run the following SQL commands:

CREATE ROLE "pe-hac" LOGIN NOCREATEROLE NOCREATEDB SUPERUSER CONNECTION
 LIMIT -1;
CREATE ROLE "pe-hac-read" LOGIN NOCREATEROLE NOCREATEDB NOSUPERUSER
 CONNECTION LIMIT -1;
CREATE ROLE "pe-hac-write" LOGIN NOCREATEROLE NOCREATEDB NOSUPERUSER
 CONNECTION LIMIT -1;
CREATE DATABASE "pe-hac" OWNER "pe-hac" ENCODING 'utf8' LC_CTYPE
 'en_US.utf8' LC_COLLATE 'en_US.utf8' template template0;
REVOKE CONNECT ON DATABASE "pe-hac" FROM public;
GRANT CONNECT ON DATABASE "pe-hac" TO "pe-hac-read";
ALTER DEFAULT PRIVILEGES FOR USER "pe-hac" IN SCHEMA "public" GRANT
 SELECT ON TABLES TO "pe-hac-read";
ALTER DEFAULT PRIVILEGES FOR USER "pe-hac" IN SCHEMA "public" GRANT ALL
 PRIVILEGES ON TABLES TO "pe-hac-write";
ALTER DEFAULT PRIVILEGES FOR USER "pe-hac" IN SCHEMA "public" GRANT ALL
 PRIVILEGES ON SEQUENCES TO "pe-hac-write";
ALTER DEFAULT PRIVILEGES FOR USER "pe-hac" IN SCHEMA "public" GRANT ALL
 PRIVILEGES ON FUNCTIONS TO "pe-hac-write";

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 191

2. Download the tarball for your operating system and architecture. Optionally, you can Verify the installation
package on page 111.

3. Run tar -xf <TARBALL> to unpack the installation tarball.

You need about 1 GB of space to untar the installer.

4. From the installer directory on your primary server, run sudo ./puppet-enterprise-installer -s to
start the installer, and then follow the CLI instructions to complete your server upgrade.

• The -s flag tells the installer to skip database checks.
• To specify a different pe.conf file than the existing file, use the -c flag as shown here:

sudo ./puppet-enterprise-installer -c <FULL_PATH_TO_pe.conf>

The -c flag tells the installer to back up the previous pe.conf file to /etc/puppetlabs/
enterprise/conf.d/<TIMESTAMP>.conf and create a pe.conf file at /etc/puppetlabs/
enterprise/conf.d/pe.conf.

5. To upgrade compilers, log in to your primary server as root and run one of these commands:

• To upgrade specific compilers, run:

sudo puppet infrastructure upgrade compiler
 <COMPILER_FQDN-1>,<COMPILER_FQDN-2>

• To upgrade all compilers simultaneously, run:

sudo puppet infrastructure upgrade compiler --all

• To specify an authentication token location other than the default location, include --token-file
<PATH_TO_TOKEN> in the command as shown here:

sudo puppet infrastructure upgrade compiler <COMPILER_FQDN> --token-file
 <PATH_TO_TOKEN>

6. Upgrade the following additional PE infrastructure components:

• Agents
• PE client tools: On unmanaged nodes, you must re-install the client tools version that matches the PE version

you upgraded to. On managed nodes and infrastructure nodes, client tools are automatically updated when you
upgrade PE.

7. Optional: Remove previous PE packages from all infrastructure nodes. On your primary server, run: puppet
infrastructure run remove_old_pe_packages

All packages earlier than the current version are removed by default. To remove specific versions, append
pe_version=<VERSION_NUMBER> to the command.

CAUTION: Don't use CONCURRENTLY with PostgreSQL 14.0 through 14.3. However, if you do, ensure
that you REINDEX without using CONCURRENTLY.

Upgrade PE using PIM
Puppet Installation Manager (PIM) supports the upgrading of Puppet Enterprise (PE) for all supported installation
architectures. For an interactive experience, choose the guided upgrade process and follow the steps in your terminal.
Alternatively, if you do not require guidance, you can run your upgrade from the PIM command line by passing a
JSON file containing your installation parameters.

Regardless of the upgrade process you choose, you can use PIM on a jump host to upgrade PE infrastructure
components on remote infrastructure nodes. Alternatively, you can upgrade PE by using PIM on your primary server.
In this scenario, if you have additional infrastructure nodes that host PE components, your primary server can serve as
a jump host.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/try-puppet/puppet-enterprise/download/

pe | Upgrading | 192

PIM uses the Puppet Enterprise Administration Module (PEADM), which depends on Puppet Bolt, a tool for
automating Puppet infrastructure maintenance tasks. When you use PIM to upgrade, PIM checks whether Bolt is
installed and whether your current installation is configured by PEADM. If necessary, PIM provides the option to
automatically install Bolt and convert your installation to a PEADM-compatible configuration, so you can proceed
with upgrading.

Upgrade PE using the guided process
For an interactive experience, use the guided upgrade process. PIM fetches information about your current installation
configuration and configures your upgrade accordingly.

Before you begin

• Carefully review Upgrade cautions on page 176.
• Check that your modules work with the new PE version. See Test modules before upgrading on page 183.
• In Hiera, pe.conf, or the console (in the PE Master node group), remove any agent_version parameters

you set in the pe_repo class that matches your infrastructure nodes. This ensures the upgrade isn't blocked by
attempting to download non-default agent versions for your infrastructure OS and architecture.

• Back up your installation.
• Ensure that you have the required access to the PE infrastructure nodes in your installation:

• To upgrade PE by using PIM on your primary server, you must log in to your primary server as the root user.
• To upgrade PE components on remote infrastructure nodes, the machine running PIM must have root SSH

access to those nodes.

To upgrade PE by using the PIM guided process:

1. Download the latest version of PIM.

Go to the Puppet Installation Manager download page and download the binary for your operating system.

2. Start the guided upgrade process.

In your terminal, navigate to the pim directory and run the following command:

./pim wizard

3. Follow the guided steps in your terminal to complete the upgrade.

If you require additional guidance during the upgrade process, you can view help content by pressing Ctrl+H.

Important: PIM uses the Puppet Enterprise Administration Module (PEADM), which depends on Puppet Bolt,
a tool for automating Puppet infrastructure maintenance tasks. PIM checks whether Bolt is installed and whether
your current installation is configured by PEADM. If necessary, PIM provides the option to automatically install
Bolt and convert your installation to a PEADM-compatible configuration, so you can proceed with upgrading.

Upgrade PE with your defined parameters
If you do not require guidance to upgrade PE, you can specify your upgrade parameters in a JSON file. Then use PIM
to start the upgrade by running a single command.

Before you begin

• Carefully review Upgrade cautions on page 176.
• Check that your modules work with the new PE version. See Test modules before upgrading on page 183.
• In Hiera, pe.conf, or the console (in the PE Master node group), remove any agent_version parameters

you set in the pe_repo class that matches your infrastructure nodes. This ensures the upgrade isn't blocked by
attempting to download non-default agent versions for your infrastructure OS and architecture.

• Back up your installation.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/downloads/puppet-installation-manager-beta

pe | Upgrading | 193

• Ensure that you have the required access to the PE infrastructure nodes in your installation:

• To upgrade PE by using PIM on your primary server, you must log in to your primary server as the root user.
• To upgrade PE components on remote infrastructure nodes, the machine running PIM must have root SSH

access to those nodes. You can configure SSH, or use the -b flag to pass the SSH key or SSH credentials
when you run the upgrade command.

• Ensure that your installation is compatible with PIM. You can proceed directly with upgrading if you installed
PE using PIM or the Puppet Enterprise Administration Module (PEADM), or if you previously converted your
installation for compatibility. If your installation is not compatible with PIM, you can use the PIM CLI to convert
your installation and then proceed with upgrading. See Converting your installation on page 195

To upgrade PE from the PIM command line:

1. Download the latest version of PIM.

Go to the Puppet Installation Manager download page and download the binary for your operating system.

2. Create a JSON file specifying the relevant parameters for your PE installation and the version you want to upgrade
to.

If you have a saved JSON file that you previously used to install or upgrade PE, you can edit that file as required
and use it for your upgrade.

For examples illustrating the JSON properties required for different PE architectures, see Creating an upgrade
parameters file on page 193.

3. Start the upgrade.

In your terminal, navigate to the pim directory and run one of the following commands, replacing
parameters.json with the actual file name (including the file path, if necessary):

• To run the upgrade without debugging and without configuring SSH, use a command like the following
example:

./pim upgrade parameters.json

• To enable debug logging, add -d or --debug. For example:

./pim upgrade parameters.json --debug

• To pass an SSH key or SSH credentials for accessing remote nodes, use the -b flag as shown in the following
examples:

./pim upgrade -b user=root -b private-key=~/.ssh/ssh_key parameters.json

./pim upgrade -b user=root -b password=ssh_password parameters.json

4. Follow the CLI prompts to complete the upgrade process.

Important: PIM uses the Puppet Enterprise Administration Module (PEADM), which depends on Puppet Bolt,
a tool for automating Puppet infrastructure maintenance tasks. When you run the pim upgrade command, PIM
checks whether Bolt is installed and whether your current installation was configured by PEADM. If necessary,
PIM provides the option to automatically install Bolt and convert your installation to a PEADM-compatible
configuration, so you can proceed with upgrading. For more information on converting your installation, see
Convert your installation on page 195.

Creating an upgrade parameters file
To upgrade PE from the Puppet Installation Manager (PIM) command line, you must use a JSON file containing
your installation parameters and pass that file with the ./pim upgrade command. The JSON file defines your
installation architecture, including the option for disaster recovery, and specifies the PE version you want to upgrade
to.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/downloads/puppet-installation-manager-beta

pe | Upgrading | 194

Important: Creating a JSON file containing upgrade parameters is not required if you use the guided upgrade
process. With the guided process, PIM automatically fetches information about your current installation configuration
and configures your upgrade accordingly.

Upgrade configuration examples

The following examples illustrate how to structure the JSON file for different PE configurations.

Upgrade parameters for an extra-large architecture with disaster recovery

{
 "primary_host": "pe-xl-core-0.lab1.puppet.vm",
 "primary_postgresql_host": "pe-xl-core-1.lab1.puppet.vm",
 "replica_host": "pe-xl-core-2.lab1.puppet.vm",
 "replica_postgresql_host": "pe-xl-core-3.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-xl-compiler-0.lab1.puppet.vm",
 "pe-xl-compiler-1.lab1.puppet.vm"
],
 "version": "2023.6.0"
}

Upgrade parameters for an extra-large architecture without disaster recovery

{
 "primary_host": "pe-xl-core-0.lab1.puppet.vm",
 "primary_postgresql_host": "pe-xl-core-1.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-xl-compiler-0.lab1.puppet.vm",
 "pe-xl-compiler-1.lab1.puppet.vm"
],
 "version": "2023.6.0"
}

Upgrade parameters for a large architecture with disaster recovery

{
 "primary_host": "pe-l-core-0.lab1.puppet.vm",
 "replica_host": "pe-l-core-2.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-l-compiler-0.lab1.puppet.vm",
 "pe-l-compiler-1.lab1.puppet.vm"
],
 "version": "2023.6.0"
}

Upgrade parameters for a large architecture without disaster recovery

{
 "primary_host": "pe-l-core-0.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-l-compiler-0.lab1.puppet.vm",
 "pe-l-compiler-1.lab1.puppet.vm"
],
 "version": "2023.6.0"
}

Upgrade parameters for a standard architecture with disaster recovery

{

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 195

 "primary_host": "pe-core-0.lab1.puppet.vm",
 "replica_host": "pe-core-2.lab1.puppet.vm",
 "version": "2023.6.0"
}

Upgrade parameters for a standard architecture without disaster recovery

{
 "primary_host": "pe-core-0.lab1.puppet.vm",
 "version": "2023.6.0"
}

Converting your installation
Puppet Installation Manager (PIM) uses the Puppet Enterprise Administration Module (PEADM), which is a set of
Bolt plans for deploying and managing Puppet Enterprise (PE) infrastructure. To use PIM to upgrade, you might be
required to convert your installation to a PEADM-compatible configuration.

Converting your installation does not add or remove any PE components and does not alter your installation
architecture, but it does implement some required configuration changes, including certificate extensions for your
infrastructure nodes and additional node groups for any compilers and database servers included in your installation.

When you use the guided upgrade process, if conversion is required, PIM notifies you of the requirement and runs the
conversion automatically when you confirm that you want to proceed.

When using the CLI, if the configuration of your existing installation is not compatible with PIM, you can run a
conversion first, and then run the upgrade with your defined parameters.

Convert your installation

Before you begin

• Back up your installation.
• Ensure that you have the required access to the PE infrastructure nodes in your installation.

• To convert PE by using PIM on your primary server, you must log in to your primary server as the root user.
• To convert a PE installation that includes remote infrastructure nodes, the machine running PIM must have

root SSH access to those nodes. You can configure SSH, or use the -b flag to pass the SSH key or SSH
credentials when you run the convert command.

To convert your installation by using PIM:

1. Download the latest version of PIM.

Go to the Puppet Installation Manager download page and download the binary for your operating system.

2. Create a JSON file containing the relevant parameters for your PE installation.

For examples illustrating the JSON properties required for different PE architectures, see Creating a conversion
parameters file on page 196.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/downloads/puppet-installation-manager-beta

pe | Upgrading | 196

3. Start the conversion.

In your terminal, navigate to the pim directory and run one of the following commands, replacing
parameters.json with the actual file name (including the file path, if necessary):

• To run the conversion without debugging and without configuring SSH, use a command like the following
example:

./pim convert parameters.json

• To enable debug logging, add -d or --debug. For example:

./pim convert parameters.json --debug

• To pass an SSH key or SSH credentials for accessing remote nodes, use the -b flag as shown in the following
examples:

./pim convert -b user=root -b private-key=~/.ssh/ssh_key parameters.json

./pim convert -b user=root -b password=ssh_password parameters.json

Creating a conversion parameters file
To convert your installation using the Puppet Installation Manager (PIM) command line, you must use a JSON file
containing the parameters relevant to your installation architecture and pass that file with the convert command. The
JSON file references your installation architecture, including disaster recovery where applicable.

Important: Creating a JSON file containing installation parameters is not required if you use the guided upgrade
process. With the guided process, if conversion is required, PIM notifies you of the requirement and runs the
conversion automatically when you confirm that you want to proceed.

Configuration examples

The following examples illustrate how to structure the JSON file for converting different PE configurations.

Parameters for converting an extra-large architecture with disaster recovery

{
 "primary_host": "pe-xl-core-0.lab1.puppet.vm",
 "primary_postgresql_host": "pe-xl-core-1.lab1.puppet.vm",
 "replica_host": "pe-xl-core-2.lab1.puppet.vm",
 "replica_postgresql_host": "pe-xl-core-3.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-xl-compiler-0.lab1.puppet.vm",
 "pe-xl-compiler-1.lab1.puppet.vm"
],
}

Parameters for converting an extra-large architecture without disaster recovery

{
 "primary_host": "pe-xl-core-0.lab1.puppet.vm",
 "primary_postgresql_host": "pe-xl-core-1.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-xl-compiler-0.lab1.puppet.vm",
 "pe-xl-compiler-1.lab1.puppet.vm"
],
}

Parameters for converting a large architecture with disaster recovery

{

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 197

 "primary_host": "pe-l-core-0.lab1.puppet.vm",
 "replica_host": "pe-l-core-2.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-l-compiler-0.lab1.puppet.vm",
 "pe-l-compiler-1.lab1.puppet.vm"
],
}

Parameters for converting a large architecture without disaster recovery

{
 "primary_host": "pe-l-core-0.lab1.puppet.vm",
 "compiler_hosts": [
 "pe-l-compiler-0.lab1.puppet.vm",
 "pe-l-compiler-1.lab1.puppet.vm"
],
}

Parameters for converting a standard architecture with disaster recovery

{
 "primary_host": "pe-core-0.lab1.puppet.vm",
 "replica_host": "pe-core-2.lab1.puppet.vm",
}

Parameters for converting a standard architecture without disaster recovery

{
 "primary_host": "pe-core-0.lab1.puppet.vm",
}

Upgrading agents
Upgrade your agents as new versions of Puppet Enterprise (PE) become available. The puppet_agent module
helps automate upgrades, and provides the safest upgrade. Alternatively, you can use a script to upgrade individual
nodes.

Important: Before upgrading agents, verify that the primary server and agent software versions are compatible.
Component versions in recent PE releases on page 14 lists which Puppet agent versions are tested and supported
for each PE release.

After upgrading, run Puppet on your agents (such as with puppet agent -t) as soon as possible to verify that the
agents have the correct configuration and your systems are behaving as expected.

Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Installing agents on page 131
Puppet Enterprise (PE) agent nodes monitor your infrastructure and help keep it in your desired state. You can install
agents on *nix, Windows, and macOS nodes.

Adding and removing agent nodes on page 445
You can add nodes you want to manage with Puppet Enterprise (PE) and remove nodes you no longer need.

Upgrading Puppet Enterprise on page 184

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 198

Upgrade your PE installation as new versions become available.

Upgrade agents using the puppet_agent module
You can use the puppet_agent module to upgrade multiple *nix, macOS, or Windows agents at one time. The
module handles all the latest version-to-version upgrades.

Important: For the most reliable upgrade, use the latest version of the puppet_agent module available from the
Forge to upgrade agents. Test the upgrade on a subset of agents, and after you verify the upgrade, upgrade remaining
agents.

1. Deploy the puppet_agent module using the appropriate method, depending on how your PE installation is
configured.

• If you use Code Manager or r10k to deploy and manage your Puppet code, declare the puppet-agent
module in the Puppetfile on relevant branches in your control repo. For more information about installing PE
modules when you use Code Manager or r10k, see Managing modules with a Puppetfile on page 784.

• If you do not use Code Manager or r10k, you can install the puppet_agent module by running the
following command on your primary server:

puppet module install puppetlabs-puppet_agent

2. Configure the primary server to download the agent version you want to upgrade to.

a) In the PE console, go to Node groups > PE Infrastructure > PE Master.
b) On the Classes tab, enter pe_repo in the Add a new class field, and select the appropriate repo class from

the list of classes.

Repo classes are formatted as pe_repo::platform::<AGENT_OS_VERSION_ARCHITECTURE>.

To use a specific agent version, set the agent_version variable using an X.Y.Z format (for example,
8.2.0). If you specify a version in this way, agents do not automatically upgrade when you upgrade your
primary server.

c) Click Add class and commit changes.
d) On your primary server, run Puppet to configure the newly assigned class: puppet agent -t

A new agent package repo is created at /opt/puppetlabs/server/data/packages/public/<PE
VERSION>/<PLATFORM>/.

3. Create an agent upgrade node group.

a) Go to Node groups > Add group.
b) Set the Parent name to the name of the classification node group that is the parent of this group, such as All

Nodes.
c) Enter a Group name describing the classification node group's role, such as agent_upgrade.
d) Select the Environment your agents are in.
e) Do not select the Environment group option.
f) Click Add.

4. Click the link to Add membership rules, classes, and variables.

5. On the Rules tab, create one or more rules to add the agent nodes you want to upgrade to this group, click Add
Rule, and then commit changes.

Dynamically add nodes to a node group on page 455 provides detailed instructions for creating node group
rules.

6. Go to the Classes tab for the agent node upgrade group, add the puppet_agent class, and click Add class. You
might need to click Refresh to update the classifier.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/puppet_agent

pe | Upgrading | 199

7. Locate the puppet_agent class you just added. Select the package_version parameter, set the Value to the
puppet-agent package version you want to install, then commit changes.

If you want to automatically install the same agent version as your primary server, set the Value to auto. To
install a specific version, enter the version number in X.Y.Z format. For example, setting the Value to 8.2.0
specifies agent version 8.2.0.

8. If you changed the prefix parameter for the pe_repo class in the PE Master node group, you must
communicate this to the agent upgrade node group. To do this, on the agent upgrade node group, set one of
the *_source parameters for the puppet_agent class to https://<PRIMARY_HOSTNAME>:8140/
<PREFIX>. Go to the puppet_agent module's Forge page for descriptions of the various *_source
parameters.

9. Run Puppet on the agents you're upgrading, such as: /opt/puppet/bin/puppet agent -t

After the Puppet run, you can verify the upgrade with: /opt/puppetlabs/bin/puppet --version
Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Upgrade agents using a script
To upgrade the agent on an individual node, you can use a script to upgrade directly from the node. This method
relies on a package repository hosted on your primary server.

Tip: If you encounter SSL errors during the upgrade process, make sure the agent node's OpenSSL is updated and
matches the primary server's OpenSSL version. Use these commands check OpenSSL versions:

• For the primary server: /opt/puppetlabs/puppet/bin/openssl version
• For agent nodes: openssl version

Upgrade a *nix agent using a script
You can use a script to upgrade individual *nix agents.

For general information about forming curl commands and authentication in commands, go to Using example
commands on page 25.

1. Configure the primary server to download the agent version you want to upgrade to.

a) In the PE console, go to Node groups > PE Infrastructure > PE Master.
b) On the Classes tab, enter pe_repo in the Add a new class field, and select the appropriate repo class from

the list of classes.

Repo classes are formatted as pe_repo::platform::<AGENT_OS_VERSION_ARCHITECTURE>.

To use a specific agent version, set the agent_version variable using an X.Y.Z format (for example,
8.2.0). If you specify a version in this way, agents do not automatically upgrade when you upgrade your
primary server.

c) Click Add class and commit changes.
d) On your primary server, run Puppet to configure the newly assigned class: puppet agent -t

A new agent package repo is created at /opt/puppetlabs/server/data/packages/public/<PE
VERSION>/<PLATFORM>/.

2. SSH into the agent node you want to upgrade.

3. Run the upgrade script command:

cacert="$(puppet config print localcacert)"
uri="https://$(puppet config print server):8140/packages/current/
install.bash"

curl --cacert "$cacert" "$uri" | sudo bash

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/puppet_agent#source

pe | Upgrading | 200

PE services restart automatically after upgrade.

Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Upgrade a Windows agent using a script
You can use a script to upgrade individual Windows agents.

CAUTION: For Windows, this method is riskier than when you Upgrade agents using the puppet_agent
module on page 198, because you must manually perform actions and verifications that the
puppet_agent module handles automatically.

Note: The <PRIMARY_HOSTNAME> portion of the installer script—as provided in the following example—refers
to the FQDN of the primary server. The FQDN must be fully resolvable by the machine on which you're installing or
upgrading the agent.

1. Stop the Puppet service and the PXP agent service.

2. On the Windows agent, open PowerShell as an administrator and run the install script:

[Net.ServicePointManager]::ServerCertificateValidationCallback = {$true};
 `
$webClient = New-Object System.Net.WebClient; `
$webClient.DownloadFile('https://<PRIMARY_HOSTNAME>:8140/packages/current/
install.ps1', 'install.ps1'); `
.\install.ps1

3. Run puppet agent -t and verify that Puppet runs succeed.

4. Restart the Puppet service and the PXP agent service.

Upgrade agents without internet access
In situations where your primary and agents are airgapped, the primary server can't download the package. Therefore,
you have to download the agent tarball from an internet-connected system, prepare the airgapped primary server to
serve up the agent package to your agents, and then run the upgrade script on your agents.

1. Download the appropriate agent tarball.

If you are installing an agent version that is different from your primary server, make sure you download the agent
tarball corresponding to the agent_version parameter for the node's platform, as explained in Setting agent
versions on page 201.

Important: To initiate the download you will need authentication credentials. Use the string literallicense-
id as your username and use your#PE License ID as the password. You can find your PE License ID in your PE
license file or in the#PE#console by selecting License from the navigation bar. If your PE License ID is not present
in your license, please Contact our sales team.

2. On your primary server, copy the agent tarball to the appropriate agent package directory at: /opt/
puppetlabs/server/data/staging/pe_repo-puppet-agent-<AGENT_VERSION>

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/misc/pe-files/pe_repo/
https://www.puppet.com/contact?utm_term=trendemon

pe | Upgrading | 201

3. Declare the agent architecture class in the PE Master node group:

a) In the PE console, go to Node groups > PE Infrastructure > PE Master.
b) On the Classes tab, enter pe_repo in the Add a new class field, and select the appropriate repo class from

the list of classes.

Repo classes are formatted as pe_repo::platform::<AGENT_OS_VERSION_ARCHITECTURE>.

To use a specific agent version, set the agent_version variable using an X.Y.Z format (for example,
8.2.0). If you specify a version in this way, agents do not automatically upgrade when you upgrade your
primary server.

c) Click Add class and commit changes.
d) On your primary server, run Puppet to configure the newly assigned class: puppet agent -t

A new agent package repo is created at /opt/puppetlabs/server/data/packages/public/<PE
VERSION>/<PLATFORM>/.

4. SSH into, or physically log on to, the agent node you want to upgrade.

5. Run the upgrade script command:

cacert="$(puppet config print localcacert)"
uri="https://$(puppet config print server):8140/packages/current/
install.bash"

curl --cacert "$cacert" "$uri" | sudo bash

6. Repeat these steps to upgrade additional agents.

Setting agent versions
Usually, you want your agent nodes to run the same agent version as the primary server; however, if absolutely
necessary, agent nodes can run a different, but compatible, version.

Important: Make sure the primary server and agent versions are compatible. Component versions in recent PE
releases on page 14 lists which Puppet agent versions are tested and supported for each PE release.

If you Upgrade agents using the puppet_agent module on page 198, you specify the agent version by setting the
package_version parameter on the agent upgrade node group. You can define a specific version or set this to
auto, if you want your agents to always run the same version as your primary server. When set to auto, agent
nodes to automatically upgrade themselves on their first Puppet run after a primary server upgrade. You can also set
the package_version parameter for the puppet_agent class in the puppet_agent module's configuration.

The agent version can be specified on a platform-by-platform basis by the agent_version parameter of any
pe_repo::platform classes in the PE Master node group (at Node Groups > PE Master > Classes). If your
nodes run on various platforms, you must set the agent_version on each pe_repo class that you want to use a
specific agent version. For example, you can specify different versions for 32-bit and 64-bit Windows agents.

CAUTION: Setting agent_version blocks upgrades. Setting this parameter is only recommended in
specific scenarios with strong justification for doing so.

Never set agent_version for infrastructure nodes. Critical failures can occur if all your infrastructure
nodes, including the primary server, compilers, and replicas, aren't running the same agent version.

When you install or upgrade agent nodes, the agent install script looks at the node's platform class and installs the
specified agent version. If you don't specify a version for a platform, the script installs the default version packaged
with your current version of PE. If you specified an older version for your agent platforms, you could upgrade your
primary server while maintaining an older agent version on your agent nodes. Similarly, if you specified a newer
version for your agent platforms, your agent nodes would run a newer agent version than your primary server.

CAUTION:

© 2024 Puppet, Inc., a Perforce company

pe | Upgrading | 202

The primary server's agent version must match the agent version on other infrastructure nodes, including
compilers and replicas, otherwise your primary server won’t compile catalogs for those nodes. Not compiling
catalogs is a critical failure. Never set agent_version on any infrastructure node (including the primary
server, compilers, and replicas).

Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Upgrade agents using Puppet Plan

You can use the#Puppet Enterprise (PE)#console to upgrade agents for your specified platform. To download and
upgrade an agent in the console:

1. Go to ORCHESTRATION#>#Plans.

2. In the Plans#text field add enterprise_tasks::add_platforms.

3. Under Plan parameters enter parameters and values for your plan. See Puppet Plan parameters on page 137
and Puppet Plan parameters and possible values to fetch a Puppet agent on page 138.

4. Run the plan to download the Puppet agent.

5. SSH into the agent node you want to upgrade.

6. Run the upgrade script command:

cacert="$(puppet config print localcacert)"
uri="https://$(puppet config print server):8140/packages/current/
install.bash"

curl --cacert "$cacert" "$uri" | sudo bash

Important: We recommend users do not upgrade agents on the PE server, as this may lead to unexpected errors.
If users wish to upgrade agents on the PE server, they will need to upgrade to the latest PE server.

Important: When upgrading a non-infrastructure node, be especially cautious if the node has the same platform
as the PE server. It's best to avoid upgrading such agents if possible. If the upgrade is unavoidable, ensure that
you run the plan again immediately after the upgrade to download the agent version that matches the PE server’s
agent. This prevents any new agent from being installed on any new infrastructure node, which must have the
same agent version as the PE server for smooth communication. If the plan is not re-run, the next time the Puppet
agent runs, the Puppet server will downgrade the newly created infrastructure node. For example, if the PE server
is running on a platform like RedHat 9 x86_64 and the non-infrastructure node has the same platform, you should
avoid upgrading the agent on the non-infrastructure node.

Migrate PE
As an alternative to upgrading, you can migrate your PE installation. Migrating results in little or no downtime, but it
requires additional system resources because you must configure a new primary server.

If you have a standard or large installation, you can implement the following migration process:

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 203

Migrate your installation
To migrate your installation, create a new primary server. Then, on the new primary server, restore your existing
installation from a backup and proceed with upgrading PE.

Before you begin

Review the upgrade cautions for major changes to architecture and infrastructure components which might affect your
upgrade.

1. Back up your existing installation.

2. Install your current PE version on a new primary server node.

3. Restore your installation on the new primary server.

4. Upgrade your new primary server to the latest PE version.

Configuring Puppet Enterprise

• Tune infrastructure nodes on page 204
Use these guidelines to configure your Puppet Enterprise (PE) installation to maximize use of available system
resources (CPU and RAM).
• How to configure PE on page 212
After you've installed Puppet Enterprise (PE), you can optimize it by configuring and tuning settings. For example,
you might want to add your certificate to the allowlist, increase the max-threads setting for http and https
requests, or configure the number of JRuby instances.
• Configure Puppet Server on page 217
If needed, you can configure Puppet Server settings to optimize your Puppet Enterprise (PE) installation.
• Configure PuppetDB on page 222
If needed, you can configure PuppetDB settings to optimize your Puppet Enterprise (PE) installation.
• Configure security settings on page 224
Configure these security settings to ensure your Puppet Enterprise (PE) environment is secure.
• Configure proxies on page 230
If you have components with limited (or no) internet access, you can configure proxies at various points in your
infrastructure, depending on your connectivity limitations.
• Configure the console on page 232
After installing Puppet Enterprise (PE), you can change product settings to customize the PE console's behavior. You
can configure many of these settings directly in the console.
• Configure orchestration on page 238
After installing PE, you can change some default settings to further configure the orchestrator and pe-
orchestration-services.
• Configure ulimit on page 243
As your infrastructure grows and you use Puppet Enterprise (PE) to manage more agents, you might need to increase
the number of allowed file handles per client.
• Analytics data collection on page 245
Some components automatically collect data about how you use Puppet Enterprise (PE). You can opt out of this data
collection during or after installing PE.
• Static catalogs on page 249
A catalog is a document that describes the desired state for each resource that Puppet manages on a node. Puppet
Enterprise (PE) primary servers typically compile catalogs from manifests of Puppet code. A static catalog is a
specific type of Puppet catalog that includes metadata specifying the desired state of any file resources containing
source attributes pointing to puppet:/// locations on a node.

Related information
Configure Code Manager on page 794

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/2021.7/installing_pe#install_pe

pe | Configuring Puppet Enterprise | 204

To configure Code Manager you must enable Code Manager in Puppet Enterprise (PE), set up authentication, and test
the connection between the control repository and Code Manager.

Configuring patch management on page 587
To enable patch management, create a node group for nodes you want to patch and add the node group to the PE
Patch Management parent node group.

Configuring disaster recovery on page 252
Enabling disaster recovery for Puppet Enterprise ensures that your systems can fail over to a replica of your primary
server if infrastructure components become unreachable.

About the pe_status_check module on page 412
The pe_status_check module can alert you when your Puppet Enterprise (PE) installation is not in an ideal state,
based on preset indicators, and describe how you can resolve or improve the detected issue.

Tune infrastructure nodes
Use these guidelines to configure your Puppet Enterprise (PE) installation to maximize use of available system
resources (CPU and RAM).

PE includes multiple services running on one or more infrastructure hosts. Services running on the same host share
the host's resources. You can configure each service's settings to maximize use of system resources and optimize
performance.

Each service's default settings are conservative, and your optimal settings depend of the complexity and scale of your
infrastructure.

Configure these settings after you install PE, upgrade PE, or make changes to infrastructure hosts (such as changing
existing hosts' system resources, adding new hosts, or adding or changing compilers).

Related information
Hardware requirements on page 83
These hardware requirements are based on internal testing at Puppet and are provided as minimum guidelines to help
you determine your hardware needs.

Primary server tuning
These are the default and recommended tuning settings for your primary server or disaster recovery replica.

Note: Recommended settings are appropriate for standard installations or large installations with compilers running
the PuppetDB service. Installations with legacy compilers generally require more resources on the primary server for
PuppetDB.

Puppet Server PuppetDB Console Orchestrator PostgreSQLHardwareSetting
category

JRuby
max

active
instances

Java
heap
(MB)

Reserved
code
cache
(MB)

Command
processing

threads

Java
heap
(MB)

Java
heap
(MB)

Java
heap
(MB)

JRuby
max

active
instances

Shared
buffers
(MB)

Work
memory

(MB)

Default 3 2048 512 2 256 256 704 1 976 4

Recommended2 1024 192 1 819 655 819 1 1638 4

4 cores,
8 GB
RAM

With
legacy
compilers

2 1024 192 2 1228 655 819 1 1638 4

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 205

Puppet Server PuppetDB Console Orchestrator PostgreSQLHardwareSetting
category

JRuby
max

active
instances

Java
heap
(MB)

Reserved
code
cache
(MB)

Command
processing

threads

Java
heap
(MB)

Java
heap
(MB)

Java
heap
(MB)

JRuby
max

active
instances

Shared
buffers
(MB)

Work
memory

(MB)

Default 4 2048 512 3 256 256 704 1 1488 4

Recommended3 2304 288 1 1024 819 1024 1 2048 4

6 cores,
10 GB
RAM

With
legacy
compilers

2 1536 192 3 1536 819 1024 1 2048 4

Default 4 2048 512 4 256 256 704 1 2000 4

Recommended3 2304 288 2 1228 983 1228 1 2457 4

8 cores,
12 GB
RAM

With
legacy
compilers

3 2304 288 4 1843 983 1228 1 2457 4

Default 4 2048 512 5 256 256 704 1 3024 4

Recommended5 3840 480 2 1638 1024 1638 2 3276 4

10
cores,
16 GB
RAM With

legacy
compilers

4 3072 384 5 2457 1024 1638 2 3276 4

Default 4 2048 512 6 256 256 704 1 4096 4

Recommended8 6144 768 3 2457 1024 2457 3 4915 4

12
cores,
24GB
RAM With

legacy
compilers

5 3840 480 6 3686 1024 2457 3 4915 4

Default 4 2048 512 8 256 256 704 1 4096 4

Recommended9 9216 864 4 3276 1024 3276 3 6553 4

16
cores,
32GB
RAM With

legacy
compilers

7 7168 672 8 4915 1024 3276 3 6553 4

Compiler tuning
These are the default and recommended tuning settings for compilers running the PuppetDB service.

Puppet Server PuppetDBHardware Setting
category

JRuby
max active
instances

Java heap
(MB)

Reserved
code cache

(MB)

Command
processing

threads

Java heap
(MB)

Read
Maximum
Pool Size

Write
Maximum
Pool Size

4 cores, 8
GB RAM

Default 3 1536 384 1 819 4 2

Default 4 2048 512 1 1228 6 26 cores, 12
GB RAM

Recommended 4 3072 512 1 1228 6 2

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 206

Legacy compiler tuning
These are the default and recommended tuning settings for legacy compilers without the PuppetDB service.

Puppet ServerHardware Setting category

JRuby max
active instances

Java heap (MB) Reserved code
cache (MB)

Default 3 2048 5124 cores, 8 GB RAM

Recommended 3 1536 288

Default 4 2048 5126 cores, 12 GB RAM

Recommended 5 3840 480

The puppet infrastructure tune command
The puppet infrastructure tune command outputs optimized settings for Puppet Enterprise (PE) services
based on recommended guidelines.

Running puppet infrastructure tune queries PuppetDB to identify processor and memory facts about your
infrastructure hosts. The command outputs settings in YAML format for you to use in Hiera.

This command is compatible with most standard PE configurations, including those with compilers, a replica, or
standalone PostgreSQL.

You must run this command on your primary server as root. Using sudo for elevated privileges is not sufficient.
Instead, start a root session by running sudo su -, and then run the puppet infrastructure command.

These options are commonly used with the puppet infrastructure tune command:

• --current outputs existing tuning settings from the PE console and Hiera. This option also identifies duplicate
settings declared in both the console and Hiera

• --memory_per_jruby <MB> outputs tuning recommendations based on specified memory allocated to each
JRuby in Puppet Server. If you implement tuning recommendations using this option, specify the same value for
puppetserver_ram_per_jruby.

• --memory_reserved_for_os <MB> outputs tuning recommendations based on specified RAM reserved
for the operating system.

• --common outputs common settings, which are identical on several nodes, separately from node-specific
settings.

For more information about the tune command, run puppet infrastructure tune --help.

Restriction: The puppet infrastructure tune command fails if environmentpath (in your
puppet.conf file) is set to multiple environments. Comment out this setting before running this command. For
details about this setting, refer to environmentpath in the open source Puppet documentation.

Related information
RAM per JRuby on page 207
The puppetserver_ram_per_jruby setting determines how much RAM is allocated to each JRuby instance in
Puppet Server.

Tuning parameters
Configure tuning parameters to customize your PE service settings for optimum performance and hardware resource
utilization.

Specify tuning parameters in Hiera for the best scalability and consistency. You can learn About Hiera in the Puppet
documentation.

If you must use the PE console, add the parameter to the appropriate infrastructure node group using one of the
following methods:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/environments_creating.html#global-settings-environmentpath
https://puppet.com/docs/puppet/latest/hiera_intro.html#hiera_intro

pe | Configuring Puppet Enterprise | 207

• Specify puppet_enterprise::profile parameters (including java_args, shared_buffers, and
work_mem) as parameters of their class.

• Specify all other tuning parameters as configuration data.

How to configure PE on page 212 explains the different ways you can configure PE parameters.

RAM per JRuby
The puppetserver_ram_per_jruby setting determines how much RAM is allocated to each JRuby instance in
Puppet Server.

You might need to change this setting if you have complex Hiera code, many environments or modules, or large
reports.

Tip: If your PuppetDB service runs on a compiler, this is a good starting point for tuning your infrastructure, because
this value is factored into several other parameters, including JRuby max active instances on page 207 and Java
heap on page 209 allocation on compilers running PuppetDB.

Console node group

PE Master

Parameter

puppet_enterprise::puppetserver_ram_per_jruby

Default value

512 MB

Accepted values

An integer representing a number of MB

How to calculate

You can usually achieve good performance by allocating around 2 GB per JRuby.

If 2 GB is inadequate, it might help to Change the environment_timeout setting on page 218.

JRuby max active instances
The jruby_max_active_instances setting can be set in multiple places. It controls the maximum number of
JRuby instances to allow on the Puppet Server and how many plans can run concurrently in the orchestrator.

Puppet Server jruby_max_active_instances

Console node group

If Puppet Server runs on the primary server: PE Master

If the PuppetDB service runs on compilers: PE Compiler

Parameter

puppet_enterprise::master::puppetserver::jruby_max_active_instances

Tip: This parameter is the same as the max_active_instances parameter in the pe-puppet-server.conf
settings on page 220 and in open source Puppet.

Default value

If Puppet Server runs on the primary server, the default value is the number of CPUs minus 1. The minimum is 1,
and the maximum is 4.

If the PuppetDB service runs on compilers, the default value is the number of CPUs multiplied by 0.75. The
minimum is 1, and the maximum is 24.

Accepted values

An integer representing a number of JRuby instances

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 208

How to calculate

As a conservative estimate, one JRuby process uses approximately 512 MB of RAM. For most installations, four
JRuby instances are adequate.

Important: Because increasing the maximum number of JRuby instances also increases the amount of
RAM used by Puppet Server, make sure to proportionally scale the Puppet Server Java heap on page 209
size (java_args). For example, if you set jruby_max_active_instances to 4, set Puppet Server's
java_args to at least 2 GB.

Orchestrator jruby_max_active_instances

Running a plan consumes one JRuby instance. If a plan calls other plans, the nested plans use the parent plan's
JRuby instance. JRuby instances are deallocated once a plan finishes running, and tasks are not affected by JRuby
availability.

Console node group

PE Orchestrator

Parameter

puppet_enterprise::profile::orchestrator::jruby_max_active_instances

Default value

The default value is the orchestrator heap size (java_args) divided by 1024. The minimum is 1.

Note:

• The default value for the orchestrator.jruby.max-requests-per-
instance setting in pe-orchestration-services (which is configurable via the
puppet_enterprise::profile::orchestrator::max_requests_per_instance
parameter in Hiera) has changed from 100000 to 0. This disables JRuby instance flushing.

• Changing the orchestrator.jruby.max-requests-per-instance setting results in a full restart
of the pe-orchestration-services, which is required to clear any leaked memory, rather than a
service reload which was previously required.

Accepted values

An integer representing a number of JRuby instances

How to calculate

Because the jruby_max_active_instances default value is derived from the orchestrator heap size
(java_args), changing the orchestrator heap size automatically changes the number of JRuby instances
available to the orchestrator. For example, setting the orchestrator heap size to 5120 MB allows up to five JRuby
instances (or plans) to run concurrently.

If you notice poor performance while running plans, increase the orchestrator Java heap on page 209 size
instead of jruby_max_active_instances. However, keep in mind that allowing too many JRuby
instances can reduce system performance, especially if your plans use a lot of memory.

JRuby max requests per instance
The jruby_max_requests_per_instance setting determines the maximum number of HTTP requests
a JRuby handles before it's terminated. When a JRuby instance reaches this limit, it's flushed from memory and
replaced with a fresh one.

Console node group

PE Master

Parameter

puppet_enterprise::master::puppetserver::jruby_max_requests_per_instance

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 209

Tip: This parameter is the same as the max_requests_per_instance parameter in the pe-puppet-
server.conf settings on page 220 and in open source Puppet.

Default value

0

Note:

• The default value for the jruby-puppet.max-requests-per-
instance setting in pe-puppetserver (which is configurable via the
puppet_enterprise::master::puppetserver::max_requests_per_instance
parameter in Hiera) has changed from 100000 to 0. This disables JRuby instance flushing.

• Changing the jruby-puppet.max-requests-per-instance setting results in a full restart of the
pe-orchestration-services, which is required to clear any leaked memory, rather than a service
reload which was previously required.

Accepted values

An integer representing a number of HTTP requests

How to calculate

More frequent JRuby flushing can help address memory leaks, because it prevents any one interpreter from
consuming too much RAM. However, performance is reduced slightly each time a new JRuby instance loads.
Therefore, set this parameter to get a new interpreter no more than once every few hours.

Requests are balanced across multiple interpreters running concurrently, so the lifespan of each interpreter varies.

Java heap
The java_args settings specify heap size, which is the amount of memory that each Java process can request
from the operating system. You can specify a heap size for each PE service that uses Java, including Puppet Server,
PuppetDB, the console, and the orchestrator

Heap size is declared as a JSON hash containing a maximum (Xmx) and minimum (Xms) value. Usually, the
maximum and minimum are the same so that the heap size is fixed, for example:

{ 'Xmx' => '2048m', 'Xms' => '2048m' }

Puppet Server Java heap

Console node group: PE Master or PE Compiler

Parameter: puppet_enterprise::profile::master::java_args

Tip: puppet_enterprise::master::java_args and
puppet_enterprise::master::puppetserver::java_args are the same, because
profile::master filters down to master, which filters down to master::puppetserver.

Default value: 2 GB

PuppetDB Java heap

Console node group: If the PuppetDB service runs on compilers, set this parameter on the PE Compiler node
group. Otherwise, set this parameter on the PE PuppetDB node group.

Parameter: puppet_enterprise::profile::puppetdb

Default value: 256 MB

Console services Java heap

Console node group: PE Console

Parameter: puppet_enterprise::profile::console

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 210

Default value: 256 MB

Orchestrator Java heap

Console node group: PE Orchestrator

Parameter: puppet_enterprise::profile::orchestrator

Default value: 704 MB

Related information
Orchestrator and pe-orchestration-services parameters on page 238
These are some optional parameters you can use to configure the behavior of the orchestrator and the pe-
orchestration-services service.

Puppet Server reserved code cache
The reserved_code_cache setting specifies the maximum space available to store the Puppet Server code cache
during catalog compilation.

Console node group

If the PuppetDB service runs on compilers, set this parameter on the PE Compiler node group. Otherwise, set this
parameter on the PE Master node group.

Parameter

puppet_enterprise::master::puppetserver::reserved_code_cache

Default value

If Puppet Server runs on your primary server: If total RAM is less than 2 GB, then the Java default is used.
Otherwise, the default value is 512 MB.

If the PuppetDB service runs on compilers: The default value is the number of JRuby instances multiplied by 128
MB. The minimum is 128 MB, and the maximum is 2048 MB.

Accepted values

An integer representing a number of MB

How to calculate

JRuby requires an estimated 128 MB of cache space for each instance. To determine the minimum amount of
space needed multiple the number of JRuby instances by 128 MB.

PuppetDB command processing threads
The command_processing_threads setting specifies how many command processing threads PuppetDB uses
to sort incoming data. Each thread can process one command at a time.

Console node group

If the PuppetDB service runs on compilers, set this parameter on the PE Compiler node group. Otherwise, set this
parameter on the PE PuppetDB node group.

Parameter

puppet_enterprise::puppetdb::command_processing_threads

Default value

If the PuppetDB service runs on compilers, the default value is the number of CPUs multiplied by 0.25 (with a
minimum of 1 and a maximum of 3).

Otherwise, the default value is the number of CPUs multiplied by 0.5 (with a minimum of 1).

Accepted values

An integer representing a number of threads.

How to calculate

If the PuppetDB queue is backing up and you have CPU cores to spare, increasing the number of threads can help
process the backlog more rapidly.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 211

Don't allocate all of your CPU cores to command processing, because this can starve other PuppetDB subsystems
of resources and decrease throughput.

Related information
PuppetDB parameters on page 124
Use these parameters to configure and tune PuppetDB.

Configure PuppetDB on page 222
If needed, you can configure PuppetDB settings to optimize your Puppet Enterprise (PE) installation.

PostgreSQL max connections
The max_connections setting determines the maximum number of concurrent connections allowed to the
PE-PostgreSQL server. It should be configured to accommodate all infrastructure nodes running PuppetDB.

Console node group

PE Database

Parameter

puppet_enterprise::profile::database::max_connections

Default value

400

Accepted values

An integer representing the number of concurrent connections allowed. The minimum is 200.

How to calculate

Set the max_connections parameter to a number greater than the sum of read and write connections across
all PuppetDB instances in your PE installation, including compilers and the primary server. The connection count
from each instance should equal (command processing threads * 2) + number of JRuby
instances. Rule out any underlying performance issues prior to adjusting max_connections.

PostgreSQL shared buffers
The shared_buffers setting specifies the amount of memory the PE-PostgreSQL server uses for shared memory
buffers.

Console node group

PE Database

Parameter

puppet_enterprise::profile::database::shared_buffers

Default value

The available RAM multiplied by 0.25, with a minimum of 32 MB and a maximum of 4096 MB

Accepted values

An integer representing a number of MB

How to calculate

The default value is suitable for most installations, but console performance might improve if you increase
shared_buffers up to 40% of available RAM.

PostgreSQL working memory
The work_mem setting specifies the maximum amount of memory used for queries before writing to temporary files.

Console node group

PE Database

Parameter

puppet_enterprise::profile::database::work_mem

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 212

Default value

Based on the following calculation:

(Available RAM / 1024 / 8) + 0.5

The minimum is 4 MB, and the maximum is 16 MB.

Accepted values

An integer representing a number of MB

PostgreSQL WAL disk space
The max_slot_wal_keep_size setting specifies the maximum allocated WAL disk space for each replication
slot. This prevents the pg_wal directory from growing infinitely.

If you have set up disaster recovery, this setting prevents an unreachable replica from consuming all of your primary
server's disk space when the PE-PostgreSQL service on the primary server attempts to retain change logs that the
replica hasn't acknowledged.

If your replica is offline long enough to reach the max_slot_wal_keep_size value, replication slots are
dropped to allow the primary server to continue functioning normally. When the replica comes back online, you'll
know replication slots were dropped if puppet infra status returns a message that replication is inactive for
PostgreSQL's status. To restore PostgreSQL replication, run puppet infra reinitialize replica on
your replica.

Console node group

PE Database

Parameter

puppet_enterprise::profile::database::max_slot_wal_keep_size

Default value

12288 MB (twice the size of the max_wal_size parameter)

Important: If you don't have enough disk space for the default setting, you must adjust this value.

Accepted values

An integer representing a number of MB

Related information
Configuring disaster recovery on page 252
Enabling disaster recovery for Puppet Enterprise ensures that your systems can fail over to a replica of your primary
server if infrastructure components become unreachable.

How to configure PE
After you've installed Puppet Enterprise (PE), you can optimize it by configuring and tuning settings. For example,
you might want to add your certificate to the allowlist, increase the max-threads setting for http and https
requests, or configure the number of JRuby instances.

PE shares configuration settings used in open source Puppet (which are documented in the Configuration Reference).
However, the default values for PE might differ from the default values for Puppet. Some examples of settings that
have different defaults in PE include disable18n, environment_timeout, always_retry_plugins,
and the Puppet Server JRuby max-active-instances settings. To verify PE's configuration defaults, check the
puppet.conf file after installation.

There are three ways to configure PE settings:

• Configure settings in the PE console on page 213
• Configure settings with Hiera on page 214

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html

pe | Configuring Puppet Enterprise | 213

• Configure settings in pe.conf on page 215

For consistency, it is important to always configure settings in the same way, unless a situation calls for you to use a
specific method. For example, if you choose to configure settings in the PE console, then always configure settings in
the console, unless a specific setting requires using Hiera or editing pe.conf.

This page provides generic instructions for configuring PE settings. You'll find information about specific settings in
other Configuring Puppet Enterprise on page 203 topics and throughout the PE documentation.

Configure settings in the PE console
You can use the Puppet Enterprise (PE) console's graphical interface to configure settings for your PE installation.

Changes you make in the console override your Hiera data and data in pe.conf. It is best to use the console when
you want to:

• Change parameters in profile classes starting with puppet_enterprise::profile.
• Add parameters to PE-managed configuration files.
• Set parameters that configure at runtime.

To change settings in the console you can Set configuration data on page 213 or Set parameters on page 214.

Related information
Preconfigured node groups on page 467
Puppet Enterprise includes preconfigured node groups that are used to manage your configuration.

Set configuration data
Configuration data set in the console is used for automatic parameter lookup in the same way that Hiera data is
used. Console configuration data takes precedence over Hiera data, but you can combine data from both sources to
configure nodes.

Tip: In most cases, setting configuration data in Hiera is the more scalable and consistent method, but there are some
cases where the console is preferable. Use the console to set configuration data if:

• You want to override Hiera data. Data set in the console overrides Hiera data when configured as recommended.
• You want to give someone permission to define or edit data, and they don’t have the skill set to do it in Hiera.
• You simply prefer the console user interface.

Important: If your installation includes a disaster recovery replica, make sure you enable data editing in the console
for both your primary server and replica.

1. In the console, click Node groups and select the node group that you want to add configuration data to.

2. On the Configuration data tab, specify a Class and select a Parameter to add.

You can select from existing classes and parameters in the node group's environment, or you can specify free-
form values. Classes aren’t validated, but any class you specify must be present in the node’s catalog at runtime in
order for the parameter value to be applied.

When you select a parameter, the Value field is automatically populated with the inherited or default value.

3. Optional: If necessary, change the parameter's default Value.

Related information
Enable data editing in the console on page 237

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 214

In new Puppet Enterprise (PE) installations, you can, by default, edit configuration data in the console. If you
upgraded from an earlier PE version where you hadn't already enabled editing of configuration data, you must use
Hiera to manually enable Classifier Configuration Data.

Set parameters
Parameters are declared resource-style, which means you can use them to override other data; however, this override
capability can introduce class conflicts and declaration errors that cause Puppet runs to fail.

Important: You can structure parameters as JSON, but, if they can't be parsed as JSON, they're treated as strings.

1. In the console, click Node groups and select the node group you want to add a parameter to.

2. On the Classes tab, select the class you want to modify, and select the Parameter you want to add.

The Parameter list shows all parameters available for the selected class in the node group’s environment. When
you select a parameter, the Value field is automatically populated with the inherited or default value.

3. Optional: If necessary, change the parameter's default Value.

Related information
Tips for specifying parameter and variable values on page 459
Parameters and variables can be structured as JSON, but, if they can't be parsed as JSON, they're treated as strings.

Configure settings with Hiera
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Before you begin
Separating data (Hiera) in the Puppet documentation explains more about how to use Hiera and what you can
configure in Hiera.

Changes to PE configuration settings in Hiera override configuration settings in pe.conf, but not those set in the PE
console. However, settings declared in the console override Hiera data. It's best to use Hiera when you want to:

• Change parameters in non-profile classes.
• Set parameters that are static and version-controlled.
• Configure for high availability.

To configure a setting in Hiera:

1. Open a Hiera data file in a text editor.

The default location for Hiera data files on *nix systems is:

/etc/puppetlabs/code/environments/<ENVIRONMENT>/data/common.yaml

On Windows systems, it is:

%CommonAppData%\PuppetLabs\code\environments\<ENVIRONMENT>\data
\common.yaml

Tip: The datadir setting in the hiera.yaml configuration file changes the Hiera data file location. You
can also change the common data file path in the hierarchy section of the hiera.yaml file. If you changed
either of these settings, you'll find the default Hiera data files in your customized location.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/hiera.html

pe | Configuring Puppet Enterprise | 215

2. Add your new parameter to the Hiera data file.
For example, the following declaration increases sets number of seconds before a node is considered unresponsive
to 4000, whereas the defeault setting is 3600 seconds:

puppet_enterprise::console_services::no_longer_reporting_cutoff: 4000

3. Save the file and run puppet agent -t to compile the changes.

Related information
Preconfigured node groups on page 467
Puppet Enterprise includes preconfigured node groups that are used to manage your configuration.

Configure settings in pe.conf
Puppet Enterprise (PE) configuration data includes any data set in /etc/puppetlabs/enterprise/conf.d/,
but pe.conf is the file used for most configuration activities during installation.

PE configuration settings made in Hiera and the console always override settings made in pe.conf. Configure
settings in pe.conf when you want to:

• Access settings during installation.
• Configure for high availability.

To configure settings in pe.conf:

1. On your primary server, open the pe.conf file in a text editor. The file is located at:

/etc/puppetlabs/enterprise/conf.d/pe.conf

2. Add the parameter and value you want to set.
For example, this declaration changes the proxy location in your PE repo:

pe_repo::http_proxy_host: "proxy.example.vlan"

3. Save the file and run puppet agent -t

Tip: If you had stopped any PE services, run puppet infrastructure configure instead of puppet
agent -t.

Configuration file syntax
Puppet supports two formats for configuration files: valid JSON and Human-Optimized Config Object Notation
(HOCON), which is a JSON superset. We've provided these syntax examples to guide you when you're writing
configuration files.

For details about HOCON itself, refer to the HOCON documentation.

Brackets

JSON example with brackets:

{
 "authorization": {
 "version": 1
 }
}

In HOCON, you can omit the brackets ({ }) around the root object. For example:

"authorization": {
 "version": 1
}

© 2024 Puppet, Inc., a Perforce company

https://github.com/typesafehub/config#using-hocon-the-json-superset

pe | Configuring Puppet Enterprise | 216

Quotation marks

With JSON, wrap keys in double quotes. Quotation marks around values depends on the value type, such as an
integer or string. For example:

"authorization": {
 "version": 1
}

In HOCON, double quotes around keys and string values are usually optional. However, double quotes are required if
the string contains any of these characters: *, ^, +, :, or =

For example:

authorization: {
 version: 1
}

Commas

In JSON, use commas to separate items in a map or array.

JSON map example:

rbac: {
 password-reset-expiration: 24,
 session-timeout: 60,
 failed-attempts-lockout: 10,
}

JSON array example:

http-client: {
 ssl-protocols: [TLSv1, TLSv1.1, TLSv1.2, TLSv1.3]
}

When writing a map or array in HOCON, you can use a new line instead of a comma.

HOCON map example:

rbac: {
 password-reset-expiration: 24
 session-timeout: 60
 failed-attempts-lockout: 10
}

HOCON array example:

http-client: {
 ssl-protocols: [
 TLSv1
 TLSv1.1
 TLSv1.2
]
}

Comments

JSON does not support comments.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 217

In HOCON, you can use // or # to delineate comments. Inline comments are supported. For example:

authorization: {
 version: 1
 rules: [
 {
 # Allow nodes to retrieve their own catalog
 match-request: {
 path: "^/puppet/v3/catalog/([^/]+)$"
 type: regex
 method: [get, post]
 }
 }
]
}

Configure Puppet Server
If needed, you can configure Puppet Server settings to optimize your Puppet Enterprise (PE) installation.
Related information
Puppet Server reserved code cache on page 210
The reserved_code_cache setting specifies the maximum space available to store the Puppet Server code cache
during catalog compilation.

Set the Ruby load path
The ruby_load_path setting determines where Puppet Server finds components such as Puppet and Facter.

The default setting is:

$puppetserver_jruby_puppet_ruby_load_path = [\
'/opt/puppetlabs/puppet/lib/ruby/vendor_ruby', \
'/opt/puppetlabs/puppet/cache/lib']

Important: If you change the libdir you must also change the vardir.

You can change the load path array in pe.conf.

1. On your primary server, open the pe.conf file in a text editor.

2. Add the following parameter and specify the new load path array:

puppet_enterprise::master::puppetserver::puppetserver_jruby_puppet_ruby_load_path:
 \
['<PATH1>', '<PATH2>']

3. Save the file and run: puppet agent -t

Enable JRuby multithreading
The jruby_puppet_multithreaded setting enables multithreaded mode, which uses a single JRuby instance
to process requests (such as catalog compiles) concurrently.

By default, multithreading is disabled (set to false).

CAUTION: Multithreaded mode is an experimental feature which might experience breaking changes in
future releases. Test this feature in a non-production environment before enabling it in production.

You can use Hiera to toggle multithreaded mode.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 218

1. Open your default Hiera .yaml file in a text editor.

Tip: For information about Hiera data files, including file paths, refer to Configure settings with Hiera on page
214.

2. Add the jruby_puppet_multithreaded parameter, and set it to either true (enabled) or false
(disabled). For example:

puppet_enterprise::master::puppetserver::jruby_puppet_multithreaded: true

3. Save the file and run puppet agent -t to compile the changes.

Use cached data when updating classes
The environment_class_cache_enabled setting specifies whether cached data is used when updating
classes in the Puppet Enterprise (PE) console. When true, Puppet Server uses file sync when refreshing classes,
which provides improved performance.

The default value for environment_class_cache_enabled depends on whether you use Code Manager:

• Without Code Manager, the default value is false (disabled).
• With Code Manager, the default value is true (enabled).

When enabled, file sync automatically clears the environment cache in the background. This means you don't have to
manually clear the environment cache if you're using Code Manager.

Important: If you're not using Code Manager and you set environment_class_cache_enabled to true,
you must make sure your chosen code deployment method (such as r10k) clears the environment cache when it
completes code deployments. If the environment cache isn't cleared, the Node Classifier service doesn't receive new
class information until the Puppet Server service is restarted.

You can use Hiera to toggle the environment_class_cache_enabled setting.

1. Open your default Hiera .yaml file in a text editor.

Tip: For information about Hiera data files, including file paths, refer to Configure settings with Hiera on page
214.

2. Add the jruby_environment_class_cache_enabled parameter, and set it to either true (enabled) or
false (disabled). For example:

puppet_enterprise::master::puppetserver::jruby_environment_class_cache_enabled:
 true

3. Save the file and run puppet agent -t to compile the changes.

Change the environment_timeout setting
The environment_timeout setting controls if and how long the primary server caches environment data.
Environment caching can reduce your Puppet Server's CPU usage, but longer cache times extend the amount of time
it takes for environments to reflect changes to their Puppet code.

The environment_timeout parameter accepts these values:

• No caching: 0
• Retain environment data caches indefinitely: unlimited
• Cache environments for a specified length of time after their last use: Any length of time, such as 5m

By default, environment_timeout is set to 0. When you Enable Code Manager on page 795,
environment_timeout is set to 5m. However, if you set code_manager_auto_configure to true in
your Code Manager settings on page 798, then environment_timeout is automatically set to unlimited.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 219

Tip: Setting environment_timeout to 0 taxes your primary server's performance but makes it easy for
new users to deploy updated Puppet code. Once your code deployment process is mature (or after enabling Code
Manager), we recommend changing this setting to unlimited.

Refer to the Puppet documentation for more information About environments, including Environment limitations,
such as leakage and resource conflicts.

The following steps explain how to change the environment_timeout setting in pe.conf. You can also
change this setting in the PE console in the PE Master node group. For instructions on changing settings in the
console, refer to Configure settings in the PE console on page 213.

1. On your primary server, open the pe.conf file in a text editor.

2. Add the environment_timeout parameter and the desired value. For example:

puppet_enterprise::master::environment_timeout: 0

3. Save the file and run: puppet agent -t

Populate the puppet-admin certificate allowlist
Use pe.conf to add trusted certificates to the puppet-admin certificate allowlist.

1. On your primary server, open the pe.conf file in a text editor.

2. Add the puppet_admin_certs parameter and string-formatted certnames to the pe.conf file. For example:

puppet_enterprise::master::puppetserver::puppet_admin_certs:'<CERTIFICATE_NAME>'

3. Save the file and run: puppet agent -t

Disable software update monitoring
The Puppet Server (pe-puppetserver) service checks for updates when it starts, restarts, and every 24 hours
while running. You can disable these automatic software update checks.

To check if a software update is available, the pe-puppetserver service sends the following basic, anonymous
information to our servers at Puppet by Perforce:

• Product name
• Puppet Server version
• IP address
• Data collection timestamp

You can turn off automatic software update monitoring in the Puppet Enterprise (PE) console.

1. In the PE console, go to Node groups and select the PE Master node group.

2. On the Classes tab, find the puppet_enterprise::profile::master class.

3. Add the check_for_updates parameter and change the value to false.

4. Click Add parameter and commit changes.

5. On the nodes that host your primary server and console, run Puppet.

Tip: There are several ways to Run Puppet on demand on page 616.

Puppet Server configuration files
At startup, Puppet Server reads all .conf files in the conf.d directory, which is located at /etc/puppetlabs/
puppetserver/conf.d.

The conf.d directory contains these files:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html#environments_about
https://puppet.com/docs/puppet/latest/environments_about.html#env_limitations_

pe | Configuring Puppet Enterprise | 220

File name Description

auth.conf Contains authentication rules and settings for agents and
API endpoint access.

You can learn more about auth.conf in the Puppet
documentation.

global.conf Contains global configuration settings for Puppet Server,
including logging settings.

You can learn more about global.conf in the Puppet
documentation.

metrics.conf Contains settings for Puppet Server metrics services.

You can learn more about metrics.conf in the Puppet
documentation.

pe-puppet-server.conf Contains Puppet Server settings specific to Puppet
Enterprise.

Refer to pe-puppet-server.conf settings on page 220
for details about each setting.

webserver.conf Contains SSL service configuration settings.

You can learn more about webserver.conf in the Puppet
documentation.

ca.conf Deprecated. Contained rules for Certificate
Authority services, but has been superseded by
webserver.conf and auth.conf.

Additional files, such as code-manager.conf might exist depending on how you use PE.

Related information
View and manage Puppet Server metrics on page 413
Puppet Server tracks performance and status metrics you can use to monitor server health and performance over time.

pe-puppet-server.conf settings
The pe-puppet-server.conf file contains Puppet Server settings specific to Puppet Enterprise. All the settings
are wrapped in a jruby-puppet section.

enable-file-sync-locking or file_sync::file_sync_locking_enabled

Controls whether the file sync client locks the JRuby pool (and, by extension, most requests to Puppet Server)
while deploying Puppet code.

Default: true

CAUTION: We do not recommend changing the enable-file-sync-locking setting. Instead,
enable Lockless code deploys on page 801, which allow the file sync client to update code into

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/server/config_file_auth.html
https://puppet.com/docs/puppet/8/server/config_file_global.html
https://puppet.com/docs/puppet/8/server/config_file_metrics.html
https://puppet.com/docs/puppet/8/server/config_file_webserver.html

pe | Configuring Puppet Enterprise | 221

versioned code directories without blocking Puppet Server requests or overwriting the live code
directory.

gem-home

Determines where JRuby looks for gems. This is also used by the puppetserver gem command line tool.

Default: '/opt/puppetlabs/puppet/cache/jruby-gems'

jruby_max_active_instances

Controls the maximum number of JRuby instances to allow on the Puppet Server.

Default: 4

For more information, refer to JRuby max active instances on page 207.

max_requests_per_instance

Sets the maximum number of requests allowed for each JRuby interpretor instance before it is killed.

Default: 100000

For more information, refer to JRuby max requests per instance on page 208.

max-queued-requests

Sets the maximum number of requests allowed to be queued waiting to borrow from the JRuby pool.

This setting is optional and defaults to 0 (unlimited). If changed, you must specify a positive integer.

After reaching the limit, all new requests receive a 503 Service Unavailable response until the queue
drops below the limit. If the max-retry-delay setting is also set to a positive integer, then the 503 response
includes a random sleep time after which the client can retry the request.

Don't use this setting if your managed infrastructure includes multiple agents older than Puppet 5.3. Because
older agents treat 503 responses as failures, a thundering herd problem occurs when the agents schedule their
next runs at the same time.

max-retry-delay

Sets the maximum number of seconds allowed for the random sleep time set when the max-queued-
requests limit is exceeded. The random sleep time is returned as a Retry-After header on the 503
response for each rejected request.

Default: 1800 seconds

If max-queued-requests is 0, there is no limit to the number of queued requests and, therefore, the max-
retry-delay is irrelevant.

pre-commit-hook-commands or puppetserver::pre_commit_hook_commands

Specify scripts, as an array of strings, that you want the file sync storage server to execute against a repo after
receiving a change but before committing and syncing the change across compilers. This is similar to Configuring
post-deployment commands on page 843 for r10k or Configuring post-environment hooks on page 803 for
Code Manager.

The pe-puppetserver process, acting as the pe-puppet user, executes the scripts in the order supplied.
You must supply scripts as absolute paths. Additionally, the pe-puppet user must be able to execute the
scripts, and the scripts must be able to consume stdin (even if the script doesn't do anything with it).

Default: ["/opt/puppetlabs/server/bin/generate-puppet-types.rb"]

CAUTION: Removing the default value disables the generate-puppet-types.rb script. Unless
you intentionally want to disable this type generation method, make sure to keep the default path in the
array.

The output, error, and exit code for these scripts are logged at the trace level of pe-puppetserver logs when
the exit code is 0. If the exit code is not 0, the codes are logged at the error level.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 222

This setting is managed in PE modules, and you can override it by setting the
puppet_enterprise::master::puppetserver::pre_commit_hook_commands parameter in
Hiera. Make sure to include the default path (for generate-puppet-types.rb) to ensure custom type are
correctly cached. If you want to disable all pre-commit commands, supply an empty array in Hiera.

puppet-code-repo

Identifies, as a string, the internal name for the Puppet code repo (the codedir) that contains all code to sync
across compilers (including user-supplied code repos).

CAUTION: Do not change this setting.

Default: 'puppet-code'

puppet_enterprise::master::puppetserver::jruby_puppet_instance_creation_concurrency

Following the first instance of a JRuby, this setting controls how many JRuby instances are concurrently created.
This number should be between 1 and jruby_max_active_instances - 1.

Default: 3

Important: The default value of jruby_max_active_instances is determined dynamically but is
typically 4, so after the first JRuby instance is initialized, the default value of 3 for this setting allows all of the
remaining JRuby instances to be loaded concurrently. Users may be able to raise this value to speed up Puppet
Server start up, however too many JRuby instances trying to initialize concurrently may cause an unacceptable
drop in performance on some systems. Users are recommended to experiment with this setting to find the value
that works best for them.

puppet_enterprise::master::puppetserver::settings_catalog

Valid values are true or false. If set to true, the JRuby instances will not validate that the file settings exist,
for example, codedir. These should be managed by packages or in Puppet Enterprise’s Puppet code, and if this
setting is enabled and it causes an issue please file a bug report. Issues such as a missing required directory, file
or misconfigured permissions on said directory or file might appear. Once this setting is enabled, to disable it
users must explicitly set the value to false. Disabling this parameter value removes it from Puppet management
and the last explicit configuration value is the value that Puppet sees.

ruby-load-path or puppetserver_jruby_puppet_ruby_load_path

Determines where Puppet Server finds components such as Puppet and Facter. The agent's libdir path is
included by default.

Default: ['/opt/puppetlabs/puppet/lib/ruby/vendor_ruby', '/opt/puppetlabs/
puppet/cache/lib']

For more information, refer to Set the Ruby load path on page 217.

server-conf-dir

Sets the Puppet configuration directory path.

Default: '/etc/puppetlabs/puppet'

server-var-dir

Sets the Puppet Server variable directory path.

Default: '/opt/puppetlabs/server/data/puppetserver'

Configure PuppetDB
If needed, you can configure PuppetDB settings to optimize your Puppet Enterprise (PE) installation.

We've described some commonly-configured parameters here. For additional settings and information, refer to
Configuring PuppetDB in the Puppet documentation, as well as the other PE documentation listed under Related
information.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/7/configure.html

pe | Configuring Puppet Enterprise | 223

Related information
PuppetDB parameters on page 124
Use these parameters to configure and tune PuppetDB.

Disable agent run reports
By default, every time Puppet runs, your Puppet Enterprise (PE) primary server generates agent run reports and
submits them to PuppetDB. You can disable agent run reports.

1. In the PE console, navigate to Node groups > PE Infrastructure > PE Master.

2. On the Classes tab, add the puppet_enterprise::profile::master::puppetdb class.

3. Add the report_processor_ensure parameter, and set the value to either:

• "present": Enable agent run reports
• "absent": Disable agent run reports

4. Click Add parameter and commit changes.

5. On the nodes hosting your primary server and PE console, run Puppet.

Tip: There are several ways to Run Puppet on demand on page 616.

Set the deactivated node retention time
Use the node-purge-ttl parameter to set the length of time before PE automatically removes deactivated or
expired nodes. Once the time limit passes, the nodes and their relevant facts, catalogs, and reports are only removed
from PuppetDB. Agent certificates on the Certificate Authority (CA) server are untouched.

1. In the PE console, navigate to Node groups > PE Infrastructure > PE PuppetDB.

2. On the Classes tab, find the puppet_enterprise::profile::puppetdb class.

3. Add the node_purge_ttl parameter, and set the value to a string representing the desired retention time.
Specify a number along with one of the following suffixes:

• Days: d
• Hours: h
• Minutes: m
• Seconds: s
• Milliseconds: ms

For example, to set the purge time to 14 days, set the value to 14d. For example:

puppet_enterprise::profile::puppetdb::node_purge_ttl: '14d'

4. Click Add parameter and commit changes.

5. On the nodes hosting your primary server and PE console, run Puppet.

Tip: There are several ways to Run Puppet on demand on page 616.

Change the PuppetDB user password
The Puppet Enterprise (PE) console uses a database user account to access its PostgreSQL database. Change this
database user's password if it is compromised or to comply with your organization's security guidelines.

1. Stop the pe-puppetdb service by running:

puppet resource service pe-puppetdb ensure=stopped

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 224

2. On the database server (which, depending on your deployment's architecture, might or might not be the same as
the PuppetDB server), use your preferred PostgreSQL administration tool to change the user's password.

With the standard PostgreSQL client, you can do this by running:

ALTER USER console PASSWORD '<new password>';

3. On the PuppetDB server, open the database.ini file located at /etc/puppetlabs/puppetdb/
conf.d/database.ini, and change the password line to reflect the new password.

The password line is under either common or production, depending on your configuration.

4. Save the file and restart the pe-puppetdb service on the console server by running:

puppet resource service pe-puppetdb ensure=running

Exclude facts
Use the facts_blocklist parameter to exclude facts from being stored in the PuppetDB database.

For more information, you can read about facts-blocklist in the Puppet documentation.

You can use Hiera to exclude facts:

1. Open your default Hiera .yaml file in a text editor.

Tip: For information about Hiera data files, including file paths, refer to Configure settings with Hiera on page
214.

2. Add the facts_blocklist parameter and a list of names of facts that you want to exclude.

For example, this declaration excludes the system_uptime_example and mountpoints_example facts:

puppet_enterprise::puppetdb::database_ini::facts_blocklist:
- 'system_uptime_example'
- 'mountpoints_example'

3. Save the file and run puppet agent -t to compile the changes.

Configure security settings
Configure these security settings to ensure your Puppet Enterprise (PE) environment is secure.
Related information
Security and communications on page 12
Puppet Enterprise (PE) services and components use a variety of communication and security protocols.

FIPS 140-2 enabled PE on page 16
Puppet Enterprise (PE) is available in a FIPS (Federal Information Processing Standard) 140-2 enabled version. This
version is compatible with select third party FIPS-compliant platforms.

Managing access on page 271
Role-based access control (RBAC) is used to grant individual users the permission to perform specific actions.
Permissions are grouped into user roles, and each user is assigned at least one user role.

Manage permissions with the acl module on page 482
The puppetlabs-acl module helps you manage access control lists (ACLs), which provide a way to interact
with permissions for the Windows file system. This module enables you to set basic permissions up to very advanced
permissions using SIDs (Security Identifiers) with an access mask, inheritance, and propagation strategies. First, start
with querying some existing permissions.

Configure puppet-access on page 308

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/7/configure.html#facts-blocklist

pe | Configuring Puppet Enterprise | 225

The puppet-access command allows users to generate and manage authentication tokens from the command
line of any workstation (Puppet-managed or not), without the need to SSH into the primary server. If you want to use
puppet-access, ensure it is configured correctly before using it to generate authentication tokens.

Accepting the console's certificate on page 269
The console uses an SSL certificate created by your own local Puppet certificate authority. Because this authority is
specific to your site, web browsers won't know it or trust it, and you must add a security exception in order to access
the console.

Managing patches on page 586
Use Puppet Enterprise to configure patching node groups to meet your needs, view available operating system patches
for your nodes in the console, and apply patches using the pe_patch::patch_server task.

Secure coding practices for tasks on page 643
Use secure coding practices when you write tasks and help protect your system.

Forget a replica on page 268
Forgetting a replica removes the replica from classification and database state and purges the node.

Configure cipher suites
Regulatory compliance or other security requirements might require you to change the cipher suites your SSL-enabled
PE services use to communicate with other PE components.

Before you begin: Make sure you're using Compatible ciphers on page 13.

To add or remove cipher suites for different service types, use Hiera to modify the following parameters:

puppet_enterprise::ssl_cipher_suites

List IANA-formatted ciphers for all PE Java-based services, which includes PuppetDB, Puppet Server, console
services, and the orchestrator.

Format: Array of strings

Example:

puppet_enterprise::ssl_cipher_suites:
- 'TLS_AES_256_GCM_SHA384'
- 'TLS_AES_128_GCM_SHA256'
- 'TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256'
- 'TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384'

puppet_enterprise::ssl_cipher_suites_non_java

List OpenSSL-formatted ciphers for all PE non-Java services, which includes Bolt Server, ACE Server, and
PostgreSQL.

Format: Array of strings

Example:

puppet_enterprise::ssl_cipher_suites_non_java:
- 'ECDHE-ECDSA-AES128-GCM-SHA256'
- 'ECDHE-ECDSA-AES256-GCM-SHA384'
- 'ECDHE-RSA-AES128-GCM-SHA256'
- 'ECDHE-RSA-AES256-GCM-SHA384'

puppet_enterprise::ssl_cipher_suites_browser

List OpenSSL-formatted ciphers for NGINX. These ciphers are accepted by the PE console in the browser.

Format: Array of strings

Example:

puppet_enterprise::ssl_cipher_suites_browser:

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 226

- 'TLS_CHACHA20_POLY1305_SHA256'
- 'ECDHE-ECDSA-CHACHA20-POLY1305'
- 'ECDHE-RSA-CHACHA20-POLY1305'
- 'ECDHE-ECDSA-AES128-GCM-SHA256'

Related information
Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Configure SSL protocols
You can change what SSL protocols your Puppet Enterprise (PE) infrastructure uses.

Where to configure

In Hiera data files.

In the PE console on the PE Infrastructure node group's Configuration data tab.

Parameter

puppet_enterprise::master::puppetserver::ssl_protocols

Format

Array of strings representing SSL protocols.

Example

This declaration enables TSLv1.3 and TSLv1.2:

puppet_enterprise::master::puppetserver::ssl_protocols: ["TLSv1.3",
 "TLSv1.2"]

Default

["TLSv1.3", "TLSv1.2"]

Note: To comply with security regulations, only versions 1.2 and 1.3 of the Transport Layer Security (TLS)
protocol are enabled. If necessary, you can manually enable TLSv1 and TSLv1.1.

Related information
Enable TLSv1 on page 864
To comply with security regulations, TLSv1 and TLSv1.1 are disabled by default.

SSL and certificates on page 855
Network communications and security in Puppet Enterprise are based on HTTPS, which secures traffic using X.509
certificates. PE includes its own CA tools, which you can use to regenerate certs as needed.

Use a custom SSL certificate for the console on page 862
The Puppet Enterprise (PE) console uses a certificate signed by PE's built-in certificate authority (CA). Because
this CA is specific to PE, web browsers don't know it or trust it, and you have to add a security exception in order to
access the console. If you find that this is not an acceptable scenario, you can use a custom CA to create the console's
certificate.

Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Configure settings in the PE console on page 213

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 227

You can use the Puppet Enterprise (PE) console's graphical interface to configure settings for your PE installation.

Configure RBAC and token-based authentication settings
You can configure RBAC and token-based authentication settings, such as setting the number of failed attempts a
user has before they are locked out of the console or the amount of time tokens are valid.

RBAC and token authentication settings can be changed in the PE Infrastructure node group in the Puppet
Enterprise (PE) console or in Hiera data. Settings include:

puppet_enterprise::profile::console::rbac_failed_attempts_lockout

An integer specifying how many failed login attempts are allowed on an account before the account is revoked.

Default: 10

puppet_enterprise::profile::console::rbac_password_reset_expiration

An integer representing the number of hours that password reset tokens are valid.

An administrator generates these token for users to reset their passwords.

Default: 24

puppet_enterprise::profile::console::rbac_session_timeout

An integer representing, in minutes, how long a user's session can last.

The session length is the same for node classification, RBAC, and the console.

Default: 60

puppet_enterprise::profile::console::rbac_token_auth_lifetime

A string representing the default authentication lifetime for a token.

The value is formatted as string consisting of a number followed by a suffix representing a unit of time: y (years),
d (days), h (hours), m (minutes), or s (seconds).

Important: This value cannot exceed the rbac_token_maximum_lifetime.

Default: "1h" (one hour)

puppet_enterprise::profile::console::rbac_token_maximum_lifetime

A string representing the maximum allowable lifetime for all tokens.

The value is formatted as a string consisting of a number followed by a suffix representing a unit of time: y
(years), d (days), h (hours), m (minutes), or s (seconds).

Default: 10y (10 years)

puppet_enterprise::profile::console::rbac_account_expiry_check_minutes

An integer specifying, in minutes, how often the application checks for idle user accounts.

Default: 60 minutes

Important: The rbac_account_expiry_check_minutes parameter is ignored if you do not also
specify the rbac_account_expiry_days parameter.

puppet_enterprise::profile::console::rbac_account_expiry_days

An integer specifying, in days, the duration before an inactive user account expires.

The default value is undefined. To activate this feature, specify a positive integer of 1 or greater.

When non-superusers don't log into the console during the specified period, their user status changes to revoked.
This also applies to new accounts – The inactivity timer starts once the account is created.

puppet_enterprise::profile::console::ldap_sync_period_seconds

An integer specifying, in seconds, the interval at which LDAP group membership associations are synchronized.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 228

The default value is 1800 (30 minutes).

This synchronization refreshes group membership for every LDAP user in the system, regardless of the last
time the user logged in. If a user is no longer present in LDAP or has no group bindings, then all user-group
associations are removed from the user and all of the user's known tokens are revoked; however, the user object
itself is not removed. If a user is present in LDAP and has group bindings, this synchronization updates the user's
group membership, user name, and descriptions (if this data had changed).

To disable automatic synchronization, set the value to 0 or a negative integer. When disabled, user names,
descriptions, and group membership only refresh when users log in.

When enabled, various entries are recorded to console-services.log that indicate whether the service is
enabled and when each synchronization event has completed. If you enabled SAML after LDAP, these logs can
show tokens being revoked in associated with past LDAP users if those users haven't logged in through SAML.

puppet_enterprise::profile::console::ldap_cipher_suites

An array specifying the ciphers to use when establishing connections to configured LDAP servers.

Default: $puppet_enterprise::ssl_cipher_suites. This default value captures the array of ciphers
specified by the puppet_enterprise::ssl_cipher_suites parameter. For information on ciphers you
can use for console services, see Compatible ciphers.

Related information
Require LDAP group membership to log in on page 271
You can use the exclude-groupless-ldap-users setting to prevent LDAP users with no group bindings
from logging in and creating Puppet Enterprise (PE) accounts. This setting is disabled by default.

Console and console-services parameters on page 119
In the PE Console node group, these parameters customize the behavior of the console and the console-
services service.

Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Configure settings in the PE console on page 213
You can use the Puppet Enterprise (PE) console's graphical interface to configure settings for your PE installation.

RBAC database configuration
Credential information for the RBAC service is stored in a PostgreSQL database. Configuration information for this
database is in the rbac-database section of the config file.

For example:

rbac-database: {
 classname: org.postgresql.Driver
 subprotocol: postgresql
 subname: "//<PATH_TO_HOST>:5432/perbac"
 user: <USERNAME>
 password: <PASSWORD>
}

It contains these parameters:

classname

Used by the RBAC service for connecting to the database.

The value must be org.postgresql.Driver.

subprotocol

Used by the RBAC service for connecting to the database.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 229

The value must always be postgresql.

subname

The JDBC connection path used by the RBAC service for connecting to the database.

The value is a string-formatted URI path consisting of the hostname and configured port for the PostgreSQL
database along with perbac, such as

"//<PATH_TO_HOST>:5432/perbac"

perbac is the database the RBAC service uses to store credentials.

user

This is the username the RBAC service uses to connect to the PostgreSQL database.

password

This is the password the RBAC service uses to connect to the PostgreSQL database.

Configure the password algorithm
Puppet Enterprise (PE) uses SHA-256 as a default password algorithm. You can use Hiera or the PE console to
change the algorithm to argon2id by editing or adding password algorithm parameters.

Before you begin: Before changing your password algorithm to argon2id, review the Argon2 specifications on
password-hashing.net.

Restriction: If you have FIPS 140-2 enabled PE on page 16, use the default SHA-256 algorithm, because
Argon2id isn’t available for FIPS-enabled systems.

puppet_enterprise::profile::console::password_algorithm

A string, either "SHA-256" or "ARGON2ID".

Always required.

Default: "SHA-256"

puppet_enterprise::profile::console::password_hash_output_size

An integer representing the desired hash output size in bytes.

Required for argon2id.

Default: 128 bytes

puppet_enterprise::profile::console::password_algorithm_parallelism

An integer representing the number of parallel computations that can be performed at once.

Required for argon2id.

Default: Twice the number of cores in your system.

puppet_enterprise::profile::console::password_algorithm_memory_in_kb

An integer representing the amount of memory, in KB, the algorithm consumes when running.

Required for argon2id.

No default value. We recommend initially setting this to 25% of your CPU memory.

puppet_enterprise::profile::console::number_of_iterations

An integer representing the number of times a password is hashed before it’s stored.

Always required, and we recommend updating this value when switching from SHA-256 to argon2id. The
minimum recommended value for argon2id is 3 iterations.

Default: 500000 iterations.

© 2024 Puppet, Inc., a Perforce company

https://www.password-hashing.net/argon2-specs.pdf
https://www.password-hashing.net/argon2-specs.pdf

pe | Configuring Puppet Enterprise | 230

puppet_enterprise::profile::console::password_salt_size_bytes

An integer representing the size, in bytes, of each generated salt.

Default: 128 bytes

Related information
Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Configure settings in the PE console on page 213
You can use the Puppet Enterprise (PE) console's graphical interface to configure settings for your PE installation.

Security warnings due to missing HSTS response headers
Puppet Enterprise (PE) does not implement HTTP Strict Transport Security (HSTS) in response headers because the
ports used by PE are not open to the internet. However, your security system might flag HSTS response headers as
missing and deliver a warning that PE service ports are vulnerable. If this happens, consider adjusting your security
software configuration to add an exception for PE ports.

About HSTS

HSTS is designed to protect sites against man-in-the-middle attacks. When HSTS is enabled, an HSTS response
header forces user agents and browsers to use HTTPS for loading site content.

Why HSTS is not required for PE

HSTS is not required for PE because none of the ports used by PE are open to the internet.

Adding exceptions for PE ports

If your security system flags a vulnerability due to missing HSTS headers in PE service ports, consider adjusting your
security software configuration to add an exception for PE ports.

Typically, an exception is required only for port 443, which is used for PE console services. Port 443 is available to
PE users, only within an internal network. To prevent attacks, the console service allows only secure, domain-bound
cookies and HTTPS traffic. Mixed content (a combination of HTTP and HTTPS content) is not allowed.

To learn more about PE ports, see Firewall configuration.

Configure proxies
If you have components with limited (or no) internet access, you can configure proxies at various points in your
infrastructure, depending on your connectivity limitations.

The examples provided here assume an unauthenticated proxy running at proxy.example.vlan on port 8080.

Download agent installation packages through a proxy
If your Puppet Enterprise (PE) primary server is airgapped, it can't download agent installation packages. If you want
to use package management to install agents, set up a proxy and specify its connection details in the pe_repo class.

You must specify pe_repo::http_proxy_host and pe_repo::http_proxy_port in the PE Master
node group's pe_repo class. You can do this in the PE console, the primary server's pe.conf file, or Hiera.

To do this in the console, go to Node Groups > PE Master > Classes, locate the pe_repo class, and set the
pe_repo::http_proxy_host and pe_repo::http_proxy_port parameters.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/latest/system_configuration.html#firewall

pe | Configuring Puppet Enterprise | 231

To do this in the pe.conf file, add the following lines to the primary server's pe.conf file. Make sure to use
values specific to your proxy.

"pe_repo::http_proxy_host": "proxy.example.vlan",
"pe_repo::http_proxy_port": 8080

Tip: You can use this curl command to test the proxy's connection to the pe_repo:

proxy_uri='http://<HTTP_PROXY_HOST>:<HTTP_PROXY_PORT>'
uri='https://pm.puppetlabs.com'

curl --proxy "$proxy_uri" --head "$uri"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Related information
Installing agents on page 131
Puppet Enterprise (PE) agent nodes monitor your infrastructure and help keep it in your desired state. You can install
agents on *nix, Windows, and macOS nodes.

Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

How to configure PE on page 212
After you've installed Puppet Enterprise (PE), you can optimize it by configuring and tuning settings. For example,
you might want to add your certificate to the allowlist, increase the max-threads setting for http and https
requests, or configure the number of JRuby instances.

Set a proxy for agent traffic
General proxy settings in an agent node's puppet.conf file are used to manage HTTP connections directly
initiated by the agent node.

To configure agents to communicate through a proxy, you must set the http_proxy_host and
http_proxy_port settings in the agent node's puppet.conf file.

1. On the agent node, open the puppet.conf file, which is located at: /etc/puppetlabs/puppet/
puppet.conf

2. Add the following lines to the file, with values specific to your proxy:

http_proxy_host = proxy.example.vlan
http_proxy_port = 8080

For more information about HTTP proxy host options, including no_proxy, go to the http_proxy_host entry
in the Puppet Configuration Reference.

Tip: You can Configure PXP agent parameters on page 242 to set proxies for PXP agents.

Related information
Customize the install script on page 133

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/configuration.html#http-proxy-host

pe | Configuring Puppet Enterprise | 232

If necessary, you can use these options to modify the install script to define specific agent configuration settings,
CSR attributes, or MSI properties. You can also control whether the Puppet service is running or enabled after agent
installation.

Set proxies for Code Manager traffic
Code Manager has proxy configuration options you can use to set proxies for connections to your Git server, the
Forge, specific Git repositories, or all Code Manager operations over HTTP(S) transports.

Because Code Manager is run by Puppet Server, Code Manager's proxy settings aren't affected by proxy settings in
puppet.conf (such as those to Set a proxy for agent traffic on page 231).

There are several levels and varieties of Code Manager proxy settings. You can:

• Set the r10k_proxy parameter in the base Code Manager settings on page 798, for example:

puppet_enterprise::profile::master::r10k_proxy: "http://
proxy.example.vlan:8080"

Restriction: If you set the r10k_proxy parameter, you must use an HTTP URL for the r10k_remote
parameter and all Puppetfile module entries.

The r10k_remote parameter is set when you Enable Code Manager on page 795. For information about
Puppetfile module entries, refer to Managing modules with a Puppetfile on page 784.

• Customize Code Manager configuration in Hiera on page 803 to set a global proxy for all HTTP(S) operations,
specific proxies for Git and Forge operations, or specific proxies for individual Git repositories.

You can use these settings in combination to override other proxy settings. For example, you can specify a global
proxy and a different proxy for Forge operations.

Related information
Configuring proxies on page 807
If you need Code Manager to use a proxy connection, use the proxy parameter. You can set a global proxy for all
HTTP(S) operations, proxies for Git or Forge operations, or proxies for individual Git repositories.

Configure the console
After installing Puppet Enterprise (PE), you can change product settings to customize the PE console's behavior. You
can configure many of these settings directly in the console.

Configure the PE console and console-services
You can configure the behavior of the console and the console-services service.

You can set Password complexity parameters on page 236 and a variety of other Console and console-services
parameters on page 119, such as rbac_token_maximum_lifetime or display_local_time.

Parameters are set in the PE console, with Hiera, or in pe.conf. To configure settings in the PE console:

1. Click Node groups, and select the node group that contains the class you want to configure.

2. On the Classes tab, find the class you want to work with, select the Parameter name from the list and edit its
value.

3. Click Add parameter and commit changes.

4. On the nodes hosting your primary server and PE console, run Puppet.

Tip: There are several ways to Run Puppet on demand on page 616.

Related information
Configuring Puppet orchestrator on page 609

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 233

Once you've installed PE or the client tools package, there are a few tasks you need to do to prepare your PE
infrastructure for orchestration services.

Running Puppet on nodes on page 450
Puppet automatically attempts to run on each of your nodes every 30 minutes. To trigger a Puppet run outside of the
default 30-minute interval, you can manually trigger a Puppet run.

Run Puppet on demand on page 616
You can use the orchestrator to run jobs from the console, the command line, or through the orchestrator API
endpoints.

Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Configure settings in pe.conf on page 215
Puppet Enterprise (PE) configuration data includes any data set in /etc/puppetlabs/enterprise/conf.d/,
but pe.conf is the file used for most configuration activities during installation.

Console and console-services parameters
In the PE Console node group, these parameters customize the behavior of the console and the console-
services service.

You can modify parameters that begin with puppet_enterprise::profile in the PE console.

puppet_enterprise::profile::console::classifier_synchronization_period

An integer representing, in seconds, the classifier synchronization period. This controls how long the node
classifier can take to retrieve classes from the primary server.

Default: 600

puppet_enterprise::profile::console::ldap_sync_period_seconds

An integer specifying, in seconds, the interval at which LDAP user details and group membership associations
are synchronized.

The default value is 1800 (30 minutes).

This synchronization refreshes the user details and group membership for every LDAP user in the system,
regardless of the last time the user logged in. If a user is no longer present in LDAP, all user-group associations
are removed from the user and all of the user's known tokens are revoked.

To disable automatic synchronization, set the value to 0 or a negative integer. When disabled, user details and
group membership only refresh when the user logs in.

When enabled, various entries are recorded to console-services.log that indicate whether the service is
enabled and when each synchronization event has completed.

puppet_enterprise::profile::console::ldap_cipher_suites

An array specifying the ciphers to use when establishing connections to configured LDAP servers.

Default: $puppet_enterprise::ssl_cipher_suites. This default value captures the array of ciphers
specified by the puppet_enterprise::ssl_cipher_suites parameter. For information on ciphers you
can use for console services, see Compatible ciphers.

puppet_enterprise::profile::console::rbac_failed_attempts_lockout

An integer specifying how many failed login attempts are allowed on an account before the account is revoked.

Default: 10

puppet_enterprise::profile::console::rbac_password_reset_expiration

An integer representing the number of hours that password reset tokens are valid.

An administrator generates these token for users to reset their passwords.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 234

Default: 24

puppet_enterprise::profile::console::rbac_session_timeout

An integer representing, in minutes, how long a user's session can last.

The session length is the same for node classification, RBAC, and the console.

Default: 60

puppet_enterprise::profile::console::session_maximum_lifetime

A string representing how long a console session can last.

The value is formatted as a string consisting of a number and an optional suffix representing a unit of time: s
(seconds), m (minutes), h (hours), d (days), or y (years).

Example: "1d" (one day)

If the suffix is omitted, the default unit of time is seconds.

A value of "0" sets an unlimited console session time.

To prevent console sessions from expiring before the maximum RBAC token lifetime, set this parameter to "0".

puppet_enterprise::profile::console::session_timeout_warning_seconds

An integer specifying, in seconds, the interval after the timeout warning message appears until the console
session expires due to inactivity.

Default: 120

puppet_enterprise::profile::console::session_timeout_polling_frequency_seconds

An integer specifying, in seconds, the interval at which the UI polls the server to determine whether the user is
active.

Default: 60

puppet_enterprise::profile::console::rbac_token_auth_lifetime

A string representing the default authentication lifetime for a token.

The value is formatted as a string consisting of a number followed by a suffix representing a unit of time: y
(years), d (days), h (hours), m (minutes), or s (seconds).

Important: This value cannot exceed the rbac_token_maximum_lifetime.

Default: "1h" (one hour)

puppet_enterprise::profile::console::rbac_token_maximum_lifetime

A string representing the maximum allowable lifetime for all tokens.

The value is formatted as a string consisting of a number followed by a suffix representing a unit of time: y
(years), d (days), h (hours), m (minutes), or s (seconds).

Default: 10y (10 years)

puppet_enterprise::profile::console::console_ssl_listen_port

An integer representing the port that the console listens on.

Default: 443

puppet_enterprise::profile::console::ssl_listen_address

A string containing an IP address repesenting the console's NGINX listen address.

Default: "0.0.0.0"

puppet_enterprise::profile::console::classifier_prune_threshold

An integer representing the number of days to wait before pruning the node classifier database. The node
classifier database contains node check-in history if classifier_node_check_in_storage is enabled.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 235

Set the value to 0 to never prune the node classifier database.

Default: 7 (days), but only has data to prune if classifier_node_check_in_storage is true.

puppet_enterprise::profile::console::classifier_node_check_in_storage

A Boolean specifying whether to create records when nodes check in with the node classifier. These records
describe how nodes match the node groups they're classified into.

Set to true to enable node check-in storage. Enabling this parameter is required to use Nodes check-in history
endpoints on page 560.

Set to false to disable node check-in storage.

Default: false

puppet_enterprise::profile::console::display_local_time

A Boolean indicating whether to show timestamps in the local time or UTC.

Set to true to display timestamps in local time with hover text showing the equivalent UTC time.

Set to false to show timestamps in UTC time with no hover text.

Default: false

puppet_enterprise::profile::console::disclaimer_content_path

Specifies the location of the disclaimer.txt file containing disclaimer content that can appear on the
console login page if you Create a custom login disclaimer on page 270.

Default: "/etc/puppetlabs/console-services"

Tip: You can also use the RBAC API Disclaimer endpoints on page 366 to configure the disclaimer without
needing to reference a specific file location on disk.

The parameters must be set in Hiera or pe.conf, not the console:

puppet_enterprise::api_port

An integer specifying the SSL port that the node classifier is served on.

Default: 4433

puppet_enterprise::console_services::no_longer_reporting_cutoff

Length of time, in seconds, before a node is considered unresponsive.

Default: 3600 (seconds)

For more information, refer to Node run statuses on page 393.

console_admin_password

The password to log into the console as the admin.

Example: "myconsolepassword"

Default: Specified during installation.

Tip: You can also Reset the console administrator password on page 270 from the command line.

Related information
Create a custom login disclaimer on page 270
You can add a custom banner to console login page. For example, you can add a disclaimer about authorized or
unauthorized use of private information found in the console.

Configure RBAC and token-based authentication settings on page 227

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 236

You can configure RBAC and token-based authentication settings, such as setting the number of failed attempts a
user has before they are locked out of the console or the amount of time tokens are valid.

Password complexity parameters
When you install the Puppet Enterprise (PE) console, password complexity parameters are preconfigured to
implement a robust policy. The default password policy includes the following requirements:

• Passwords must be at least 12 characters in length and must include upper and lowercase letters, special
characters, and numbers.

• The last five previous passwords cannot be reused when passwords are changed.

If you're an Administrator and want to customize password complexity requirements for users in your organization,
you can modify the following parameters:

Important: Changing password complexity requirements doesn't impact local users' existing passwords.
Requirements are enforced only when creating or changing a password.

puppet_enterprise::profile::console::login_minimum_length

An integer specifying the minimum number of characters required in a login (username). For example, usernames
must be at least six characters.

Default: 6

puppet_enterprise::profile::console::password_minimum_length

An integer specifying the minimum number of characters required in a password. For example, passwords must
be at least twelve characters.

Default: 12

puppet_enterprise::profile::console::letters_required

An integer specifying the minimum number of alphabetic characters required in a password. For example,
passwords must contain at least one letter.

Default: 0

puppet_enterprise::profile::console::lowercase_letters_required

An integer specifying the minimum number of lowercase alphabetic characters required in a password. For
example, passwords must contain at least one lowercase letter.

Default: 1

puppet_enterprise::profile::console::uppercase_letters_required

An integer specifying the minimum number of capital alphabetic characters required in a password. For example,
passwords must contain at least one capital letter.

Default: 1

puppet_enterprise::profile::console::numbers_required

An integer specifying the minimum number of numeric characters required in a password. For example,
passwords must contain at least one number, 0 through 9.

Default: 1

puppet_enterprise::profile::console::special_characters_required

An integer specifying the minimum number of special characters required in a password, such as @, #, $, or !.
For example, a password must contain at least one special character.

Default: 1

puppet_enterprise::profile::console::number_of_previous_passwords

An integer specifying the number of previous passwords the system remembers so they can't be reused when a
user changes their password. For example, a user's new password can't be the same as any of the user's previous
five passwords.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 237

Default: 5

puppet_enterprise::profile::console::username_substring_match

A Boolean specifying whether to compare logins (usernames) and passwords for uniqueness.

Set to true to apply the substring_character_limit and prevent users from creating login-password
combinations where the password is completely or partially the same as the login.

Default: false

puppet_enterprise::profile::console::substring_character_limit

An integer specifying how many consecutive characters from the login (user name) can appear in the password.
For example, passwords cannot include more than three consecutive characters from the login.

Default: 0

For RBAC-related parameters, such as rbac_failed_attempts_lockout, refer to Console and console-
services parameters on page 119 and Configure RBAC and token-based authentication settings on page 227.

Manage the HTTPS redirect
By default, the Puppet Enterprise (PE) console redirects to HTTPS when you attempt to connect over HTTP. You can
customize the redirect target URL or disable redirection.

Set the HTTPS redirect target URL
The default redirect target URL is your primary server's FQDN. You can customize the redirect URL.

To change the redirect target URL:

1. In the PE console, click Node groups and select the PE Infrastructure node group.

2. On the Classes tab, find the puppet_enterprise::profile::console::proxy::http_redirect
class.

3. Add the server_name parameter and change the value to the desired server.

4. Click Add parameter and commit changes.

5. On the nodes hosting your primary server and PE console, run Puppet.

Tip: There are several ways to Run Puppet on demand on page 616.

Disable the HTTPS redirect
By default, the pe-nginx webserver listens on port 80. If you need to run your own service on port 80, you can use
Hiera to disable the HTTPS redirect.

1. Open your default Hiera .yaml file in a text editor.

Tip: For information about Hiera data files, including file paths, refer to Configure settings with Hiera on page
214.

2. Add the enable_http_redirect parameter and set to false. For example:

puppet_enterprise::profile::console::proxy::http_redirect::enable_http_redirect:
 false

3. Save the file and run puppet agent -t to compile the changes.

Enable data editing in the console
In new Puppet Enterprise (PE) installations, you can, by default, edit configuration data in the console. If you
upgraded from an earlier PE version where you hadn't already enabled editing of configuration data, you must use
Hiera to manually enable Classifier Configuration Data.

1. On your primary server, open the hiera.yaml file located at: /etc/puppetlabs/puppet/hiera.yaml.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 238

2. Add the following to the hiera.yaml file:

hierarchy:
- name: "Classifier Configuration Data"
 data_hash: classifier_data

Place additional hierarchy entries, such as hiera-yaml or hiera-eyaml under the same hierarchy
key, below the Classifier Configuration Data entry.

3. To allow users to edit the configuration data in the console, add the Set environment and Edit configuration
data permissions to any user groups that need to set environment parameters or modify class parameters.

4. If your environment is configured for disaster recovery or has compilers, update hiera.yaml on your replica
and compilers, respectively.

Add custom PQL queries to the console
Add your own Puppet Query Language (PQL) queries to the console to quickly access them when running jobs.

For help forming queries, go to the PQL Reference guide in the Puppet documentation.

1. On the primary server, copy the custom_pql_queries.json.example file, and remove the .example
suffix. For example, you can use this command:

sudo cp
/etc/puppetlabs/console-services/custom_pql_queries.json.example
/etc/puppetlabs/console-services/custom_pql_queries.json

2. Edit the file contents to include your own PQL queries or remove any existing queries.

3. Refresh the console UI in your browser.

You can now see your custom queries in the PQL drop-down options when running jobs.

Configure orchestration
After installing PE, you can change some default settings to further configure the orchestrator and pe-
orchestration-services.
Related information
Configuring Puppet orchestrator on page 609
Once you've installed PE or the client tools package, there are a few tasks you need to do to prepare your PE
infrastructure for orchestration services.

How Puppet orchestrator works on page 598
With the Puppet orchestrator, you can run Puppet, tasks, or plans on-demand.

Orchestrator and pe-orchestration-services parameters
These are some optional parameters you can use to configure the behavior of the orchestrator and the pe-
orchestration-services service.

You can modify these profile class parameters in the Puppet Enterprise (PE) console on the Classes tab for the PE
Orchestrator infrastructure node group.

puppet_enterprise::profile::agent::pxp_enabled

Boolean used to enable or disable the Puppet Execution Protocol (PXP) service.

Set to true to enable the PXP service, which is required to use the orchestrator and run Puppet from the console.

Set to false to disable the PXP service. If false, you can’t use the orchestrator or the Run Puppet button in
the console.

Must be true to Configure PXP agent parameters on page 242.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/7/api/query/v4/pql.html

pe | Configuring Puppet Enterprise | 239

Default: true

puppet_enterprise::profile::bolt_server::concurrency

An integer that determines the maximum number of simultaneous task or plan requests the orchestrator can make
to bolt-server.

This setting only limits task or plan executions on nodes with SSH or WinRM transport methods, because these
are the only tasks and plans requiring requests to bolt-server.

Default: 100 requests

CAUTION: Do not set a concurrency limit that is higher than the bolt-server limit. This can cause
timeouts that lead to failed task runs.

puppet_enterprise::profile::orchestrator::allowed_pcp_status_requests

An integer that defines how many times an orchestrator job allows status requests to time out before a
job is considered failed. Status requests wait 12 seconds between timeouts, so multiply the value of the
allowed_pcp_status_requests by 12 to determine how many seconds the orchestrator waits on targets
that aren’t responding to status requests.

Default: 35 timeouts

puppet_enterprise::profile::orchestrator::default_deploy_timeout

An integer specifying how long a deploy job can run on a single node before being force stopped.

CAUTION: Force stopping jobs can result in incomplete Puppet runs, partial configuration changes,
and other issues. When setting the default timeout limit, consider average job scope, run time, and your
infrastructure's capacity (such as concurrency limits).

Default: 1800 (30 minutes)

Deploy jobs triggered by puppet infra commands always have a one year timeout limit, regardless of the
value of default_deploy_timeout.

puppet_enterprise::profile::orchestrator::default_plan_timeout

An integer specifying how long a plan can run before being force stopped. This represents a timeout limit for the
entire plan, not individual plan jobs.

CAUTION: Force stopping plans can result in incomplete Puppet runs, partial configuration changes,
and other issues. When setting the default timeout limit, consider average plan scope, run time, and your
infrastructure's capacity (such as concurrency limits).

Default: 3600 (60 minutes)

Plans triggered by puppet infra commands always have a one year timeout limit, regardless of the value of
default_plan_timeout.

puppet_enterprise::profile::orchestrator::default_task_node_timeout

An integer specifying how many seconds a task can run on a single node before being force stopped.

CAUTION: Force stopping tasks can result in incomplete Puppet runs, partial configuration changes,
and other issues. When setting the default timeout limit, consider average task scope, run time, and your
infrastructure's capacity (such as concurrency limits).

Default: 2400 (40 minutes)

Tasks triggered by puppet infra commands always have a one year timeout limit, regardless of the value of
default_task_node_timeout.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 240

puppet_enterprise::profile::orchestrator::global_concurrent_compiles

An integer specifying how many concurrent compile requests can be outstanding to the primary server across all
orchestrator jobs.

Default: 8 requests

puppet_enterprise::profile::orchestrator::java_args

Specifies the Java heap on page 209 size, which is the amount of JVM memory that each Java process is
allowed to request from the OS for orchestration services to use.

The value is formatted as a JSON hash, where the maximum and minimum are usually the same. For example:
{"Xmx": "256m", "Xms": "256m"}

Default: 704 MB

puppet_enterprise::profile::orchestrator::job_prune_threshold

An integer of 2 or greater, which specifies the number of days to retain job reports.

This parameter sets the corresponding parameter job-prune-days-threshold.

While job_prune_threshold itself has no default value, job-prune-days-threshold has a default
of 30 (30 days).

puppet_enterprise::profile::orchestrator::jruby_max_active_instances

An integer that determines the maximum number of JRuby instances that the orchestrator creates
to execute plans. Because each plan uses one JRuby to run, this value is effectively the maximum
number of concurrent plans. Setting the orchestrator heap size (java_args) automatically sets the
jruby_max_active_instances using the formula $java_args ÷ 1024. If the result is less than one,
the default is one JRuby instance.

Default: 1 instance

Note: The jruby_max_active_instances pool for the orchestrator is separate from the Puppet Server
pool. Refer to JRuby max active instances on page 207 for more information.

puppet_enterprise::profile::orchestrator::max_connections_per_route_authenticated

An integer representing the maximum number of concurrent HTTP-client connections allowed for each route
when requests include a client certificate.

Default: 20

puppet_enterprise::profile::orchestrator::max_connections_per_route_unauthenticated

An integer representing the maximum number of concurrent HTTP-client connections allowed for each route
when requests do not include a client certificate.

Default: 20

puppet_enterprise::profile::orchestrator::max_connections_total_authenticated

An integer representing the maximum number of concurrent HTTP-client connections allowed for all routes
when requests include a client certificate.

Default: 20

puppet_enterprise::profile::orchestrator::max_connections_total_unauthenticated

An integer representing the maximum number of concurrent HTTP-client connections allowed for all routes
when requests do not include a client certificate.

Default: 20

puppet_enterprise::profile::orchestrator::pcp_timeout

An integer representing how long, in seconds, an agent can spend attempting to connect to a PCP broker during a
Puppet run triggered by the orchestrator. If the agent can’t connect to the broker in the specified time frame, the
Puppet run times out.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 241

Default: 30

puppet_enterprise::profile::orchestrator::run_service

A Boolean used to enable (true) or disable (false) orchestration services.

Default: true

puppet_enterprise::profile::orchestrator::socket_timeout

An integer specifying, in milliseconds, the maximum wait time before the orchestrator closes an HTTP
connection when no data is available on the socket.

Default: 120000

puppet_enterprise::profile::orchestrator::task_concurrency

An integer defining the maximum number of task or plan actions that can be executed simultaneously.

The defined concurrency limit applies to the nodes targeted by individual task or plan jobs. For example, if
task_concurrency is set to 200 and four separate task jobs that each target 200 nodes are initiated, then task
actions start executing on all 800 nodes.

If the number of nodes targeted by an individual task or plan job exceeds the concurrency limit, actions on some
of the targeted nodes will be queued. For example, if task_concurrency is set to 200, and an individual task
job is run on 300 targeted nodes, then task actions start executing on 200 nodes while the remaining 100 nodes
wait in queue.

Default: 1000 actions per job

puppet_enterprise::profile::plan_executor::versioned_deploys

A Boolean used for Running plans alongside code deployments on page 667.

Set to true to enable versioned deployments of environment code.

Default: false

Important: Setting this to true disables the file sync client's locking mechanism that usually enforces a
consistent environment state for your plans. This can cause Puppet functions and plans that call other plans to
behave unexpectedly if a code deployment occurs while a plan is running.

For information about how the orchestrator works, what you can do with it, and additional parameters and
configuration options, refer to Orchestrating Puppet runs, tasks, and plans on page 597.

For PXP agent parameters, refer to Configure PXP agent parameters on page 242.

Related information
Configuring Puppet orchestrator on page 609
Once you've installed PE or the client tools package, there are a few tasks you need to do to prepare your PE
infrastructure for orchestration services.

Running Puppet on nodes on page 450
Puppet automatically attempts to run on each of your nodes every 30 minutes. To trigger a Puppet run outside of the
default 30-minute interval, you can manually trigger a Puppet run.

Run Puppet on demand on page 616
You can use the orchestrator to run jobs from the console, the command line, or through the orchestrator API
endpoints.

Configure settings in the PE console on page 213

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 242

You can use the Puppet Enterprise (PE) console's graphical interface to configure settings for your PE installation.

Configure PXP agent parameters
Puppet Execution Protocol (PXP) is a message format used to request task execution and receive task statuses. PXP
agents runs the PXP service. You can configure pxp_agent parameters with Hiera or in the PE console.

puppet_enterprise::profile::agent::pxp_enabled

Boolean used to enable or disable the Puppet Execution Protocol (PXP) service.

Set to true to enable the PXP service, which is required to use the orchestrator and run Puppet from the console.

Set to false to disable the PXP service. If false, you can’t use the orchestrator or the Run Puppet button in
the console.

Default: true

puppet_enterprise::pxp_agent::ping_interval

An integer specifying the frequency, in seconds, that PXP agents ping PCP brokers. If the broker doesn't respond,
the agent tries to reconnect.

Default: 120

puppet_enterprise::pxp_agent::pxp_logfile

The path, as a string, to the PXP agent log file. This file can be used to debug orchestrator issues.

The default value varies by OS.

• *nix: "/var/log/puppetlabs/pxp-agent/pxp-agent.log"
• Windows: "C:\Program Data\PuppetLabs\pxp-agent\var\log\pxp-agent.log"

puppet_enterprise::pxp_agent::spool_dir_purge_ttl

A string representing the amount of time to retain records of Puppet or task runs on agents.

Format the value as a string consisting of a number and one of the following suffixes: m (minutes), h (hours), or d
(days).

Default: "14d" (14 days)

puppet_enterprise::pxp_agent::task_cache_dir_purge_ttl

A string representing the amount of time that task files are cached after use.

Format the value as a string consisting of a number and one of the following suffixes: m (minutes), h (hours), or d
(days).

Default: "14d" (14 days)

puppet_enterprise::pxp_agent::broker_proxy

Optional. Set a proxy URI to use to connect to the pcp-broker to listen for task and Puppet run requests.

puppet_enterprise::pxp_agent::master_proxy

Optional. Set a proxy URI to use to connect to the primary server to download task implementations.

puppet_enterprise::pcp_max_message_size_mb

An integer specifying the maximum message size, in MB, for pcp_broker, pxp_agent, and the orchestrator.

The maximum message size cannot be higher than the default size of 64 MB. You can only specify a smaller
value.

Default: 64

Important: Don't change the pcp_max_message_size_mb parameter if you send or receive large payloads,
because this can cause errors for large task and plan run parameters and output.

Related information
Puppet orchestrator technical overview on page 598

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 243

The orchestrator uses pe-orchestration-services, a JVM-based service in Puppet Enterprise (PE), to
execute on-demand Puppet runs on agent nodes in your infrastructure. The orchestrator uses Puppet Execution
Protocol (PXP) agents to orchestrate changes across your infrastructure.

Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Configure settings in the PE console on page 213
You can use the Puppet Enterprise (PE) console's graphical interface to configure settings for your PE installation.

Manage ARP table overflow
In larger deployments that use the PCP broker, you might encounter Address Resolution Protocol (ARP) table
overflows.

Overflows occur when the ARP table (which is a local cache of IP-to-MAC-address resolutions) becomes full and
starts evicting old entries. When long-established, but frequently-used, entries are evicted, network traffic increases to
restore them. This increases network latency and CPU load on the broker.

Here is an example of a typical ARP table overflow log message:

[root@s1 peadmin]# tail -f /var/log/messages
Aug 10 22:42:36 s1 kernel: Neighbour table overflow.
Aug 10 22:42:36 s1 kernel: Neighbour table overflow.
Aug 10 22:42:36 s1 kernel: Neighbour table overflow.

To resolve this issue, you need to increase sysctl settings related to ARP tables.

For example, these settings are appropriate for networks hosting up to 2000 agents:

Set max table size
net.ipv6.neigh.default.gc_thresh3=4096
net.ipv4.neigh.default.gc_thresh3=4096
Start aggressively clearing the table at this threshold
net.ipv6.neigh.default.gc_thresh2=2048
net.ipv4.neigh.default.gc_thresh2=2048
Don't clear any entries until this threshold
net.ipv6.neigh.default.gc_thresh1=1024
net.ipv4.neigh.default.gc_thresh1=1024

Configure ulimit
As your infrastructure grows and you use Puppet Enterprise (PE) to manage more agents, you might need to increase
the number of allowed file handles per client.

PE services can require as much as one file handle per connected client. The default ulimit settings for most operating
systems can only support up to about 200 clients. To support more clients, you need to increase the number of
allowed file handles.

You can increase file handle limits for these PE services:

• pe-orchestration-services

• pe-puppetdb

• pe-console-services

• pe-puppetserver

• pe-puppet

Where and how you configure ulimit depends on the agent's platform. We've provided instructions to:

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 244

• Configure ulimit using systemd on page 244
• Configure ulimit using upstart on page 244
• Configure ulimit on other init systems on page 245

Tip: In these instructions, replace <PE_SERVICE> with the name of the service you're configuring. For example, if
you're configuring ulimit for the PuppetDB service, replace <PE_SERVICE> with pe-puppetdb.

Additionally, these instructions use 32678 as a sample ulimit value. Change this value according to your needs.

Configure ulimit using systemd
With systemd, the allowed number of open file handles is controlled by the LimitNOFILE setting in the
.service file each PE service.

1. Locate the systemd .service file for the PE service you want to configure and copy the file path. The default
file path is:

/usr/lib/systemd/system/<PE_SERVICE>.service

For example, the file path for the PuppetDB service systemd file is:

/usr/lib/systemd/system/pe-puppetdb.service

For a list of service names, refer to Configure ulimit on page 243.

2. Using the file path you determined in the previous step, run the following commands to increase the ulimit. Make
sure to set the LimitNOFILE value to the desired file handles limit.

mkdir /etc/systemd/system/<PE_SERVICE>.service.d
echo "[Service]LimitNOFILE=32678" > /etc/systemd/system/
<PE_SERVICE>.service.d/limits.conf
systemctl daemon-reload

3. To confirm the change, run:

systemctl show <PE_SERVICE> | grep LimitNOFILE

4. Repeat these steps to configure ulimit for other PE services.

Configure ulimit using upstart
For Ubuntu and Red Hat systems, the allowed number of open file handles is specified in system configuration files
for each PE service.

1. Locate the file for the PE service you want to configure. The location depends on the platform, and the file name
matches the PE service name (as listed in Configure ulimit on page 243).

• Ubuntu: /etc/default/<PE_SERVICE>
• Red Hat: /etc/sysconfig/<PE_SERVICE>

2. Set the ulimit setting on the last line of the file as follows:

ulimit -n <ULIMIT_VALUE>

For example, this configuration set the allowed number of open files to 32,678:

ulimit -n 32678

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 245

Configure ulimit on other init systems
The ulimit controls the number of processes and file handles that a PE service user can open and process.

To increase the ulimit for a PE service user:

1. Open the limits.conf file located at: /etc/security/limits.conf

2. Add these lines to the file, specifying the specific service user's name and the desired ulimit value:

<PE_SERVICE_USER> soft nofile <VALUE>
<PE_SERVICE_USER> hard nofile <VALUE>

For example, this configuration sets the ulimit value to 32,678 for the pe-puppet service user:

pe-puppet soft nofile 32678
pe-puppet hard nofile 32678

Analytics data collection
Some components automatically collect data about how you use Puppet Enterprise (PE). You can opt out of this data
collection during or after installing PE.

This data is separate from other analytics data, such as that collected by the PE support script on page 18, Puppet
metrics collector on page 18, the pe_status_check module, the Value report on page 401, or the analytics
trapperkeeper service (which is described in Orchestration services settings on page 609).

How does sharing this data benefit you?

We use this data to identify customers that could be impacted by security issues, alert them to the issue, and provide
them with relevant instructions to follow or fixes to download.

Additionally, the data helps us understand how customers use PE. This helps us improve PE in ways that benefit you.

How does Puppet by Perforce use the collected data?

This data collection is one of many ways we learn about our customers. For example, knowing how many nodes you
manage helps us develop more realistic product testing. Similarly, learning which operating systems are the most and
the least popular helps us prioritize development. By sharing this data, we can better understand your experience as a
PE customer.

Important: Collected data is tied to a unique, anonymized identifier for each primary server and your site as a
whole. We don't collect any personally identifiable information (PII), and we never use or share collected data outside
Puppet by Perforce.

What data does PE collect?
Puppet Enterprise (PE) collects the following data when Puppet Server starts, restarts, and every 24 hours of
continuous runtime.

License, version, primary server, and agent information

• License UUID
• Number of licensed nodes
• Product name
• PE version
• Primary server's operating system
• Primary server's public IP address
• Whether the primary server is running on Microsoft Azure

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 246

• The hypervisor the primary server is running on, if applicable
• Number of nodes in deployment
• Agent operating systems
• Number of agents running on each operating system
• Agent versions
• Number of agents running each version of Puppet agent
• All-in-One (AIO) puppet-agent package versions
• Number of agents running on Microsoft Azure or Google Cloud Platform, if applicable
• Number of configured disaster recovery replicas, if applicable

PE feature use information

• Number of node groups in use
• Number of nodes used in orchestrator jobs after the last orchestrator restart
• Mean number of nodes per orchestrator job
• Maximum number of nodes per orchestrator job
• Minimum number of nodes per orchestrator job
• Total number of orchestrator jobs created after the last orchestrator restart
• Number of non-default user roles in use
• Type of certificate autosigning in use
• Number of nodes in the job that were run over Puppet Communications Protocol (PCP)
• Number of nodes in the job that were run over SSH
• Number of nodes in the job that were run over WinRM
• Number of nodes patched per task run
• Type of operating system on nodes that were patched in a task run
• Number of patches applied to each node per task run
• Number of patches completed per task run
• Number of nodes with the pe_patch module
• Number of nodes with the pe_patch module that require patching
• List of Puppet task jobs
• List of Puppet deploy jobs
• List of Puppet task jobs run by plans
• List of file upload jobs run by plans
• List of script jobs run by plans
• List of command jobs run by plans
• List of wait jobs run by plans
• How nodes were selected for the job
• Whether the job was started by the PE admin account
• Number of nodes in the job
• Length of description applied to the job
• Length of time the job ran
• User agent used to start the job (used to distinguish between jobs started via the console, command line, or API)
• UUID used to correlate multiple jobs run by the same user
• Time at which the task job ran
• Whether the job was asked to override agent-configured no-operation (no-op) mode
• Whether app-management was enabled in the orchestrator for this job
• Time the deploy job ran
• Type of version control system webhook
• Whether the request was to deploy all environments
• Whether Code Manager waited for all deploys to finish (successfully or with errors) before returning a response
• Whether the deploy was a dry run

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 247

• List of environments requested to deploy
• List of deploy requests
• Total time elapsed for all deploys to finish (successfully or with errors)
• List of total wait times for deploys specifying the --wait option
• Name of environment deployed
• Time needed for r10k to run
• Time spent committing to file sync
• Time elapsed for all environment hooks to run
• List of individual environment deploys
• Puppet classes applied from publicly available modules, with node counts per class

Backup and restore information

• Whether the user used the --force option when running restore
• Scope of restore
• Time in seconds for various restore functions
• Time to check for disk space to restore
• Time to stop PE related services
• Time to restore PE file system components
• Time to migrate PE configuration for new server
• Time to configure PE on newly restored primary server
• Time to update PE classification for new server
• Time to deactivate the old primary server node
• Time to restore the pe-orchestrator database
• Time to restore the pe-rbac database
• Time to restore the pe-classifier database
• Time to restore the pe-activity database
• Time to restore the pe-puppetdb database
• Total time to restore
• List of puppet backup restore jobs
• Whether the user used the --force option when running puppet-backup create
• Whether the user used the --dir option when running puppet-backup create
• Whether the user used the --name option when running puppet-backup create
• Scope of backup
• Time in seconds for various backup functions
• Time needed to estimate backup size, disk space needed, and disk space available
• Time to create file system backup
• Time to back up the pe-orchestrator database
• Time to back up the pe-rbac database
• Time to back up the pe-classifier database
• Time to back up the pe-activity database
• Time to back up the pe-puppetdb database
• Time to compress archive file to backup directory
• Time to back up PE-related classification
• Total time to back up
• List of puppet-backup create jobs

Puppet Server performance information

• Total number of JRuby instances
• Maximum number of active JRuby instances

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 248

• Maximum number of requests per JRuby instance
• Average number of instances not used over the process’ lifetime
• Average wait time to lock the JRuby pool
• Average time the JRuby pool held a lock
• Average time an instance spent handling requests
• Average time spent waiting to reserve an instance from the JRuby pool
• Number of requests that timed out while waiting for a JRuby instance
• Amount of memory the JVM starts with
• Maximum amount of memory the JVM is allowed to request from the operating system

Installer information

• Installation method (express, text, web, or repair)
• Current version, if upgrading
• Target version
• Whether installation succeeded or failed, and limited failure type information (if applicable)

If you use an Amazon Web Services Marketplace Image to install PE, this information is also collected:

• Marketplace name
• Marketplace image billing mode (bring your own license or pay as you go)

PE console information

While in use, the PE console collects:

• Pageviews
• Link and button clicks
• Page load time
• User language
• Screen resolution
• Viewport size
• Anonymized IP address

Important: The console doesn't collect user inputs, such as node or group names, user names, rules, parameters, or
variables.

Opt out when installing PE
You can set the DISABLE_ANALYTICS environment variable when you run the install script.

When you Install PE using the installer tarball on page 111, add DISABLE_ANALYTICS=1 when you call the
installer script, for example:

sudo DISABLE_ANALYTICS=1 ./puppet-enterprise-installer

Including this option with the install script command sets the
puppet_enterprise::send_analytics_data parameter to false in the pe.conf file, which disables
collection of the data described in What data does PE collect? on page 245.

Opt out after installing PE
You can opt out of analytics data collection after installing PE. You can also use these steps to enable data collection
if you want to opt in.

1. In the PE console, go to Node groups > PE Infrastructure.

2. On the PE Infrastructure page, select the Classes tab and locate the puppet_enterprise class.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 249

3. From the Parameter name drop-down list, select send_analytics_data and enter false in the Value
field.

If you want to opt in to data collection after previously opting out, set the Value to true.

4. Click Add to node group and commit your change by clicking the button in the lower right corner of the page.

5. Go to the Nodes page and select your primary server.

6. Click the Run button and select Puppet.

You are taken automatically to the Jobs page, where you can run Puppet to enforce the change on the nodes
hosting your primary server and PE console.

Tip: There are several ways to target nodes for your jobs. For more information, see Run Puppet on demand from
the console on page 616.

After the Puppet runs complete, the data described in What data does PE collect? on page 245 is no longer
collected (if you set the value to false).

Static catalogs
A catalog is a document that describes the desired state for each resource that Puppet manages on a node. Puppet
Enterprise (PE) primary servers typically compile catalogs from manifests of Puppet code. A static catalog is a
specific type of Puppet catalog that includes metadata specifying the desired state of any file resources containing
source attributes pointing to puppet:/// locations on a node.

The metadata in a static catalog can refer to a specific version of a file (other than the latest version), and it can
confirm that the agent is applying the desired version of the file resource for the catalog. Including this metadata in
the catalog reduces the number of requests agents make to the primary server.

Go to the Puppet documentation for details about Resources, File types, and Catalog compilation.

About static catalogs
When a primary server produces a non-static catalog, the catalog doesn't specify file resource versions. When an
agent applies a non-static catalog, it retrieves the latest version of each file resource or uses a previously-retrieved
version (if it matches the latest version's contents). Enable static catalogs if you don't always want to apply the latest
version of a file resource.

When a manifest depends on a file with content that changes more frequently than the agent receives new catalogs,
a node might apply a version of the referenced file that doesn't match the instructions in the catalog. Consequently,
the agent's Puppet runs might produce different results each time the agent applies the same catalog. This often causes
problems because Puppet generally expects a catalog to produce the same results each time it's applied, regardless of
any code or file content updates on the primary server.

Additionally, each time an agent applies a normal cached catalog that contains file resources sourced from
puppet:/// locations on the node, the agent requests file metadata from the primary server each time it applies
the catalog, even if nothing has changed in the cached catalog. This causes the primary server to perform unnecessary
resource-intensive checksum calculations for each file resource.

Note: These potential issues only impact file resources that use the source attribute. File resources that use the
content attribute aren't impacted, and their behavior does not change in static catalogs.

Static catalogs avoid these problems by including metadata referencing specific versions of file resources. This
prevents newer versions from being applied incorrectly, and it prevents forcing agents to regenerate metadata on each
Puppet run. The metadata is delivered in the form of a unique hash maintained, by default, by the file sync service.

The catalog is referred to as static because it contains all the information that an agent needs to determine whether the
node's configuration matches instructions (for using file resources) and the state of file resources at the static point in
time when the catalog was generated.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_resources.html
https://docs.puppet.com/puppet/latest/type.html#file
https://docs.puppet.com/puppet/latest/subsystem_catalog_compilation.html

pe | Configuring Puppet Enterprise | 250

Differences in catalog behavior

Without static catalogs enabled:

1. The agent sends facts to the primary server and requests a catalog.
2. The primary server compiles and returns the agent's catalog.
3. The agent applies the catalog by checking each resource described in the catalog. If the agent finds any resources

that are not in the desired state, it makes the necessary changes.

With static catalogs enabled:

1. The agent sends facts to the primary server and requests a catalog.
2. The primary server compiles and returns the agent's catalog, including metadata specifying the desired state of the

node's file resources.
3. The agent applies the catalog by checking each resource described in the catalog. If the agent finds any resources

that are not in the desired state, it makes the necessary changes based on the state of the file resources at the static
point in time when the catalog was generated.

4. If you change code on the primary server, file contents are not updated until the agent requests a new catalog with
new file metadata.

Enabling file sync

In PE, static catalogs are disabled across all environments for new installations. To use static catalogs in PE, you must
enable file sync, which requires Managing code with Code Manager on page 790.

After enabling file sync (by enabling Code Manager), Puppet Server automatically creates static catalogs containing
file metadata for eligible resources, and agents running Puppet 1.4.0 or newer can leverage static catalog features.

It is possible to use static catalogs without file sync or Code Manager, but you'll need to create custom scripts and set
certain parameters in the console.

Enforcing change with static catalogs

When you are ready to deploy new Puppet code and deliver new static catalogs, you don’t need to wait for agents to
check in. Use the Puppet orchestrator to enforce change and deliver new catalogs across your PE infrastructure, on a
per-environment basis.

Static catalogs exceptions

There are some scenarios when the benefits of static catalogs aren't realized. Agents always process catalogs in these
scenarios, but without the benefits of in-lined file metadata or file resource versions.

In these scenarios static catalogs either aren't applied by agents or don't include metadata for file resources:

• Static catalogs are disabled globally.
• Code Manager and file sync are disabled.
• If you're using static catalogs without file sync and you haven't configured the code_id and code_content

parameters.
• Your agents aren't running PE 2016.1 or later (which includes Puppet agent version 1.4.0 or later).

Catalogs don't include metadata for file resources if the file resource:

• Uses the content attribute instead of the source attribute.
• Uses the source attribute with a non-Puppet scheme, such as:

source => 'http://host:port/path/to/file'

• Uses the source attribute without the built-in modules mount point.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring Puppet Enterprise | 251

• Uses the source attribute, but, on the primary server, the file is not located at:

/etc/puppetlabs/code/environments/<environment>/*/*/files/**

For example, module files are typically located at:

/etc/puppetlabs/code/environments/<environment>/modules/<module_name>/
files/**

Related information
Enabling or disabling file sync on page 838
File sync is normally enabled or disabled automatically along with Code Manager.

How Puppet orchestrator works on page 598
With the Puppet orchestrator, you can run Puppet, tasks, or plans on-demand.

Globally disable static catalogs
You can use Hiera to prevent use of static catalogs across your infrastructure.

1. Open your default Hiera .yaml file in a text editor.

Tip: For information about Hiera data files, including file paths, refer to Configure settings with Hiera on page
214.

2. Add the static_catalogs parameter and set the value to false. For example:

puppet_enterprise::master::static_catalogs: false

3. Save the file and run puppet agent -t to compile the changes.

Use static catalogs without file sync
To use static catalogs without enabling file sync or Code Manager, you must set the code_id and
code_content parameters, and then configure the code_id_command, code_content_command, and
file_sync_enabled parameters in the Puppet Enterprise (PE) console.

1. Follow the instructions for Configuring code_id and the static_file_content endpoint in the open-source Puppet
documentation to set the code_id and code_content settings.

2. In the PE console, go to Node groups > PE Infrastructure > PE Master.

3. On the Classes tab, locate the puppet_enterprise::profile::master class.

4. Add the file_sync_enabled parameter, set the Value to false, and click Add parameter.

5. Add the code_id_command parameter, set the Value to the absolute path to the code_id script, and click
Add parameter.

6. Add the code_content_command parameter, set the Value to the absolute path to the code_content
script, and click Add parameter.

7. Commit changes.

8. Run Puppet on your primary server.

Related information
Configuring Puppet orchestrator on page 609
Once you've installed PE or the client tools package, there are a few tasks you need to do to prepare your PE
infrastructure for orchestration services.

Running Puppet on nodes on page 450
Puppet automatically attempts to run on each of your nodes every 30 minutes. To trigger a Puppet run outside of the
default 30-minute interval, you can manually trigger a Puppet run.

Run Puppet on demand on page 616

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/static-catalogs.html#configuring-endpoints

pe | Configuring disaster recovery | 252

You can use the orchestrator to run jobs from the console, the command line, or through the orchestrator API
endpoints.

Configure settings in the PE console on page 213
You can use the Puppet Enterprise (PE) console's graphical interface to configure settings for your PE installation.

Configuring disaster recovery

Enabling disaster recovery for Puppet Enterprise ensures that your systems can fail over to a replica of your primary
server if infrastructure components become unreachable.

• Disaster recovery on page 252
Disaster recovery creates a replica of your primary server.
• Configure disaster recovery on page 262
To configure disaster recovery, you must provision a replica to serve as backup during failovers. If your primary
server is permanently disabled, you can then promote a replica.

Disaster recovery
Disaster recovery creates a replica of your primary server.

You can have only one replica at a time, and you can add disaster recovery to an installation with or without
compilers.

There are two main advantages to enabling disaster recovery:

• If your primary server fails, the replica takes over the handling of Puppet Server and PuppetDB traffic, allowing
existing agents to remain operational and Puppet runs to continue without interruption. By configuring nodes
to automatically fail over to the replica when the primary is unreachable, you can ensure that they still receive
catalogs and enforce your desired state.

• If your primary server can’t be repaired, you can promote the replica to primary server. Promotion establishes the
replica as the new, permanent primary server.

Disaster recovery architecture
The replica is not an exact copy of the primary server. Rather, the replica duplicates specific infrastructure
components and services. By default Hiera data and other custom configurations are not replicated. However, if you
store Hiera data in the control repository, as recommended, the data is replicated through Code Manager.

Replication can be read-write, meaning that data can be written to the service or component on either the primary
server or the replica, and the data is synced to both nodes. Alternatively, replication can be read-only, where data is
written only to the primary server and synced to the replica. Some components and services, like Puppet Server and
the console service UI, are not replicated because they contain no native data.

Some components and services are activated immediately when you enable a replica; others aren't active until you
promote a replica.

Component or service Type of replication Activated when replica is...

Puppet Server none enabled

File sync client read-only enabled

PuppetDB read-write enabled

Certificate authority read-only promoted

RBAC service read-only enabled

Node classifier service read-only enabled

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 253

Component or service Type of replication Activated when replica is...

Activity service read-only enabled

Orchestration service read-only promoted

Console service UI none promoted

Agentless Catalog Executor (ACE)
service

none promoted

Bolt service none promoted

Host Action Collector service read-only promoted

The following services performed by the primary server are unavailable on a replica until the replica is promoted:

• Certificate authority: The replica cannot provision new agents.
• Orchestration: Tasks, plans, and Puppet runs can not be initiated from the replica. This includes running

operations via the Agentless Catalog Executor.
• Console: The console is not available on the replica, and classification changes cannot be made from the replica.

In a standard installation, when a Puppet run fails over, agents communicate with the replica instead of the primary
server. In a large or extra-large installation with compilers, agents communicate with load balancers or compilers,
which communicate with the primary server or replica.

Related information
Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

What happens during failovers
Failover occurs when the replica takes over services usually performed by the primary server.

Failover is automatic — you don’t have to take action to activate the replica. With disaster recovery enabled, Puppet
runs are directed first to the primary server. If the primary server is either fully or partially unreachable, runs are
directed to the replica.

In partial failovers, Puppet runs can use the server, node classifier, or PuppetDB on the replica if those services aren’t
reachable on the primary server. For example, if the primary server’s node classifier fails, but its Puppet Server is still
running, agent runs use the Puppet Server on the primary server but fail over to the replica’s node classifier.

What works during failovers:

• Scheduled Puppet runs
• Catalog compilation
• Viewing classification data using the node classifier API
• Reporting and queries based on PuppetDB data

What doesn’t work during failovers:

• Deploying new Puppet code
• Editing node classifier data
• Using the console
• Certificate functionality, including provisioning new agents, revoking certificates, or running the puppet

certificate command
• Most CLI tools
• Running Puppet tasks or plans through the orchestrator.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 254

System and software requirements for disaster recovery
Your Puppet infrastructure must meet specific requirements in order to configure disaster recovery.

Component Requirement

Operating system All supported PE primary server platforms.

Software • You must use Code Manager so that code is deployed
to both the primary server and the replica after you
enable a replica. Code Manager also replicates the
certificate authority state, as well as PE configuration
files. Even if you have an alternate method for
syncing your code across nodes, Code Manager must
still be enabled.

• You must use the default PE node classifier so that
disaster recovery classification can be applied to
nodes.

• Orchestrator must be enabled so that it can perform
PE maintenance and upgrade actions.

Replica • Must be an agent node that doesn’t have a specific
function already. You can decommission a node,
uninstall all puppet packages, and re-commission
the node to be a replica. However, a compiler cannot
perform two functions, for example, as a compiler
and a replica.

• Must have the same hardware specifications and
capabilities as your primary server.

• Must have the same agent version as your primary
server.

• Must use the same operating system type and version
as your primary server.

Firewall Your replica must comply with the same port
requirements as your primary server to ensure that the
replica can operate as the primary server during failover.
For details, see the firewall configuration requirements
for your installation type.

Node names You must use resolvable domain names when specifying
node names for the primary server and replica.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 255

Component Requirement

RBAC tokens You must have an admin RBAC token when running
some puppet infrastructure commands,
including provision, enable, and forget.
You can generate a token using the puppet-
access command. However, an RBAC token
isn't required to promote a replica or to run the
enable_ha_failover command.

Related information
Firewall configuration on page 92
Follow these guidelines for firewall configuration based on your installation type.

Generate a token using puppet-access on page 310
Use the puppet-access command to generate an authentication tokens from the command line of any workstation
(Puppet-managed or not), without the need to SSH into the primary server.

Classification changes in disaster recovery installations
When you provision and enable a replica, the system makes a number of classification changes in order to manage
disaster recovery.

Two infrastructure node groups are added in installations with disaster recovery. The PE HA Master node group
includes your primary server and inherits from the PE Master node group. The PE HA Replica node group includes
your replica and inherits from the PE Infrastructure node group.

Additional disaster recovery configuration is managed with these parameters:

• classifier_client_certname
• classifier_host
• classifier_port
• ha_enabled_replicas
• manage_puppet_conf
• pcp_broker_list
• primary_uris
• provisioned_replicas
• puppetdb_host
• puppetdb_port
• replica_hostnames
• replicating
• replication_mode
• server_list
• sync_allowlist
• sync_peers

Note: Apart from the parameters in the PE Agent and PE Infrastructure Agent node groups
(manage_puppet_conf, server_list, pcp_broker_list, and primary_uris), all of these are system
parameters that should not be manually modified. The PE Agent and PE Infrastructure Agent parameters are
automatically updated based on the values you specify when you provision and enable a replica.

classifier_client_certname

Purpose

Specifies the name on the certificate used by the classifier.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 256

Node group

PE Master

Class

puppet_enterprise::profile::master

DR-only parameter

No

Example with enabled replica

["<PRIMARY_CERTNAME>","<REPLICA_CERTNAME>"]

Notes

Replica values are appended to the end of parameter when a replica is enabled.

classifier_host

Purpose

Specifies the certname of the node running the classifier service.

Node group

PE Master

Class

puppet_enterprise::profile::master

DR-only parameter

No

Example with enabled replica

["<PRIMARY_CERTNAME>","<REPLICA_CERTNAME>"]

Notes

Replica values are appended to the end of parameter when a replica is enabled.

classifier_port

Purpose

Specifies the port used for communicating with the classifier service. Always 4433.

Node group

PE Master

Class

puppet_enterprise::profile::master

DR-only parameter

No

Example with enabled replica

[4433,4433]

Notes

Replica values are appended to the end of parameter when a replica is enabled.

ha_enabled_replicas

Purpose

Tracks replica nodes that are failover ready.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 257

Node group

PE Infrastructure

Class

puppet_enterprise

DR-only parameter

Yes

Example with enabled replica

["<REPLICA_CERTNAME>"]

Notes

Updated when you enable a replica.

manage_puppet_conf

Purpose

When true, specifies that the server_list setting is managed in puppet.conf.

Node group

PE Agent, PE Infrastructure Agent

Class

puppet_enterprise::profile::agent

DR-only parameter

No

Example with enabled replica

true

pcp_broker_list

Purpose

Specifies the list of Puppet Communications Protocol brokers that Puppet Execution Protocol agents contact, in
order.

Node group

PE Agent, PE Infrastructure Agent

Class

puppet_enterprise::profile::agent

DR-only parameter

No

Example with enabled replica

PE Agent — ["<PRIMARY_CERTNAME>:8142,"<REPLICA_CERTNAME>:8142"] or in a large
installation, ["<LOAD_BALANCER>:8142"]

PE Infrastructure Agent — ["<PRIMARY_CERTNAME>:8142","<REPLICA_CERTNAME>:8142"]

Notes

• Infrastructure nodes must be configured to communicate directly with the primary in the PE Infrastructure
Agent node group, or in a DR configuration, the primary and then the replica. In large installations with
compilers, agents must be configured to communicate with the load balancers or compilers in the PE Agent
node group.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 258

• When a replica is enabled, the replica is appended to the end of the list in the PE Infrastructure Agent
group, and when not using a load balancer, it's appended to the list in PE Agent.

• Some puppet infrastructure commands refer to this parameter as agent-server-urls, but
those commands nonetheless manage the server_list parameter.

Important: Setting agents to communicate directly with the replica in order to use the replica as a compiler is
not supported.

primary_uris

Purpose

Specifies the list of Puppet Server nodes hosting task files for download that Puppet Execution Protocol agents
contact, in order.

Node group

PE Agent, PE Infrastructure Agent

Class

puppet_enterprise::profile::agent

DR-only parameter

No

Example with enabled replica

PE Agent — ["<PRIMARY_CERTNAME>:8140,"<REPLICA_CERTNAME>:8140"], or in a large
installation, ["<LOAD_BALANCER>:8140"]

PE Infrastructure Agent — ["<PRIMARY_CERTNAME>:8140","<REPLICA_CERTNAME>:8140"]

Notes

• Infrastructure nodes must be configured to communicate directly with the primary in the PE Infrastructure
Agent node group, or in a DR configuration, the primary and then the replica. In large installations with
compilers, agents must be configured to communicate with the load balancers or compilers in the PE Agent
node group.

• When a replica is enabled, the replica is appended to the end of the list in the PE Infrastructure Agent
group, and when not using a load balancer, it's appended to the list in PE Agent.

• Some puppet infrastructure commands refer to this parameter as agent-server-urls, but
those commands nonetheless manage the server_list parameter.

Important: Setting agents to communicate directly with the replica in order to use the replica as a compiler is
not supported.

provisioned_replicas

Purpose

Specifies the certname of replica to give access to the ca-data file sync repo.

Node group

PE HA Master

Class

puppet_enterprise::profile::master

DR-only parameter

Yes

Example with enabled replica

["<REPLICA_CERTNAME>"]

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 259

puppetdb_host

Purpose

Specifies the certname of the node running the PuppetDB service.

Node group

PE Master

Class

puppet_enterprise::profile::master

DR-only parameter

No

Example with enabled replica

["<PRIMARY_CERTNAME>","<REPLICA_CERTNAME>"]

Notes

Replica values are appended to the end of parameter when a replica is enabled.

puppetdb_port

Purpose

Specifies the port used for communicating with the PuppetDB service. Always 8081.

Node group

PE Master

Class

puppet_enterprise::profile::master

DR-only parameter

No

Example with enabled replica

[8081,8081]

Notes

Replica values are appended to the end of parameter when a replica is enabled.

replica_hostnames

Purpose

Specifies the certname of the replica to set up pglogical replication for non-PuppetDB databases.

Node group

PE HA Master

Class

puppet_enterprise::profile::database

DR-only parameter

Yes

Example with enabled replica

["<REPLICA_CERTNAME>"]

replicating

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 260

Purpose

Specifies whether databases other than PuppetDB replicate data.

Node group

PE Infrastructure

Class

puppet_enterprise

DR-only parameter

Yes

Example with enabled replica

true

Notes

Used when provisioning a new replica.

replication_mode

Purpose

Sets replication type and direction on primary servers and replicas.

Node group

PE Master (none), HA Master (source)

Class

puppet_enterprise::profile::master

puppet_enterprise::profile::database

puppet_enterprise::profile::console

DR-only parameter

Yes (although "none" by default)

Example with enabled replica

PE Master — "none" (Present only in master profile.)

PE HA Master — "source" (Set automatically in the replica profile; no setting in the classifier in PE HA
Replica.)

server_list

Purpose

Specifies the list of servers that agents contact, in order.

Node group

PE Agent, PE Infrastructure Agent

Class

puppet_enterprise::profile::agent

DR-only parameter

No

Example with enabled replica

PE Agent — ["<PRIMARY_CERTNAME>:8140","<REPLICA_CERTNAME>:8140"] or in a large
installation, ["<LOAD_BALANCER>:8140"]

PE Infrastructure Agent —["<primary certname>:8140","<replica certname>:8140"]

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 261

Notes

• Infrastructure nodes must be configured to communicate directly with the primary in the PE Infrastructure
Agent node group, or in a DR configuration, the primary and then the replica. In large installations with
compilers, agents must be configured to communicate with the load balancers or compilers in the PE Agent
node group.

• When a replica is enabled, the replica is appended to the end of the list in the PE Infrastructure Agent
group, and when not using a load balancer, it's appended to the list in PE Agent.

• Some puppet infrastructure commands refer to this parameter as agent-server-urls, but
those commands nonetheless manage the server_list parameter.

Important: Setting agents to communicate directly with the replica in order to use the replica as a compiler is
not supported.

sync_allowlist

Purpose

Specifies a list of nodes that the primary PuppetDB syncs with.

Node group

PE HA Master

Class

puppet_enterprise::profile::puppetdb

DR-only parameter

Yes

Example with enabled replica

["<REPLICA_CERTNAME>"]

During upgrade, when primary is upgraded but replica hasn't been upgraded, [] to prevent syncing until upgrade
is complete.

sync_peers

Purpose

Specifies a list of hashes that contain configuration data for syncing with a remote PuppetDB node. Includes the
host, port, and sync interval.

Node group

PE HA Master

Class

puppet_enterprise::profile::puppetdb

DR-only parameter

Yes

Example with enabled replica

[{"host":"<REPLICA_CERTNAME>","port":8081,"sync_interval_minutes":<X>}]

During upgrade, when primary is upgraded but replica hasn't been upgraded, [] to prevent syncing until upgrade
is complete.

Notes

Updated when you enable a replica.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 262

Load balancer timeout in disaster recovery installations
Disaster recovery configuration uses timeouts to determine when to fail over to the replica. If the load balancer
timeout is shorter than the server and agent timeout, connections from agents might be terminated during failover.

To avoid timeouts, set the timeout option for load balancers to four minutes or longer. This duration allows compilers
enough time for required queries to PuppetDB and the node classifier service. You can set the load balancer timeout
option using parameters in the haproxy or f5 modules.

Configure disaster recovery
To configure disaster recovery, you must provision a replica to serve as backup during failovers. If your primary
server is permanently disabled, you can then promote a replica.

Before you begin

• Apply disaster recovery system and software requirements.
• Ensure you have a valid admin RBAC token that is valid for at least an hour, so that it does not expire during the

provisioning process. You can delete the token after provisioning is complete.
• Ensure Code Manager is enabled and configured on your primary server.
• Move any tuning parameters that you set for your primary server using the console to Hiera. Using Hiera ensures

configuration is applied to both your primary server and replica.
• If you're using an r10k private key for code management, set

puppet_enterprise::profile::master::r10k_private_key in pe.conf . This ensures that the
r10k private key is synced to your primary server replica.

• Back up your classifier hierarchy, because enabling a replica alters classification.

Tip: Some of the puppet infrastructure commands that are used to configure and manage disaster recovery
require a valid admin RBAC token, and all commands must be run from a root session. Running with elevated
privileges via sudo puppet infrastructure is not sufficient. Instead, start a root session by running sudo
su -, and then run the puppet infrastructure command. For details about these commands, run puppet
infrastructure help <ACTION>. For example: puppet infrastructure help provision.

Related information
PostgreSQL WAL disk space on page 212
The max_slot_wal_keep_size setting specifies the maximum allocated WAL disk space for each replication
slot. This prevents the pg_wal directory from growing infinitely.

Generate a token using puppet-access on page 310
Use the puppet-access command to generate an authentication tokens from the command line of any workstation
(Puppet-managed or not), without the need to SSH into the primary server.

Provision and enable a replica
Provisioning a replica duplicates specific components and services from the primary server to the replica. Enabling a
replica activates most of its duplicated services and components, and instructs agents and infrastructure nodes how to
communicate in a failover scenario.

Before you begin

• Ensure you have completed the steps outlined in the Configure disaster recovery section.

Important: The process outlined here isn't suitable if your installation is configured by the Puppet Enterprise
Administration Module (PEADM). See Provision and enable a replica for a PEADM installation.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 263

1. Configure infrastructure agents to connect orchestration agents to the primary server.

a) In the console, click Node groups, and in the PE Infrastructure group, select the PE Agent > PE
Infrastructure Agent group.

b) If you manage your load balancers with agents, on the Rules tab, pin load balancers to the group.

Pinning load balancers to the PE Infrastructure Agent group ensures that they communicate directly with the
primary server.

c) On the Classes tab, find the puppet_enterprise::profile::agent class and specify these parameters:

Parameter Value

manage_puppet_conf Specify true to ensure that your setting for
server_list is configured in the expected
location and persists through Puppet runs. This is the
default value.

pcp_broker_list Hostname for your primary server. Hostnames
must include port 8142, for example
["PRIMARY.EXAMPLE.COM:8142"].

primary_uris Hostname for your primary server, for example
["PRIMARY.EXAMPLE.COM"]. This setting
assumes port 8140 unless you specify otherwise with
host:port.

server_list Hostname for your primary server, for example
["PRIMARY.EXAMPLE.COM"]. This setting
assumes port 8140 unless you specify otherwise with
host:port.

d) Remove any values set for pcp_broker_ws_uris.
e) Commit changes.
f) Run Puppet on all agents classified into the PE Infrastructure Agent group.

2. On the primary server, as the root user, run puppet infrastructure provision replica
<REPLICA NODE NAME> --enable

Tip:

The default replica --enable command adds the replica to your PE Agent node group's server list, which
causes all Puppet.conf files to include the new server. However, if you include the --skip-agent-
config flag, the replica is added to the server list of the PE Infrastructure Agent node group (which is a child of
the PE Agent node group); this, by extension, impacts only the Puppet.conf files on your infrastructure nodes
(including compilers).

In installations with compilers, use the --skip-agent-config flag with --enable if you want to:

• Upgrade a replica without needing to run Puppet on all agents.
• Add disaster recovery to an installation without modifying the configuration of existing load balancers.
• Manually configure which load balancer agents communicate with in multi-region installations. See Managing

agent communication in multi-region installations on page 265.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 264

3. Copy your secret key files from the primary server to the replica.

The secret key files are located at:

• /etc/puppetlabs/orchestration-services/conf.d/secrets/keys.json

• /etc/puppetlabs/orchestration-services/conf.d/secrets/orchestrator-
encryption-keys.json

• /etc/puppetlabs/console-services/conf.d/secrets/keys.json

Important: If you do not copy your secret key files onto your replica, the replica generates new secret key files
when you promote it. This prevents you from accessing LDAP, and prevents services from accessing encrypted
information in PE databases.

4. Verify that the contents of the global layer Hiera file on the new replica, located at/etc/puppetlabs/
puppet/hiera.yaml, match the contents of the global layer Hiera file on the primary server.

• If necessary, update hiera.yaml#on the replica to match hiera.yaml#on the primary server.
• If you use code to manage the contents of hiera.yaml on the primary server, ensure that the new replica is

also classified to manage the contents of its own hiera.yaml file.

5. Optional: Verify that all services running on the primary server are also running on the replica:

a) From the primary server, run puppet infrastructure status --verbose to verify that the replica
is available.

b) From any managed node, run puppet agent -t --noop --server_list=<REPLICA
HOSTNAME>. If the replica is correctly configured, the Puppet run succeeds and shows no changed resources.

6. Optional: Deploy updated configuration to agents by running Puppet, or wait for the next scheduled Puppet run.

If you used the --skip-agent-config option, you can skip this step.

Note: If you use the direct Puppet workflow, where agents use cached catalogs, you must manually deploy the
new configuration by running:

puppet job run --no-enforce-environment --query 'nodes {deactivated is
 null and expired is null}'

7. Optional: Perform any tests you feel are necessary to verify that Puppet runs continue to work during failover. For
example, to simulate an outage on the primary server:

a) Prevent the replica and a test node from contacting the primary server. For example, you might temporarily
shut down the primary server or use iptables with drop mode.

b) Run puppet agent -t on the test node. If the replica is correctly configured, the Puppet run succeeds and
shows no changed resources. Runs might take longer than normal when in failover mode.

c) Reconnect the replica and test node.

Related information
Generate a token using puppet-access on page 310
Use the puppet-access command to generate an authentication tokens from the command line of any workstation
(Puppet-managed or not), without the need to SSH into the primary server.

Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Back up your infrastructure on page 866
The backup process creates a copy of your primary server, including configuration, certificates, code, and PuppetDB.
Backup can take several hours depending on the size of PuppetDB.

Running Puppet on nodes on page 450

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 265

Puppet automatically attempts to run on each of your nodes every 30 minutes. To trigger a Puppet run outside of the
default 30-minute interval, you can manually trigger a Puppet run.

Managing agent communication in multi-region installations
Typically, when you enable a replica by using puppet infrastructure enable replica or puppet
infrastructure provision replica --enable, the configuration tool automatically sets the same
communication parameters for all agents. In multi-region installations, with load balancers or compilers in multiple
locations, you must manually configure agent communication settings so that agents fail over to the appropriate load
balancer or compiler.

To skip automatically configuring which Puppet servers and PCP brokers agents communicate with, use the --
skip-agent-config flag when you provision and enable a replica, for example:

puppet infrastructure provision replica example.puppet.com --enable --skip-
agent-config

To manually configure which load balancer or compiler agents communicate with, use one of these options:

• CSR attributes

1. For each node, include a CSR attribute that identifies the location of the node, for example pp_region or
pp_datacenter.

2. Create child groups off of the PE Agent node group for each location.
3. In each child node group, include the puppet_enterprise::profile::agent class and set the

server_list parameter to the appropriate load balancer or compiler hostname.
4. In each child node group, add a rule that uses the trusted fact created from the CSR attribute.

• Hiera

For each node or group of nodes, create a key/value pair that sets the
puppet_enterprise::profile::agent::server_list parameter to be used by the PE Agent node
group.

• Custom method that sets the server_list parameter in puppet.conf.

Provision and enable a replica for a PEADM installation

Before you begin

• Ensure you have completed the steps outlined in the Configure disaster recovery section.

The following outlines the varying processes to provision and enable a replica for standard, large and extra-large
PEADM-configured installations.

• A standard or large PEADM installation must use the peadm::add_replica plan to expand to a standard
disaster recovery or large disaster recovery installation.

• An extra-large PEADM installation must first use the peadm::add_database plan to prepare
a replica-postgresql node before using the peadm::add_replica to complete expansion to an
extra-large disaster recovery installation. When running the peadm::add_replica plan, you must
also set the replica_postgresql_host parameter to the database host you just added with the
peadm::add_database plan.

• In a standard disaster recovery configuration, or extra-large disaster recovery configuration without compilers,
you need to manually reset the PE agent node groups puppet_enterprise::profile::agent parameters
with the new primary/replica addresses.

For more information see:

https://github.com/puppetlabs/puppetlabs-peadm/blob/main/documentation/expanding.md.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-peadm/blob/main/documentation/expanding.md

pe | Configuring disaster recovery | 266

Promote a replica
If your primary server can’t be restored, you can promote the replica to establish it as the new, permanent primary
server.

1. Verify that the primary server is permanently offline.

If the primary server comes back online during promotion, your agents can get confused trying to connect to two
active primary servers, and replication between the primary server and replica could cause additional issues with
the promotion process. If you still have access to the primary server, stop all PE services by running systemctl
stop puppet and then systemctl stop pe-*.

2. On the replica, as the root user, run puppet infrastructure promote replica

Promotion can take up to the amount of time it took to install PE initially. Don’t make code or classification
changes during promotion.

3. When promotion is complete, update any systems or settings that refer to the old primary server, such as PE client
tool configurations, Code Manager hooks, and CNAME records.

4. Deploy updated configuration to nodes by running Puppet or waiting for the next scheduled run.

Note: In case of a failover, scheduled Puppet and task runs are rescheduled based on the last execution time.

5. If you have a SAML identity provider (IdP) configured for single sign-on access in PE, specify your replica's new
URLs and certificate in your IdP's configuration.

After promotion, view the replica's URLs and certificate in the console on the Access control page, on the SSO
tab, under Show configuration information. Because your SAML IdP isn't connected to your replica yet, you'll
need to log into the console using a local PE or LDAP account to get the URLs and certificate.

6. Optional: Provision a new replica in order to maintain disaster recovery.

Note: Agent configuration must be updated before provisioning a new replica. If you re-use your old primary
server’s node name for the new replica, agents with outdated configuration might use the new replica as a primary
server before it’s fully provisioned.

Related information
Running Puppet on nodes on page 450
Puppet automatically attempts to run on each of your nodes every 30 minutes. To trigger a Puppet run outside of the
default 30-minute interval, you can manually trigger a Puppet run.

Connect to a SAML identity provider on page 295
Use the console to set up SSO or MFA with your SAML identity provider.

Enable a new replica using a failed primary server
After promoting a replica, you can use your old primary server as a new replica, effectively swapping the roles of
your failed primary server and promoted replica.

Before you begin

The puppet infrastructure run enable_ha_failover command detailed here leverages a built-
in Bolt plan. To use this command, you must be able to connect using SSH from your current primary server to the
failed primary server. You can establish an SSH connection using key forwarding, a local key file, or by specifying
keys in .ssh/config on your primary server. Additionally, the tasks used by the plan must run as root, so specify
the –-run-as root flag with the command, as well as –-sudo-password if necessary. For more information,
see Bolt OpenSSH configuration options.

Important: The process outlined here isn't suitable if your installation is configured by the Puppet Enterprise
Administration Module (PEADM). See Enable a new replica using a failed primary server for a PEADM installation.

By default, the enable_ha_failover plan uses its own RBAC user to perform the provision and enable
commands. If you want to use a specific user instead, specify the RBAC parameters to the command.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt_transports_reference.html#openssh-config

pe | Configuring disaster recovery | 267

To view all available parameters, use the --help flag. The logs for this and all puppet infrastructure run
Bolt plans are located at /var/log/puppetlabs/installer/bolt_info.log.

To minimize the time required to enable a new replica from a failed primary server, the default plan attempts to
provision the failed server as a replica by retaining the existing PuppetDB database. However, if the failed server has
been offline for an extended period, the backlog of data may cause synchronization issues with the current primary,
especially if the rate of new data generation is higher than PuppetDB's sync capacity. In such cases, consider using
the alternative workflow to completely reinstall Puppet Enterprise and re-provision the replica. To activate this
workflow, you can run the plan with uninstall_workflow=true.

Note: The alternative workflow takes longer as it involves copying the entire PuppetDB database to the node. This
workflow also backs up the node's log history by saving the contents of /var/log/puppetlabs to /var/log/
puppetlabs_<timestamp>.

To repurpose a failed primary server as a new replica, run the enable_ha_failover plan as follows:

On your promoted replica, as the root user, run puppet infrastructure run enable_ha_failover,
specifying these parameters:

• host — Hostname of the failed primary server. This node becomes your new replica.
• topology — The architecture used in your environment, either mono (for a standard installation) or

mono-with-compile (for a large installation). For mono-with-compile, you must specify either
skip_agent_config, or both agent_server_urls and pcp_brokers.

• skip_agent_config — Optional. Specifying this parameter with topology=mono-with-compile
skips configuring puppet.conf on non-infrastructure agent nodes. This parameter is ignored when
topology=mono.

• agent_server_urls — Optional. This is the parameter used with topology=mono-with-compile
to specify the server_list parameter in puppet.conf on all agent nodes. This parameter is ignored
when topology=mono.

• pcp_brokers — Optional. This is the parameter used with topology=mono-with-compile to list the
PCP brokers for PXP agent’s configuration file. This parameter is ignored when topology=mono.

• dns_alt_names — Optional. A comma-separated list of DNS alt names to add to the host’s certificate.
• rbac_account — Optional. The RBAC account you want to use to run the provision and enable commands,

instead of the built-in enterprise_tasks user.
• rbac_password — Optional. The password for the RBAC account you want to use to run the provision and

enable commands.
• replication_timeout_secs — Optional. The number of seconds allowed to complete provisioning and

enabling of the new replica before the command fails.
• uninstall_workflow — Optional. Use the uninstall/reinstall workflow instead of the default workflow.
• force — Skip some checks when running the plan.

For example:

puppet infrastructure run enable_ha_failover host=<FAILED_PRIMARY_HOSTNAME>
 topology=mono

The failed primary server is repurposed as a new replica.

Enable a new replica using a failed primary server for a PEADM installation

To reuse an old primary server as a new replica on a PEADM-configured installation:

1. Uninstall PE on the old primary server: puppet-enterprise-uninstaller -ypd.

2. From your PEADM jump host, run the peadm::add_replica plan with primary_host set to your newly
promoted primary server, and replica_host the old primary server that you just uninstalled.

When performing this in an extra-large disaster recovery environment, you must also supply the
replica_postgresql_host parameter.

© 2024 Puppet, Inc., a Perforce company

pe | Configuring disaster recovery | 268

3. In a standard disaster recovery configuration, or an extra-large disaster recovery without compilers, you need to
manually reset the PE agent node groups puppet_enterprise::profile::agent parameters with the
new primary/replica addresses.

For more information see:

https://github.com/puppetlabs/puppetlabs-peadm/blob/main/documentation/automated_recovery.md

Forget a replica
Forgetting a replica removes the replica from classification and database state and purges the node.

Before you begin

Ensure you have a valid admin RBAC token and the replica you want to remove is permanently offline.

Run the forget command whenever a replica node is destroyed, even if you plan to replace it with a replica with
the same name.

You can also follow this process if your replica is offline for an extended period. When the replica is offline,
PostgreSQL Write-Ahead Log (WAL) files build up on the primary server, potentially consuming excessive disk
space. To avoid this, you can run the forget command and then reprovision the replica.

1. On the primary server, as the root user, run puppet infrastructure forget <REPLICA NODE
NAME>

2. If the replica node still exists, run puppet-enterprise-uninstaller –y –p –d to completely remove
Puppet Enterprise from the node. This action helps to avoid security risks associated with leaving sensitive
information in the PostgreSQL database and secret keys on a replica.

The replica is decommissioned, the node is purged as an agent, secret key information is deleted, and a Puppet run is
completed on the primary server.
Related information
Generate a token using puppet-access on page 310
Use the puppet-access command to generate an authentication tokens from the command line of any workstation
(Puppet-managed or not), without the need to SSH into the primary server.

Reinitialize a replica
If puppet infrastructure status shows errors on your replica after provisioning, you can reinitialize the
replica. Reinitializing destroys and re-creates replica databases, except for PuppetDB. This process is usually quick
because non-PuppetDB databases are relatively small.

Before you begin
Your primary server must be fully functional and the replica must be able to communicate with the primary server.

CAUTION: If you reinitialize a functional enabled replica, the replica is unavailable to serve as backup in a
failover during reinitialization.

Reinitialization is not intended to fix slow queries or intermittent failures. Reinitialize your replica only if it’s not
operational or if you encounter replication errors on non-PuppetDB databases.

1. On the replica, as the root user, run puppet infrastructure reinitialize replica.

a) Optionally, you can reinitialize a single database with puppet infrastructure reinitialize
replica --db <DATABASE>, replacing <DATABASE> with one of the following:

• pe-activity

• pe-classifier

• pe-orchestrator

• pe-inventory

• pe-rbac

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-peadm/blob/main/documentation/automated_recovery.md

pe | Accessing the console | 269

2. Follow prompts to complete the reinitialization. You can use the –y flag to bypass the prompts.

Accessing the console

The console is the web interface for Puppet Enterprise.

Use the console to:

• Manage node requests to join the Puppet deployment.
• Assign Puppet classes to nodes and groups.
• Run Puppet on specific groups of nodes.
• View reports and activity graphs.
• Browse and compare resources on your nodes.
• View package and inventory data.
• Manage console users and their access privileges.

• Reaching the console on page 269
The console is served as a website over SSL, on whichever port you chose when installing the console component.
• Logging in on page 269
Accessing the Puppet Enterprise (PE) console requires a username and password.

Reaching the console
The console is served as a website over SSL, on whichever port you chose when installing the console component.

Let's say your console server is console.domain.com. If you chose to use the default port (443), you can omit
the port from the URL and reach the console by navigating to https://console.domain.com.

If you chose to use port 8443, you reach the console at https://console.domain.com:8443.

Remember: Always use the https protocol handler. You cannot reach the console over plain http.

Accepting the console's certificate
The console uses an SSL certificate created by your own local Puppet certificate authority. Because this authority is
specific to your site, web browsers won't know it or trust it, and you must add a security exception in order to access
the console.

Adding a security exception for the console is safe to do. Your web browser warns you that the console's identity
hasn't been verified by one of the external authorities it knows of, but that doesn't mean it's untrustworthy. Because
you or another administrator at your site is in full control of which certificates the Puppet certificate authority signs,
the authority verifying the site is you.

When your browser warns you that the certificate authority is invalid or unknown:

• In Chrome, click Advanced, then Proceed to <CONSOLE ADDRESS>.
• In Firefox, click Advanced, then Add exception.
• In Internet Explorer or Microsoft Edge, click Continue to this website (not recommended).
• In Safari, click Continue.

Logging in
Accessing the Puppet Enterprise (PE) console requires a username and password.

If you are an administrator configuring or accessing the PE console for the first time, use the username and password
you chose when you installed PE. Otherwise, get credentials from your site's administrator.

© 2024 Puppet, Inc., a Perforce company

pe | Accessing the console | 270

Because the console is your infrastructure's main control point, don't allow your browser to store the login credentials.

Generate a user password reset token
When users forget their passwords or lock themselves out of the console by providing incorrect credentials too many
times, you must generate a password reset token.

1. In the console, on the Access control page, click the Users tab.

2. Click the name of the user who needs a password reset token.

3. Click Generate password reset, copy the link, and send it to the user.

Reset the console administrator password
If you're unable to log in to the console as admin, you can change the password from the command line of the node
that is running console services.

1. On the node running console services (usually your primary server), log in as root.

2. To reset the console admin password, run:

puppet infrastructure console_password --password <MY_PASSWORD>

Troubleshooting PE admin account access
You might encounter these situations when trying to log in as the Puppet Enterprise (PE) admin user.

Multiple admin users

If your directory has multiple users with admin as their login name, the PE admin account can't log in.

PE admin locked out

If you are locked out of the PE admin account, ask another use with administrator access to Generate a user password
reset token on page 270 for the admin user.

If there are no other users who can reset the admin user's password, you must SSH into the box and use curl
commands to reset the directory service settings. For example, this curl command is for a box named centos7:

type_header='Content-Type: application/json'
cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/rbac-api/v1/ds"
data='{}'

curl --header "$type_header" --cert "$cert" --cacert "$cacert" --key "$key"
 --request PUT "$uri" --data "$data"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Create a custom login disclaimer
You can add a custom banner to console login page. For example, you can add a disclaimer about authorized or
unauthorized use of private information found in the console.

These steps explain how to use a disclaimer.txt file for your custom disclaimer. You can also use the RBAC
API Disclaimer endpoints on page 366 to configure the disclaimer without needing to reference a specific file
location on disk.

1. Create a disclaimer.txt file containing the disclaimer content.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 271

2. Place the file in /etc/puppetlabs/console-services

If you want to store the file somewhere else, you can change the disclaimer file path in the console by configuring
puppet_enterprise::profile::console::disclaimer_content_path

3. Log in to the console to test the new banner.

Related information
Configure the PE console and console-services on page 232
You can configure the behavior of the console and the console-services service.

Require LDAP group membership to log in
You can use the exclude-groupless-ldap-users setting to prevent LDAP users with no group bindings
from logging in and creating Puppet Enterprise (PE) accounts. This setting is disabled by default.

1. On your primary server, navigate to /etc/puppetlabs/console-services/conf.d/ and create a new
.conf file at this location.

2. Paste the following into the .conf file:

rbac: {
 feature-flags: {
 exclude-groupless-ldap-users: true
 }
}

3. To merge this setting into your RBAC configuration, run Puppet on your primary server: puppet agent -t

Related information
Managing access on page 271
Role-based access control (RBAC) is used to grant individual users the permission to perform specific actions.
Permissions are grouped into user roles, and each user is assigned at least one user role.

Configure RBAC and token-based authentication settings on page 227
You can configure RBAC and token-based authentication settings, such as setting the number of failed attempts a
user has before they are locked out of the console or the amount of time tokens are valid.

Managing access

Role-based access control (RBAC) is used to grant individual users the permission to perform specific actions.
Permissions are grouped into user roles, and each user is assigned at least one user role.

By using permissions, you give users appropriate levels of access and capability. For example, you can use
permissions to allow users to:

• Grant password reset tokens to other users who have forgotten their passwords.
• Edit a local user’s metadata.
• Deploy Puppet code to specific environments.
• Edit class parameters in a node group.

You can do access control tasks in the console or with the RBAC API.

• User permissions and user roles on page 272
The role in role-based access control (RBAC) refers to a system of user roles, which are assigned to user groups and
the users in those groups. Those roles contain permissions, which define what a user with that role can or can't do
within Puppet Enterprise (PE).
• Creating and managing local users and user roles on page 282
Role-based access control (RBAC) in Puppet Enterprise (PE) lets you to manage users—what they can and can't
create, edit, or view—in an organized, high-level way that is more efficient than managing user permissions on a per-

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 272

user basis. User roles are sets of permissions you can apply to multiple users. You can't assign permissions directly to
users in PE, only to user roles. You then assign roles to users.
• LDAP authentication on page 285
You can connect PE to external Lightweight Directory Access Protocol (LDAP) directory services and manage
permissions with role-based access control (RBAC).
• SAML authentication on page 294
Connect to a Security Assertion Markup Language (SAML) identity provider, like Microsoft ADFS or Okta, to log in
to PE with single sign-on (SSO) or multifactor authentication (MFA).
• Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.
• RBAC API on page 315
Use the RBAC API to manage users, user groups, roles, permissions, tokens, password, and LDAP or SAML
connections.
• Activity service API on page 380
The activity service records changes to role-based access control (RBAC) entities, such as users, directory groups,
and user roles. Use the activity service API to query event data.

User permissions and user roles
The role in role-based access control (RBAC) refers to a system of user roles, which are assigned to user groups and
the users in those groups. Those roles contain permissions, which define what a user with that role can or can't do
within Puppet Enterprise (PE).

When users are added to PE, they don't have permission to do anything until they are associated with a user role,
either by direct role assignment or by inheriting roles from group membership. When a user is assigned to a role (or
inherits a role from a group), they receive all the permissions from that role. If a user is associated with multiple roles,
the user is able to perform all actions described by all permissions received from all of their assigned roles.

There are five default user roles:

Administrators

Can manage users and permissions, create and modify node groups and other objects.

Administrators have all permissions assigned to them by default.

Operators

Can create and modify node groups and other objects.

Viewers

Can view, but can't modify, objects in the console.

Code Deployers

Can synchronize code from version control systems to Puppet Server.

Project Deployers

Can deploy projects and run project tasks and plans.

You can also create custom roles. For example, you might want to create a user role that grants users permission to
view but not edit a specific subset of node groups. Or you might want to divide up administrative privileges so that
one user role is able to reset passwords while another can edit roles and create users.

Related information
Creating and managing local users and user roles on page 282
Role-based access control (RBAC) in Puppet Enterprise (PE) lets you to manage users—what they can and can't
create, edit, or view—in an organized, high-level way that is more efficient than managing user permissions on a per-

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 273

user basis. User roles are sets of permissions you can apply to multiple users. You can't assign permissions directly to
users in PE, only to user roles. You then assign roles to users.

Create a user role on page 282
Puppet Enterprise (PE) includes five default roles. You can also create your own roles.

Working with LDAP users and user groups on page 292
You don’t explicitly add remote users to PE. Instead, after connecting external directory services, remote users log
into PE, which creates their user records.

SAML authentication on page 294
Connect to a Security Assertion Markup Language (SAML) identity provider, like Microsoft ADFS or Okta, to log in
to PE with single sign-on (SSO) or multifactor authentication (MFA).

Structure of user permissions
User permissions are structured as a triple of type, permission, and object.

• Types: Any thing that can be acted on in Puppet Enterprise (PE), such as node groups, users, or user roles.
• Permissions: What you can do with each type, such as create, edit, or view.
• Objects: Specific instances of types.

For example, here are two sets of permission triples for the Administrators user role:

Type Permission Object Description

Node groups View PE Master Gives permission to view
the PE Master node group.

User roles Edit All Gives permission to edit all
user roles.

When no object is specified, then the permission applies to all objects of the specified type. In those cases, the object
is All. This is denoted by "*" in the RBAC API.

In both the console and the API, "*" is used to express a permission for which an object doesn’t make sense, such as
when creating users.

Reference: User permissions and names
This reference describes the permissions granted to the five default Puppet Enterprise (PE) user roles, as well as the
display name and system name for each type and permission.

Permissions vary by type. Permission scope can, sometimes, be refined by an object specification. For an explanation
of these terms, refer to Structure of user permissions on page 273.

Each type and permission has a display name, which is the name you see in the PE console, and a system name, which
is the name used in the RBAC API. The Permissions for default roles table uses display names. Refer to the Display
names and system names table to find the corresponding system name for each display name.

Permissions for default roles

This table lists permissions granted to the default PE user roles, a description of what is allowed by each permission,
any object specification or node group inheritance conditions, and which roles (if any) the permissions are assigned to
by default.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 274

Type Permission Definition Roles

Certificate request Accept and reject Accept and reject
certificate signing requests.

Object must always be
"*".

• Administrators
• Operators

Configuration View and edit View and edit
configuration, such as the
disclaimer message on the
PE console login page.

Administrators

Console View View the PE console.

Object must always be
"*".

• Administrators
• Operators
• Viewers

Directory service View, edit, and test View, edit, and test
directory service settings.

Object must always be
"*".

Administrators

Job orchestrator Start, stop and view jobs Start and stop jobs and
tasks, view jobs and job
progress, view an inventory
of nodes that are connected
to the PCP broker.

• Operators
• Viewers
• Project Deployers

Node groups Create, edit, and delete
child groups

Create new child groups,
delete existing child
groups, and modify every
attribute of child groups
except environment.

This permission is inherited
by all descendents of the
node group.

• Administrators
• Operators

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 275

Type Permission Definition Roles

Node groups Edit child group rules Edit the rules of
descendents of a node
group.

This does not grant the
ability to edit the rules of
the group in the object
field, only children of that
group.

This permission is inherited
by all descendents of the
node group.

• Administrator
• Operators

Node groups Edit classes, parameters,
and variables

Edit every attribute of
a node group except its
environment and rule.

This permission is inherited
by all descendents of the
node group.

• Administrators
• Operators

Node groups Edit configuration data Edit parameterized
configuration data on a
node group.

This permission is inherited
by all descendents of the
node group.

• Administrators
• Operators

Node groups Edit parameters and
variables

Edit the class parameters
and variables of a node
group's classes.

This permission is inherited
by all descendents of the
node group.

• Administrators
• Operators

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 276

Type Permission Definition Roles

Node groups Set environment Set the environment of a
node group.

This permission is inherited
by all descendents of the
node group.

• Administrators
• Operators

Node groups View See all attributes of a node
group, including the values
of class parameters and
variables.

This permission is inherited
by all descendents of the
node group.

• Administrators
• Operators
• Viewers

Nodes Edit node data from
PuppetDB

Edit node data imported
from PuppetDB.

Object must always be
"*".

Administrators

Nodes View node data from
PuppetDB

View node data imported
from PuppetDB.

Object must always be
"*".

Administrators

Nodes View sensitive connection
information in inventory
service

View sensitive parameters
stored in the inventory
service for a connection,
such as user credentials.

Object must always be
"*".

Administrators

Nodes Add and delete connection
information from inventory
service

Add new connections to
the inventory service and
delete existing connections.

Administrators

Plans Run plans Run specific plans on all
nodes.

Administrators

Projects Deploy projects Not used. • Administrators
• Project Deployers

Projects Run tasks and plans from
projects

Not used. • Administrators
• Project Deployers

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 277

Type Permission Definition Roles

Puppet agent Run Puppet on agent nodes Trigger a Puppet run from
the console or orchestrator.

Object must always be
"*".

• Administrators
• Operators

Puppet environment Deploy code Deploy code to a specific
PE environment.

• Administrators
• Operators
• Code Deployers

Puppet Server Compile catalogs for
remote nodes

Compile a catalog for any
node managed by this PE
instance.

This permission is required
to run impact analysis tasks
in Continuous Delivery.

Administrators

Scheduled jobs Delete another user's
scheduled jobs

Delete scheduled jobs
created by the user instance
specified in the permission.

This can be granted per
user.

Administrators

Tasks Run tasks Run specific tasks on all
nodes, nodes in a selected
node group, or nodes
matching a PQL query.

Important: A task must
be permitted to run on all
nodes in order to run on
nodes that are outside of
the PuppetDB (over SSH
or WinRM for example).
As a result, users with such
permissions can run tasks
on any nodes they have the
credentials to access.

Administrators

User groups Delete Delete a user group.

This can be granted per
group.

Administrators

User groups Import Import groups from the
directory service for use in
RBAC.

Object must always be
"*".

Administrators

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 278

Type Permission Definition Roles

User roles Create Create new roles.

Object must always be
"*".

Administrators

User roles Edit Edit and delete a role.

Object must always be
"*".

Administrators

User roles Edit members Change which users and
groups a role is assigned to.

This can be granted per
role.

Administrators

Users Create Create new local users.

Object must always be
"*".

Tip: This permission is for
local users. Remote users
are "created" when that
user authenticates for the
first time with RBAC.

Administrators

Users Edit Edit local user data (such as
names or email addresses)
and delete local or remote
users from PE.

This can be granted per
user.

Administrators

Users Reset password Grant password reset
tokens to users who have
forgotten their passwords.

Granting a password reset
token also reinstates a user
who has been revoked.

This can be granted per
user.

Administrators

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 279

Type Permission Definition Roles

Users Revoke Revoke or disable a user,
so the user can no longer
authenticate and use the
console, node classifier, or
RBAC API.

This permission also
includes the ability
to revoke a user's
authentication tokens.

This can be granted per
user.

Administrators

Display names and system names

Each type and permission has a display name and a system name. The display name is the name you see in the PE
console. The system name is the name used with the RBAC API on page 315. This table provides the display name
and system name for each type and corresponding permissions. Types are listed multiple times if there are multiple
permissions associated with that type.

Type display name Type system name Permission display name Permission system name

Certificate requests cert_requests Accept and reject accept_reject

Configuration configuration View view

Configuration configuration Edit edit

Console console_page View view

Directory service directory_service View, edit, and test edit

Job orchestrator orchestrator Start, stop and view jobs view

Node groups node_groups Create, edit, and delete
child groups

modify_children

Node groups node_groups Edit child group rules edit_child_rules

Node groups node_groups Edit classes, parameters,
and variables

edit_classification

Node groups node_groups Edit configuration data edit_config_data

Node groups node_groups Edit parameters and
variables

edit_params_and_vars

Node groups node_groups Set environment set_environment

Node groups node_groups View view

Nodes nodes Edit node data from
PuppetDB

edit_data

Nodes nodes View node data from
PuppetDB

view_data

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 280

Type display name Type system name Permission display name Permission system name

Nodes nodes View sensitive connection
information in inventory
service

view_inventory_sensitive

Plans plans Run Plans run

Puppet agent puppet_agent Run Puppet on agent nodes run

Puppet environment environment Deploy code deploy_code

Puppet Server puppetserver Compile catalogs for
remote nodes

compile_catalogs

Tasks tasks Run Tasks run

User groups user_groups Import import

User roles user_roles Create create

User roles user_roles Edit edit

User roles user_roles Edit members edit_members

Users users Create create

Users users Edit edit

Users users Reset password reset_password

Users users Revoke disable

Related information
Permissions endpoints on page 343
You add permissions to roles to control what users can access and do in PE. Use the permissions endpoints to
get information about objects you can create permissions for, what types of permissions you can create, and whether
specific users can perform certain actions.

Working with node group permissions
Node groups in the node classifier are structured hierarchically; therefore, node group permissions are inherited.
Users with specific permissions on a node group implicitly receive those permissions on any child groups below that
node group in the hierarchy.

Two types of permissions affect a node group: those that affect a group itself, and those that affect the group's child
groups. For example, giving a user the Set environment permission on a node group allows the user to set the
environment for that node group and all of the node group's children. However, assigning Edit child group
rules to a node group allows a user to edit the rules for any child group of a specified node group, but not for
the node group itself. This allows some users to edit aspects of a parent node group, while other users can be given
permissions to modify the group's children without being able to affect the parent group.

Due to the hierarchical nature of node groups, if a user is given a permission on the default node group (All nodes),
this is functionally equivalent to giving them that permission on all objects of the node group type ("*").

Related information
Structure of user permissions on page 273

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 281

User permissions are structured as a triple of type, permission, and object.

Best practices for assigning permissions
Working with user permissions requires delicacy. You don't want to unintentionally escalate users' roles by granting
them excessive permissions, but you also don't want to hamper them in their day-to-day duties. The following
sections describe some strategies and requirements for setting permissions in Puppet Enterprise (PE).

Grant edit permissions to users with create permissions

Creating objects doesn't automatically grant the creator permission to view those objects. Therefore, users who have
permission to create an object (such as roles) must also be given permission to edit the same object. Otherwise, they
can't see the object they create. When you grant permission to create an object, we recommend that you also grant
permission to edit all objects of the type that they have permission to create.

For example, to allow a user to create roles and also view/edit the roles they create, we recommend assigning these
permission sets:

Type Permission Object

User roles Create A specific object or all objects of this
type ("*")

User roles Edit All (or "*")

Tip: If you also want the role creator to be able to assign users to the role or view role membership, make sure you
also grant the Edit members permission for all objects ("*").

As another example, to allow a user to create user records and also see the user records they create, we recommend
the following:

Type Permission Object

Users Create A specific object or all objects of this
type ("*")

Users Edit All (or "*")

Related information:

• Structure of user permissions on page 273
• Reference: User permissions and names on page 273

Least-privilege model: Avoid overly-permissive permissions

Operators, one of the default PE roles, have many of the same permissions as Administrators. However, we've
intentionally limited this role's ability to edit user roles. This way, users with the Operators role can do many of the
same things as Administrators, but they can't edit (or enhance) their own permissions.

Similarly, when you're editing permission or creating your own roles, avoid granting users more permissions
than necessary. For example, if users have the roles:edit:* permission, this allows them to add the
node_groups:view:* permission to the roles they belong to, and, subsequently, see all node groups. Take care
that permissions you've granted don't have the potential to allow a user to view or change something you don't want
them to view or change.

Grant edit directory service permissions sparingly

The directory service password is not redacted when a user requests directory service settings through the RBAC
API. Make sure the directory_service:edit:* permission is only granted to users who are allowed see the
directory service password and other settings.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 282

Grant reset password permissions along with other password permissions

The users:reset_password:<INSTANCE> permission allows a user to issue a password reset token to a user
who forgot their password. However, this permission also reinstates revoked users when the password reset token
is used. Therefore, make sure the users you allow to reset passwords are also allowed to revoke and reinstate users.
Otherwise, you might have unauthorized users reinstating revoked users.

Creating and managing local users and user roles
Role-based access control (RBAC) in Puppet Enterprise (PE) lets you to manage users—what they can and can't
create, edit, or view—in an organized, high-level way that is more efficient than managing user permissions on a per-
user basis. User roles are sets of permissions you can apply to multiple users. You can't assign permissions directly to
users in PE, only to user roles. You then assign roles to users.

In addition to user records that you create, PE includes two default user records:

• Administrator: A user that has the Administrator role applied by default. This means this user has every
permission. You can revoke the Administrator user in situations where users are managed through a directory
service, like LDAP.

• API User: Used for service-to-service authentication within PE. You can't use it with the standard login, and you
can't revoke it. It is only available through certificate-based authentication. The RBAC allow list identifies the
certificates (by certname) that you can use for API User authentication.

Remember: All user records you create must be assigned to one or more roles before they can log in and use PE.

Tip: Puppet stores local accounts and directory service integration credentials securely. Local account passwords are
hashed using SHA-256 multiple times, along with a 32-bit salt. To update the algorithm to argon2id (only for non-
FIPS enabled systems) or to configure password algorithm parameters, refer to Configure the password algorithm
on page 229. Directory service lookup credentials configured for directory lookup purposes are encrypted using
AES-128. Puppet does not store the directory credentials used for authenticating to Puppet. These are different from
the directory service lookup credentials.

Create a user
These steps add a local user.

To add users from an external directory, see Working with user groups from an external directory.

1. In the console, on the Access control page, click the Users tab.

2. In the Full name field, enter the user's full name.

3. In the Login field, enter a user name for the user.

4. Click Add local user.

Give a user access to the PE console
When you create local users, you need to send them a password reset token that allows them to log in to PE for the
first time.

1. On the Access control page, on the Users tab, select the user's full name.

2. Click Generate password reset.

3. Copy the link provided in the message and send it to the new user.

Create a user role
Puppet Enterprise (PE) includes five default roles. You can also create your own roles.

For information about the five default roles, refer to User permissions and user roles on page 272.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 283

Users with the appropriate permissions, such as Administrators, can create custom roles. To avoid unintentional
privilege escalation, make sure the only users who can edit user roles are those who have all permissions (meaning
Administrators). For more information, refer to Best practices for assigning permissions on page 281.

1. In the console, on the Access control page, click the User roles tab.

2. In the Name field, enter a name for the new user role.

3. Optional: In the Description field, enter a description of the new user role.

4. Click Add role.

Assign permissions to a user role
You can mix and match permissions to create custom user roles that provide users with precise access to Puppet
Enterprise (PE) actions.

Before you begin
Review User permissions and user roles on page 272 for important information about how permissions work in PE.

1. On the Access control page, on the User roles tab, select a user role.

2. Click Permissions.

3. In the Type field, select the type of object you want to assign permissions for, such as Node groups.

4. In the Permission field, select the permission you want to assign, such as View.

5. In the Object field, select the specific object you want to assign the permission to. For example, if you are setting
a permission to view node groups, select a specific node group this user role has permissions to view.

6. Click Add permission, and commit changes.

Related information
Best practices for assigning permissions on page 281
Working with user permissions requires delicacy. You don't want to unintentionally escalate users' roles by granting
them excessive permissions, but you also don't want to hamper them in their day-to-day duties. The following
sections describe some strategies and requirements for setting permissions in Puppet Enterprise (PE).

Add a user to a user role
When you add a user to a role, the user gains the permissions you assign to that role. A user can't do anything in PE
until they have been assigned to at least one role. If users are assigned to multiple roles, they get all permissions from
all roles they are assigned to.

1. On the Access control page, on the User roles tab, select a user role.

2. Click Member users.

3. In the User name field, select the user you want to add to the user role.

4. Click Add user, and commit changes.

Remove a user from a user role
When you remove a user from a role, the user loses the permissions associated with that role. If you remove all roles
from a user, the user can't do anything in PE until they are assigned to at least one role.

1. On the Access control page, on the User roles tab, select a user role.

2. Click Member users.

3. Locate the user you want to remove from the user role. Click Remove, and commit changes.

Revoke or reinstate user access
If you want to stop a user from accessing PE without deleting their account, you can revoke the user. Users are
automatically revoked if they have too many incorrect password attempts. This is also referred to as locking a user's
account. You can use these steps to revoke users or reinstate revoked users.

1. In the console, on the Access control page, click the Users tab.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 284

2. In the Full name column, select the user you want to revoke.

3. Click Revoke user access.

Tip: To reinstate a revoked a user, click Reinstate user access.

Change account expiration settings
You can specify the number of days before an inactive user's account is automatically revoked. You can also specify
how often Puppet Enterprise (PE) checks for idle user accounts.

rbac_account_expiry_days

The rbac_account_expiry_days parameter is a positive integer specifying the duration, in days, before an
inactive user account expires. If a user (who isn't a superuser) doesn't log in to the PE console at least once during the
specified period, their user's access is automatically revoked.

The default value is undefined, meaning no expiration limit. To activate this setting in the console,
specify a value of 1 or greater for the rbac_account_expiry_days parameter in the
puppet_enterprise::profile::console class of the PE Infrastructure node group. The value
corresponds to the number of days an account can be idle before being revoked. For example, 30 would be 30 days.

Important: If the account_expiry_days parameter is not specified, or has a value of less than 1, the
account_expiry_check_minutes parameter is ignored.

rbac_account_expiry_check_minutes

The rbac_account_expiry_check_minutes parameter is a positive integer that specifies how often, in
minutes, PE checks for idle user accounts. The default value is 60 minutes.

To change this setting in the console, set a value (representing a number of
minutes) of the rbac_account_expiry_check_minutes parameter in the
puppet_enterprise::profile::console class of the PE Infrastructure group.

Related information:

• Configure RBAC and token-based authentication settings on page 227
• How to configure PE on page 212

Delete a user
You can delete a user through the Puppet Enterprise (PE) console. This deletes only the user's PE account. It does not
delete the user's listing in any external directory service.

Deletion removes all data about the user except for their activity data, which continues to be stored in the database
and remains viewable through the Activity service API on page 380.

Tip: If you delete a user and then create a user with the same full name and login, PE issues a new user ID for
the new user record. When this happens, requests to the Activity service API on page 380 about this ID return
information from both the deleted user record and the new user record. However, in the PE console, the new user
record's Activity tab does not display information about the deleted user's account.

1. In the console, on the Access control page, click the Users tab.

2. In the Full name column, locate the user you want to delete.

3. Click Remove.

You can't delete users with superuser privileges. The Remove button is not available when viewing these users.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 285

Delete a user role
You can delete a user role through the Puppet Enterprise (PE) console.

When you delete a user role, any users assigned to that role and no longer assigned to it. Therefore, those users lose
the permissions that the role gave them. This can impact their access to PE if they are not assigned other roles.

1. In the console, on the Access control page, click the User roles tab.

2. In the Name column, locate the role you want to delete.

3. Click Remove.

LDAP authentication
You can connect PE to external Lightweight Directory Access Protocol (LDAP) directory services and manage
permissions with role-based access control (RBAC).

• Connecting LDAP external directory services to PE on page 285
Puppet Enterprise connects to external Lightweight Directory Access Protocol (LDAP) directory services through its
role-based access control (RBAC) service. Because PE integrates with cloud LDAP service providers, such as Okta,
you can use the users and user groups that already exist in your external directory service.
• Working with LDAP users and user groups on page 292
You don’t explicitly add remote users to PE. Instead, after connecting external directory services, remote users log
into PE, which creates their user records.

Related information
Require LDAP group membership to log in on page 271
You can use the exclude-groupless-ldap-users setting to prevent LDAP users with no group bindings
from logging in and creating Puppet Enterprise (PE) accounts. This setting is disabled by default.

Configure RBAC and token-based authentication settings on page 227
You can configure RBAC and token-based authentication settings, such as setting the number of failed attempts a
user has before they are locked out of the console or the amount of time tokens are valid.

Connecting LDAP external directory services to PE
Puppet Enterprise connects to external Lightweight Directory Access Protocol (LDAP) directory services through its
role-based access control (RBAC) service. Because PE integrates with cloud LDAP service providers, such as Okta,
you can use the users and user groups that already exist in your external directory service.

Specifically, you can:

• Connect multiple LDAP directory services.
• Authenticate external directory users.
• Authorize access for external directory users based on RBAC permissions.
• Store and retrieve group and group membership information from your external directory.

Tip: Puppet stores local accounts and directory service integration credentials securely. Local account passwords
are hashed using SHA-256 multiple times, along with a 32-bit salt. To update the algorithm to argon2id (only
for non-FIPS enabled systems) or to configure password algorithm parameters, refer to Configure the password
algorithm on page 229. Directory service lookup credentials configured for directory lookup purposes are
encrypted using AES-128. Puppet does not store the directory credentials used for authenticating to Puppet. These
are different from the directory service lookup credentials.

PE supports OpenLDAP and Active Directory. If you have predefined groups in OpenLDAP or Active Directory, you
can import these groups into the console and assign user roles to them, as explained in Working with LDAP users
and user groups on page 292. Users in an imported group inherit the permissions specified in the group's assigned
user roles. If new users are added to the group in the external directory, they also inherit the permissions of the role to
which that group belongs.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 286

Important: The connection to OpenLDAP and Active Directory is read-only. If you want to make changes to remote
users or user groups, you need to edit the information directly in the external directory.

Connect to external directory services
PE connects to your external directory service(s) when a user logs in or when groups are imported. The supported
directory services are OpenLDAP and Active Directory.

Tip: You can connect multiple LDAP directories. With multiple LDAP directories, when a user logs in for the first
time, PE looks for the user in your LDAP directories in the order the directories were added to PE. To learn more
about this, go to Working with LDAP users and user groups on page 292.

1. In the console, on the Access control page, click the LDAP tab.

2. Click Connect to an LDAP directory or Add an LDAP directory.

3. Input the directory information.

For information about each field, refer to External directory settings on page 286.

If you do not supply User relative distinguished name or Group relative distinguished name, PE's RBAC
service searches the entire base DN for the user or group.

4. Click Connect. PE tests if the connection is valid and then saves the configuration.

PE only tests the connection to the LDAP server. It does not test or validate LDAP queries.

5. Repeat these steps if you need to connect additional LDAP directories.

To allow your LDAP users to access PE, you need to import LDAP groups and assign roles, as explained in Working
with LDAP users and user groups on page 292. Optionally, you can Verify directory server certificates on page
291.

External directory settings
The table below lists the LDAP external directory connection fields in the PE console, the equivalent system name for
each field as used by the RBAC API, and provides examples of each settings for an Active Directory service and an
OpenLDAP service. Additional details are provided below the table.

Important: This table provides generic examples for some settings. These examples may not be appropriate for your
configuration. Make sure you use values appropriate for your directory service.

Display name System name (for RBAC
API)

Example Active Directory
settings

Example OpenLDAP
settings

Directory name display_name My Active Directory My Open LDAP Directory

Login help help-link

Tip: This field can be
empty (null).

https://myweb.com/
ldaploginhelp

https://myweb.com/
ldaploginhelp

Hostname hostname myhost.delivery.exampleservice.netmyhost.delivery.exampleservice.net

Port port 389 (or 636 for LDAPS) 389 (or 636 for LDAPS)

Lookup user login cn=queryuser,cn=Users,dc=puppetlabs,dc=comcn=admin,dc=delivery,dc=puppetlabs,dc=net

Lookup password password The lookup user's password The lookup user's password

Connection timeout
(seconds)

connect_timeout

Tip: Must be an integer
representing a number of
seconds.

10 10

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 287

Display name System name (for RBAC
API)

Example Active Directory
settings

Example OpenLDAP
settings

Connect using ssl, start_tls

Tip: In API requests, these
are separate keys. Set the
desired connection setting
to true and the undesired
setting to false.

SSL StartTLS

Certificate chain
(optional)

cert_chain

Tip: Use this optional
setting to define unique
certificate chains across
servers.

Paste in a plain text
certificate chain or leave
blank.

Paste in a plain text
certificate chain or leave
blank.

Validate the hostname?
(optional)

ssl_hostname_validationDefault is yes Default is true

Allow wildcards in SSL
certificate? (optional)

ssl_wildcard_validationDefault is no Default is false

Base distinguished name base_dn dc=puppetlabs,dc=comdc=puppetlabs,dc=com

User login attribute user_lookup_attr sAMAccountName cn

User email address field user_email_attr mail mail

User full name user_display_name_attrdisplayName displayName

User relative
distinguished name

user_rdn cn=users ou=users

Group object class group_object_class

Tip: This required field
has no default value, but it
can be empty (nil).

group groupOfUniqueNames

Group membership field group_member_attr member uniqueMember

Group name attribute group_name_attr name displayName

Group lookup attribute group_lookup_attr cn cn

Group relative
distinguished name

group_rdn cn=groups ou=groups

Turn off
LDAP_MATCHING_RULE_IN_CHAIN?
(optional)

disable_ldap_matching_rule_in_chainDefault is no Default is false

Search nested groups?
(optional)

search_nested_groupsDefault is no Default is false

Explanation of external directory settings

Directory name

The name that you provide here is used to refer to the external directory service anywhere it is used in the PE
console. For example, when you view a remote user in the console, the name that you provide in this field is
listed in the console as the source for that user. Set any name of your choice.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 288

Login help (optional)

A URL supplied here becomes a "Need help logging in?" link on the login screen. The href attribute of this link is
set to the URL that you provide.

Hostname

The FQDN of the directory service to which you are connecting.

Port

The port that PE uses to access the directory service. The port is generally 389, unless you choose to connect
using SSL, in which case it is generally 636.

Lookup user (optional)

The distinguished name (DN) of the directory service user account that PE uses to query information about users
and groups in the directory server. If a username is supplied, this user must have read access for all directory
entries that are to be used in the console. We recommend that this user is restricted to read-only access to the
directory service.

If your LDAP server is configured to allow anonymous binding, you do not need to provide a lookup user. In this
case, the RBAC service binds anonymously to your LDAP server.

Lookup password (optional)

The lookup user's password.

If your LDAP server is configured to allow anonymous binding, you do not need to provide a lookup password.
In this case, the RBAC service binds anonymously to your LDAP server.

Connection timeout (seconds)

The number of seconds that PE attempts to connect to the directory server before timing out. Ten seconds is
fine in the majority of cases. If you are experiencing timeout errors, make sure the directory service is up and
reachable, and then increase the timeout if necessary.

Connect using

Select the security protocol you want to use to connect to the external directory.

SSL and StartTLS encrypt the data transmitted.

Plain text is not a secure connection.

In addition, to ensure that the directory service is properly identified, configure the ds-trust-chain to point
to a copy of the public key for the directory service. For more information, see Verify directory server certificates
on page 291.

Certificate chain (optional)

Use this field if you need to specify different certificate chains between servers.

This option is not available when you choose to connect to the external directory using plain text.

Validate the hostname?

Select Yes to verify that the Directory Service hostname used to connect to the LDAP server matches the
hostname on the SSL certificate.

This option is not available when you choose to connect to the external directory using plain text.

Allow wildcards in SLL certificate?

Select Yes to allow a connection to a Directory Services server with a SSL certificates that use a wildcard (*)
specification.

This option is not available when you choose to connect to the external directory using plain text.

Base distinguished name

When PE constructs queries to your external directory (for example to look up user groups or users), the
queries consist of the relative distinguished name (RDN) (optional) + the base distinguished name (DN),
and are then filtered by lookup/login attributes. For example, if PE wants to authenticate a user named

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 289

Bob who has the RDN ou=bob,ou=users, it sends a query in which the RDN is concatenated with
the DN specified in this field (for example, dc=puppetlabs,dc=com). This gives a search base of
ou=bob,ou=users,dc=puppetlabs,dc=com.

The base DN that you provide in this field specifies where in the directory service tree to search for groups and
users. It is the part of the DN that all users and groups that you want to use have in common. It is commonly the
root DN (example dc=example,dc=com) but in the following example of a directory service entry, you could
set the base DN to ou=Puppet,dc=example,dc=com because both the group and the user are also under
the organizational unit ou=Puppet.

Example directory service entry:

A user named Harold
dn: cn=harold,ou=Users,ou=Puppet,dc=example,dc=com
objectClass: organizationalPerson
cn: harold
displayName: Harold J.
mail: harold@example.com
memberOf: inspectors
sAMAccountName: harold11

A group Harold is in
dn: cn=inspectors,ou=Groups,ou=Puppet,dc=example,dc=com
objectClass: group
cn: inspectors
displayName: The Inspectors
member: harold

User login attribute

This is the directory attribute that the user uses to log in to PE. For example, if you specify
sAMAccountName as the user login attribute, Harold logs in with the username "harold11" because
sAMAccountName=harold11 in the example directory service entry provided above.

The value provided by the user login attribute must be unique among all entries under the User RDN + Base DN
search base you’ve set up.

For example, say you’ve selected the following settings:

base DN = dc=example,dc=com
user RDN = null
user login attribute = cn

When Harold tries to log in, the console searches the external directory for any entries under
dc=example,dc=com that have the attribute/value pair cn=harold. (This attribute/value pair does
not need to be contained within the DN). However, if there is another user named Harold who has the DN
cn=harold,ou=OtherUsers,dc=example,dc=com, two results are returned and the login does not
succeed because the console does not know which entry to use. Resolve this issue by either narrowing your
search base such that only one of the entries can be found, or using a value for login attribute that you know to
be unique. This makes sAMAccountName a good choice if you’re using Active Directory, as it must be unique
across the entire directory.

User email address

The directory attribute to use when displaying the user's email address in PE.

User full name

The directory attribute to use when displaying the user's full name in PE.

User relative distinguished name (optional)

The user RDN that you set here is concatenated with the base DN to form the search base
when looking up a user. For example, if you specify ou=users for the user RDN, and

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 290

your base DN setting is ou=Puppet,dc=example,dc=com, PE finds users that have
ou=users,ou=Puppet,dc=example,dc=com in their DN.

This setting is optional. If you choose not to set it, PE searches for the user in the base DN (example:
ou=Puppet,dc=example,dc=com). Setting a user RDN is helpful in the following situations:

• When you experience long wait times for operations that contact the directory service (either when logging
in or importing a group for the first time). Specifying a user RDN reduces the number of entries that are
searched.

• When you have more than one entry under your base DN with the same login value.

Tip: It is not currently possible to specify multiple user RDNs. If you want to filter RDNs when constructing
your query, we suggest creating a new lookup user who only has read access for the users and groups you want to
use in PE.

Group object class

The name of an object class that all groups have.

Group membership field

Tells PE how to find which users belong to which groups. This is the name of the attribute in the external
directory groups that indicates who the group members are.

Group name attribute

The attribute that stores the display name for groups. This is used for display purposes only.

Group lookup attribute

The value used to import groups into PE. Given the example directory service entry provided above, the group
lookup attribute would be cn. When specifying the Inspectors group in the console to import it, provide the name
inspectors.

The value for this attribute must be unique under your search base. If you have users with the same login as the
lookup of a group that you want to use, you can narrow the search base, use a value for the lookup attribute that
you know to be unique, or specify the Group object class that all of your groups have in common but your users
do not.

Tip: If you have a large number of nested groups in your group hierarchy, or you experience slowness when
logging in with RBAC, we recommend disabling nested group search unless you need it for your authorization
schema to work.

Group relative distinguished name (optional)

The group RDN that you set here is concatenated with the base DN to form the search base
when looking up a group. For example, if you specify ou=groups for the group RDN, and
your base DN setting is ou=Puppet,dc=example,dc=com, PE finds groups that have
ou=groups,ou=Puppet,dc=example,dc=com in their DN.

This setting is optional. If you choose not to set it, PE searches for the group in the base DN (example:
ou=Puppet,dc=example,dc=com). Setting a group RDN is helpful in the following situations:

• When you experience long wait times for operations that contact the directory service (either when logging
in or importing a group for the first time). Specifying a group RDN reduces the number of entries that are
searched.

• When you have more than one entry under your base DN with the same lookup value.

Tip: It is not currently possible to specify multiple group RDNs. If you want to filter RDNs when constructing
your query, create a new lookup user who only has read access for the users and groups you plan to use in PE.

Note: At present, PE supports only a single Base DN. Use of multiple user RDNs or group RDNs is not
supported.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 291

Turn off LDAP_MATCHING_RULE_IN_CHAIN?

When PE detects an Active Directory that supports the LDAP_MATCHING_RULE_IN_CHAIN feature, PE
automatically uses it. You can select Yes to turn off the LDAP matching rule that looks up the chain of ancestry
for an object until it finds a match. For organizations with a large number of group memberships, matching rule
in chain can slow performance.

Search nested groups?

When authorizing users, the RBAC service can search nested groups. Nested groups are groups that belong to
external directory groups. For example, assume your external directory has a System Administrators group,
and you've given that group a Superusers user role in RBAC. If you selected Yes for this setting, in addition to
assigning the Superusers role to individual users in the System Administrators group, RBAC looks for other
groups in the System Administrators group and assigns the Superusers role to the individual users in those nested
groups.

By default, this setting is not selected and RBAC does not search nested groups. To enable nested group searches,
select Yes.

Important: This setting causes RBAC to search the entire group hierarchy when users log in; therefore, you
might experience slowdowns in performance if you have a lot of nested groups. To avoid these performance
issues, don't enable this option. With nested group search disabled, RBAC only searches the groups it is
configured to use for user roles.

Note: In Puppet Enterprise (PE) versions 2015.3 and earlier, RBAC searched nested groups by default. If you
upgrade from one of these earlier versions, this setting is preserved and RBAC continues to search nested groups
by default. You'll need to disable it if you don't want to use nested searching anymore.

Related information
PUT /ds (deprecated) on page 357
Replace current directory service connection settings. You can update the settings or disconnect the service (by
removing all settings). Authentication is required.

Verify directory server certificates
To ensure that RBAC isn't being subjected to a Man-in-the Middle (MITM) attack, verify the directory server's
certificate.

When you select SSL or StartTLS as the security protocol to use for communications between PE and your directory
server, the connection to the directory is encrypted. To ensure that the directory service is properly identified,
configure the ds-trust-chain to point to a copy of the public key for the directory service.

The RBAC service verifies directory server certificates using a trust store file, in Java Key Store (JKS), PEM, or
PKCS12 format, that contains the chain of trust for the directory server's certificate. This file needs to exist on disk in
a location that is readable by the user running the RBAC service.

To turn on verification:

1. In the console, click Node groups.

2. Open the PE Infrastructure node group and select the PE Console node group.

3. Click Classes. Locate the puppet_enterprise::profile::console class.

4. In the Parameter field, select rbac_ds_trust_chain.

5. In the Value field, set the absolute path to the trust store file.

6. Click Add parameter and commit changes.

7. To make the change take effect, run Puppet. Running Puppet restarts pe-console services.

After setting this value, the directory server's certificate is verified whenever RBAC is configured to connect to the
directory server using SSL or StartTLS.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 292

Working with LDAP users and user groups
You don’t explicitly add remote users to PE. Instead, after connecting external directory services, remote users log
into PE, which creates their user records.

If the user belongs to an external directory group that has been imported into PE and assigned to a role, the user is
assigned to that role and gains the permissions associated with that role. User permissions and user roles on page
272 are additive: Users can be assigned to multiple roles and they gain the permissions of all the roles to which
they are assigned.

When a user logs in for the first time, PE looks for the user in your connected LDAP directories. If you have
connected to multiple LDAP directories, PE checks them in the order the directories were added to PE. Once PE
locates the user, it stops checking the directories. Periodically, based on the ldap_sync_period_seconds
interval, PE checks that the user still exists in the directory and pulls the latest group membership information. To
learn more about the LDAP sync period setting and what happens during an LDAP sync, refer to Configure RBAC
and token-based authentication settings on page 227.

If the user is removed from their associated LDAP directory, their access is revoked during the next LDAP sync
because PE can no longer find the user in the associated directory. If the user was added to another connected LDAP
directory, or is re-added to the same directory, the next time the user logs in, the user is synchronized as if this was
their first login (meaning that PE looks through all the directories until it locates the user).

If you have connected both LDAP and SAML, if a user initially logs in through SAML, their role assignments are
configured based on your SAML authentication on page 294 group configurations. If the user later logs in through
LDAP, and PE identifies them as the same user that had previously logged in through SAML, then the user's SAML
binding is revoked and replaced by the appropriate LDAP binding. If you have different PE roles assigned to your
SAML and LDAP groups, then the user's groups change accordingly.

Related information
Require LDAP group membership to log in on page 271
You can use the exclude-groupless-ldap-users setting to prevent LDAP users with no group bindings
from logging in and creating Puppet Enterprise (PE) accounts. This setting is disabled by default.

Password complexity parameters on page 236
When you install the Puppet Enterprise (PE) console, password complexity parameters are preconfigured to
implement a robust policy. The default password policy includes the following requirements:

Import user groups from external directory services
You must explicitly import your external directory groups to PE by adding the group by its name.

Before you begin
You must Connect to external directory services on page 286 before you can import groups.

1. In the console, on the Access control page, click the User groups tab.

User groups is available only if you have established a connection with an external directory.

2. If you have multiple LDAP directories, select the directory that has the group you want to import.

3. In the Login field, enter the name of a group from your external directory.

4. Click Add group.

Important: Immediately after importing a group, the group has neither roles nor user members.

Group members populate when users who belongs to the group log in to PE.

You must Assign user groups to user roles on page 293 to grant permissions to the members of this group. If
you don't assign a role, the members of this group can't do anything in PE.

If you disconnect an LDAP directory that has imported groups, all users and groups associated with that directory
are removed from PE RBAC.

5. Repeat these steps to import more groups.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 293

Troubleshooting: A PE user and user group have the same name
If you have both a PE user and an external directory user group with the exact same name, PE throws an error when
you try to log on as that user or import the user group.

To work around this problem, you can change your settings to use different RDNs for users and groups. This works as
long as all of your users are contained under one RDN that is unique from the RDN that contains all of your groups.

Assign user groups to user roles
After importing a group, you must assign at least one user role to it. This grants the role's permissions to the group
members. If you don't assign a role, the users in this group have no permissions.

Before you begin
Before assigning roles to groups, you must Import user groups from external directory services on page 292.

If you are not using the default roles (which are described in User permissions and user roles on page 272) or any
custom roles that you previously created, then you must Create user roles and Assign permissions to roles.

1. In the console, on the Access control page, click the User roles tab.

2. Click the role you want to add the user group to.

3. Click Member groups. In the Group name field, select the user group you want to add to the user role.

4. Click Add group, and commit changes.

5. Repeat to assign roles to other imported groups.

Remove a user group
You can remove imported LDAP user groups in the PE console. Users associated with the deleted group lose the
permissions associated with roles assigned to the group.

Important: This action removes the LDAP group only from PE, not from the associated external directory service.

1. In the console, on the Access control page, click the User groups tab.

User groups is available only if you have established a connection with an external directory.

2. Locate the group that you wish to remove from PE.

3. Click Remove.

Removing a remote user’s access to PE
In order to fully revoke a remote user's access to Puppet Enterprise, you must also remove the user from the external
directory service accessed by PE.

Deleting a remote user's local PE account does not automatically prevent that user from accessing PE in the future.
As long as the remote user is still a member of a group in an LDAP external directory that PE can access, the user can
still log into PE and still receives permissions from roles associated with their LDAP group membership.

If you delete a user from your LDAP external directory service but not from PE, the user can no longer log in.
However, any generated tokens or existing console sessions remain valid until they expire or are revoked by
automatic LDAP synchronization, which is controlled by the ldap_sync_period_seconds parameter. For
information about modifying this parameter, see Console and console-services parameters on page 119.

To manually invalidate the user's tokens or sessions, you must Revoke the user's PE account, which also
automatically revokes all tokens for the user. To fully remove the user's account record, you must manually Delete the
user.

Related information
Configure RBAC and token-based authentication settings on page 227
You can configure RBAC and token-based authentication settings, such as setting the number of failed attempts a
user has before they are locked out of the console or the amount of time tokens are valid.

Change the default token lifetime on page 313

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 294

Tokens have a default authentication lifetime of one hour, but this default value can be adjusted in the console. You
can also change the maximum permitted lifetime, which defaults to 10 years.

SAML authentication
Connect to a Security Assertion Markup Language (SAML) identity provider, like Microsoft ADFS or Okta, to log in
to PE with single sign-on (SSO) or multifactor authentication (MFA).

• Connect a SAML identity provider to PE on page 294
Connect to a Security Assertion Markup Language (SAML) identity provider to log in to PE with single sign-on
(SSO). SSO authentication securely centralizes sensitive data and reduces the number of login credentials users have
to remember and store. Depending on your identity provider, you can also use this workflow to connect and configure
multifactor authentication (MFA) in PE.
• Connect Microsoft ADFS to PE on page 300
Connect to Microsoft Active Directory Federation Services (ADFS) on a Windows server, enabling users to log in to
PE using their ADFS credentials.
• Connect Okta to PE on page 305
Connect to Puppet Enterprise (PE) to Okta so that users can log in to PE with their Okta credentials.

Connect a SAML identity provider to PE
Connect to a Security Assertion Markup Language (SAML) identity provider to log in to PE with single sign-on
(SSO). SSO authentication securely centralizes sensitive data and reduces the number of login credentials users have
to remember and store. Depending on your identity provider, you can also use this workflow to connect and configure
multifactor authentication (MFA) in PE.

Note: When SAML is configured, you must generate a token in the console to use CLI tools like orchestrator jobs or
PuppetDB queries triggered from the command line.

An identity provider(IdP) is a service that stores and maintains user information under a single login. Okta, PingID,
and Salesforce are all SAML identity providers.

The identity provider sends an assertion, or an xml document containing the required attributes for authenticating the
user, to the service provider. Attributes are name/value pairs that specify pieces of information about a user, like their
email or name.

The service provider receives the assertion from the identity provider via the web and confirms the attributes match
the user, who then is logged into the website or application. PE is a service provider.

After connecting a SAML identity provider to PE, you can log into and out of PE through the identity provider.

Note: When using encryption with SAML, users might experience delays and timeouts when logging out if the host
system that runs PE lacks sufficient entropy.

Get URLs and the signing and encryption certificate
PE provides URLs and a certificate that you must configure in your identity provider before you can configure SSO
in PE. You must use the console to view the URLs and certificate if you haven't configured SSO yet. After you've
configured SSO, you can retrieve them using the GET /saml/meta on page 362 endpoint. If you're promoting a
replica, you must specify your replica's new URLs and certificate in your IdP's configuration.

1. In the console, on the Access control page, click the SSO tab.

2. Click Show configuration information and note the following values:

• SAML metadata URL
• SAML assertion consumer service (acs) URL
• SAML Single Logout URL
• Signing and Encryption Certificate

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 295

3. Copy the URLs and certificate so you can add them to your identity provider configuration.

Tip: Copy the entire certificate, including the begin and end tags, into it's own file.

Attribute binding
Attribute binding links attribute names from PE to attributes in the identity provider. When configuring SSO, choose
the name of the attributes for PE and map them to the corresponding values in your identity provider configuration.

There are no standard SAML attribute names, but attribute binding ensures PE and your identity provider can identify
attributes from one another without having to call them the same thing. This capability allows you to connect PE to a
variety of different identity providers.

For example, you might want to name the User attribute “uid” in PE, which corresponds to a unique user ID. When
you configure attribute binding with your identity provider, map “uid” to the corresponding value your identity
provider uses to identify the unique user ID, for example, “user.login”.

After configuring attribute binding for User in PE and in your identity provider, any time PE receives an assertion
from the identity provider, it knows that “user.login” is the same thing as “uid”, and vice versa.

If you are connected to a LDAP external directory service, consider using the same attribute names you use in your
LDAP configuration.

Attribute binding occurs for four attributes:

User

The login field that consistently identifies a given user across multiple platforms. If migrating from LDAP, this is
the same as the "user login field".

Example: "uid"

Email

Extracts the email address of the user.

Example: "email"

Display name

Displays a friendly name for the user, usually the first and last name.

Example: "name"

Groups

Automatically associates the user groups and their assigned roles in PE. The attribute maps to the "login" value of
the user group.

Example: "group"

Note: Some identity providers might not use the term "attribute" or the phrase "attribute binding" when referring to
the name/value pairs.

Connect to a SAML identity provider
Use the console to set up SSO or MFA with your SAML identity provider.

Before you begin

Add URLs and the encryption and signing certificate to your identity provider configuration.

Configure attribute binding in your identity provider.

Configure users and user groups in your identity provider.

1. In the console, on the Access control page, click the SSO tab.

2. Click Configure.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 296

3. Input the configuration information.

The SAML configuration reference on page 296 explains what to input in each field and which fields are
optional.

4. Commit changes.

5. On the Access control page, go to either the User roles or User groups to configure RBAC.

These settings determines the role(s) assigned to users when they login. Rather than assigning roles directly to
individual users, user roles are assigned based on SAML group membership.

If you remove a SAML connection, all associated user groups and users are also removed.

Related information
Promote a replica on page 266
If your primary server can’t be restored, you can promote the replica to establish it as the new, permanent primary
server.

Troubleshooting SAML connections on page 883
There are some common issues and errors that can occur when connecting a SAML identity provider to PE, such as
failed redirects, rejected communications, and failed group binding.

Generate a token in the console
Use the console to generate an authentication token that you can use to access PE APIs. If SAML is configured, you
must have a token to use CLI tools, such as orchestrator jobs or PuppetDB queries triggered from the command line.
Generate and export a token to the machine you want to run the CLI tool on.

1. In the console, on the My account page, click the Tokens tab.

2. Click Generate new token.

3. Under Description, enter a description for your new token.

4. Under Lifetime, select the length of time you want your token to be good for.

5. Click Get token.

6. Click Copy token.

Important: Store the token somewhere secure and do not share it with others. You cannot regenerate this token
again once you close this page.

7. Click Close.

SAML configuration reference
Configure these settings in Puppet Enterprise (PE) and your SAML identity provider to enable SSO or MFA. All
fields are required unless otherwise noted.

Setting name System name (for RBAC API) Definition

Allow duplicated attribute name? allow_duplicated_attribute_nameBoolean value indicates whether PE
allows duplicate attribute names in
the attribute statement. Default is
true.

Display name display_name A required string that identifies the
IdP used for SSO or MFA login,
such as Corporate Okta.

Identity provider entity ID idp_entity_id A URL string identifying
your IdP, such as https://
sso.example.info/entity.
Your IdP's configuration has this
information.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 297

Setting name System name (for RBAC API) Definition

Identity provider SLO response URL idp_slo_response_url Optional, unless required by
IdP or SAML configuration.
An optional URL specifying
an alternative location for SLO
handling. Defaults to the SLO
URL. For example, https://
ipd.example.com/SAML2/
SLO-response.

Identity provider SLO URL idp_slo_url The URL to which PE sends the
single logout request (SLO), such as
https://ipd.example.com/
SAML2/SLO. Your IdP
configuration has this information.

Identity provider SSO URL idp_sso_url The URL to which PE sends
authentication messages, such as
https://idp.example.org/
SAML2/SSO. Your IdP
configuration has this information.

IdP certificate idp_certificate The public x509 certificate of the
identity provider, in PEM format.
PE uses the certificate to decrypt
messages from the IdP and validate
signatures. For example:

-----BEGIN
 CERTIFICATE-----
MIIGADCCA
+igAwIBAgIBAjANBgkqhkiG9w0BAQsFADBqMW
...
STkGww==
-----END
 CERTIFICATE-----

Name ID encrypted? name_id_encrypted Optional, unless required by IdP
or SAML configuration. Boolean
value indicates whether you want PE
to encrypt the name-id in the logout
request. Default is true.

Organizational language organizational_lang The standard abbreviation for the
preferred spoken language at your
organization, such as en for English.

Organization display name organizational_display_nameAn alternative display name for your
organization

Organization name organizational_name The official name of your
organization.

Organization URL organizational_url The URL for your organization.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 298

Setting name System name (for RBAC API) Definition

Requested authentication context requested_auth_context Optional, unless required by IdP
or SAML configuration. Comma-
separated list of authentication
contexts indicating the type of
user authentication PE suggests
to the IdP. Authentication
types are defined in the
urn:oasis:names:tc:SAML:2.0:ac:classes:
namespace of the SAML
specification. For example:
urn:oasis:names:tc:SAML:2.0:ac:classes:Password
or
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

Requested authentication context
comparison

requested_auth_context_comparisonOptional, unless required by IdP
or SAML configuration. Indicates
to the IdP the strength of the
authentication context PE provides.
Choose one of the following:

• minimum (default): The
requested authentication context
comparison must be, at minimum,
the strength of the context PE
provides.

• maximum: The requested
authentication context
comparison is, at most, equal to
the context PE provides.

• exact: The requested
authentication context
comparison must be an exact
match with one of the contexts
PE provides.

• better: The requested
authentication context
comparison must be higher than
the context PE provides.

Require encrypted assertions? want_assertions_encrypted Boolean value indicates whether you
want the IdP to encrypt the assertion
messages it sends to PE. Default is
true.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 299

Setting name System name (for RBAC API) Definition

Require name ID encrypted? want_name_id_encrypted Boolean value indicates whether you
want the IdP to encrypt the name-
id field in messages it sends to PE.
Default is true.

Require signed assertions? want_assertions_signed Boolean value indicates whether you
want the IdP to cryptographically
sign assertion elements it sends to
PE. Default is true.

Require signed messages? want_messages_signed Boolean value indicates whether you
want the IdP to cryptographically
sign all responses, logout requests,
and logout response messages it
sends to PE. Default is true.

Signature algorithm signature_algorithm Indicates which signing algorithm PE
uses to sign messages. Choose one of
the following:

• rsa-sha256 (default)
• rsa-sha1

• dsa-sha1

• rsa-sha384

• rsa-sha512

Sign authentication requests? authn_request_signed Optional, unless required by
IdP or SAML configuration.
Boolean value indicates whether you
want PE to cryptographically sign
authentication request it sends to the
IdP. Default is true.

Sign logout requests? logout_request_signed Optional, unless required by IdP
or SAML configuration. Boolean
value indicates whether you want
PE to cryptographically sign logout
requests it sends to the IdP. Default
is true.

Sign logout response? logout_response_signed Optional, unless required by IdP
or SAML configuration. Boolean
value indicates whether you want
PE to cryptographically sign logout
responses it sends to the IdP. Default
is true.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 300

Setting name System name (for RBAC API) Definition

Sign metadata? sign_metadata Boolean value indicates whether you
want PE to cryptographically sign
the metadata provided for the IdP
configuration. Default is true.

Support contact email address support_email The email address of the main
support contact at your organization.

Support contact name support_name The name of the main support
contact at your organization.

Technical contact email address technical_support_email The email address of the
main technical contact at your
organization.

Technical contact name technical_support_name The name of the main technical
contact at your organization.

User display name attribute binding user_display_name_attr Identifies the attribute that maps to
the user's displayable name, such as
First name Last name.

User email attribute binding user_email_attr Identifies the attribute that maps to
the user's email address.

User group lookup attribute binding group_lookup_attr Identifies the attribute that maps to
the set of user groups a user belongs
to.

User lookup attribute binding user_lookup_attr Identifies the attribute that maps to
the login value users provide on the
login page.

Validate xml? want_xml_validation Boolean value indicates whether
you want PE to validate all xml
statements it receives from your IdP,
because invalid xml might cause
security issues. Default is true.

Connect Microsoft ADFS to PE
Connect to Microsoft Active Directory Federation Services (ADFS) on a Windows server, enabling users to log in to
PE using their ADFS credentials.

Note: This setup was tested using Windows Server 2019.

To connect ADFS to PE, add PE certificates to ADFS and configure SSO for ADFS in the PE console. Then, add PE
as a relying trust party in ADFS, configure rules and groups, and add RBAC permissions for ADFS users.

1. Add PE certificates to the ADFS server on page 301
2. Connect to ADFS in the PE console on page 301
3. Add the Relying Party Trust for PE to ADFS on page 304
4. Disable certificate revocation checking on page 304
5. Configure the Claim Issuance Policy in ADFS on page 304
6. Configure an RBAC group and role in PE on page 305
7. Test your SSO connection on page 305

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 301

Related information
Connect a SAML identity provider to PE on page 294
Connect to a Security Assertion Markup Language (SAML) identity provider to log in to PE with single sign-on
(SSO). SSO authentication securely centralizes sensitive data and reduces the number of login credentials users have
to remember and store. Depending on your identity provider, you can also use this workflow to connect and configure
multifactor authentication (MFA) in PE.

Add PE certificates to the ADFS server
To ensure ADFS trusts the certificates PE uses to sign requests, add the Puppet CA certificates to the Trusted Root
CA store on the ADFS server. There can be one or two certificates to import, depending on which version of PE you
upgraded from.

1. On your primary server, retrieve the certificates:

cat /etc/puppetlabs/puppet/ssl/certs/ca.pem

2. Depending on how many certificates appear, do one of the following:

• One certificate – copy the certificate text and paste it into a .cer file on your ADFS server. Then, import the
certificate into the Trusted Root Certification Authorities store.

• Two certificates – export the certificates with this command:

openssl pkcs12 -export -nokeys -in /etc/puppetlabs/puppet/ssl/certs/
ca.pem -out ~/ca.pfx -passout pass

Copy the resulting ca.pfx file to your ADFS server, then import it into the Trusted Root Certification
Authorities store. The file has no password. The two certificates appear after importing the file.

Connect to ADFS in the PE console
Use the PE console to connect ADFS.

1. In the console, on the Access control page, click the SSO tab.

2. Click Configure.

3. Input the configuration information as described in the ADFS configuration reference on page 301. Make sure
to complete the Organization and Contacts sections.

4. Commit changes.

ADFS configuration reference
Configure ADFS in the PE console with these settings and values.

ADFS configuration values

In the PE console, configure these values in the Identity provider information and Service provider configuration
options sections of the SSO configuration page.

Setting Maps to ADFS configuration value

Display name display_name Example: "ADFS"

Identity provider
entity ID

idp_entity_id An HTTP or HTTPS URL indicating the ADFS Identifier.

To find your URL, in the ADFS Microsoft Management Console,
click Edit Federation Service Properties.

Example: "http://<federation service name>/
adfs/services/trust"

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 302

Setting Maps to ADFS configuration value

Identity provider
SSO URL

idp_sso_url The ADFS Single Sign On URL.

To find your SSO URL, in the ADFS Microsoft Management
Console, navigate to ADFS > Service > Endpoints. Under Token
Issuance, in the Type column, click the endpoint that specifies
SAML 2.0/WS-Federation.

Example: "https://<federation service name >/
adfs/ls/"

Identity provider
SLO URL

idp_slo_url The ADFS Single Sign On URL with ?wa=wsignout1.0 added
to the end.

Example: "https://<federation service name>/
adfs/ls/?wa=wsignout1.0"

Identity provider
SLO response
URL

idp_slo_response_urlThe same as the ADFS SLO URL.

Example: "https://<federation service name>/
adfs/ls/?wa=wsignout1.0"

IdP certificate idp_certificate The ADFS Token Signing certificate.

To get the certificate, run this PowerShell script on your ADFS
server:

$cert = Get-AdfsCertificate -
CertificateType Token-Signing | ?
 IsPrimary -eq $true
$oPem = New-Object
 System.Text.StringBuilder
$oPem.AppendLine("-----BEGIN
 CERTIFICATE-----")
$oPem.AppendLine([System.Convert]::ToBase64String($cert.Certificate.RawData,1))
$oPem.AppendLine("-----END
 CERTIFICATE-----")
$oPem.ToString() | out-file ./
adfs_token_signing.pem

Example:

-----BEGIN CERTIFICATE-----
MIIGADCCA+igAwIBAgIBAjANBgkqhki
...
STkGww==
-----END CERTIFICATE-----

Name ID
encrypted?

name_id_encrypted true

Sign
authentication
requests?

authn_request_signedtrue

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 303

Setting Maps to ADFS configuration value

Sign logout
response?

logout_response_signedtrue

Sign logout
requests?

logout_request_signedtrue

Require signed
messages?

want_messages_signedfalse

Require signed
assertions?

want_assertions_signedtrue

Sign metadata? sign_metadata true

Require encrypted
assertions?

want_assertions_encryptedtrue

Require name ID
encrypted?

want_name_id_encryptedtrue

Requested
authentication
context

requested_auth_contexturn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

Requested
authentication
context
comparison

requested_auth_context_comparisonexact

Allow duplicated
attribute name?

allow_duplicated_attribute_namefalse

Validate xml? want_xml_validation true

Signature
algorithm

signature_algorithm rsa-sha256

Attribute binding values for ADFS

In the PE console, add these values in the Attribute binding section of the SSO configuration page.

Attribute binding value ADFS value

User http://schemas.xmlsoap.org/claims/
CommonName

Email http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/emailaddress

Display name http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/name

Groups http://schemas.xmlsoap.org/claims/
Group

Related information
Attribute binding on page 295

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 304

Attribute binding links attribute names from PE to attributes in the identity provider. When configuring SSO, choose
the name of the attributes for PE and map them to the corresponding values in your identity provider configuration.

Add the Relying Party Trust for PE to ADFS
Add PE to ADFS as a Relying Party Trust using a metadata address, allowing ADFS to recognize and communicate
with PE as the service provider. Use the PE console to retrieve the metadata URL, then add it to ADFS using the
ADFS Management console.

1. In the PE console, on the Access Control page, click the SSO tab, click Show configuration information, and
copy the SAML Metadata URL.

2. In the ADFS Management console, click Relying Party Trusts > Add Relying Trust Party > Claims aware.

3. When the wizard opens, click Start.

4. Select Import data about relying party published online or on a local network and enter the SAML Metadata
URL, then click Next.

5. Enter a Display name for your PE server, taking note of the name to refer to later, then click Next.

6. Accept the defaults for the Access Control Policy and click Next.

7. On the Ready to Add Trust page, click Next.

8. On the Finish page, uncheck Configure claims issuance policy for this application and click Close.

Disable certificate revocation checking
ADFS can't look up the certificate revocation status because certificates from PE don't include CRL information. Use
PowerShell to disable certificate revocation checking so ADFS doesn't perform certificate revocation checks on the
relying party trust, resulting in trust failures.

1. In PowerShell, display the names for all relying party trusts:

Get-AdfsRelyingPartyTrust | ft Name

2. Find the trust with the display name you selected for your PE server.

3. Determine the status of the revocation check for the PE trust:

Get-AdfsRelyingPartyTrust -Name <DISPLAY NAME> | ft
 EncryptionCertificateRevocationCheck, SigningCertificateRevocationCheck

4. If the encryption and signing certificate revocation checks show anything other than None, disable checking:

Get-AdfsRelyingPartyTrust -Name <DISPLAY NAME> | Set-
AdfsRelyingPartyTrust -SigningCertificateRevocationCheck None -
EncryptionCertificateRevocationCheck None

Configure the Claim Issuance Policy in ADFS
Add rules to the Claims Issuance Policy so it can send the correct LDAP attribute and user group information to PE.

Tip: In ADFS, a claim is the same thing as an assertion, and the Claims Issuance Policy defines what pieces of
information about a user go where in a claim.

1. In the ADFS Management console, click Relying Party Trusts.

2. Select the PE trust you created and click Edit Claim Issuance Policy.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 305

3. Add a rule to send LDAP attributes as claims:

• Claim rule template: Send LDAP Attributes as Claims
• Claim rule name: LDAP Attributes
• Attribute store: Active Directory LDAP attribute mappings

In the LDAP attribute mapping table, select these options from the drop down:

• SAM-Account-Name: Common Name
• Display-Name: Name
• E-Mail-Addresses: E-mail Address
• SAM-Account-Name: Name ID

4. Add a rule to send group membership as a claim:

• Claim rule template: Send Group Membership as a Claim
• Claim rule name: Group membership- <GROUP NAME>
• User's group: <DOMAIN NAME>\<GROUP NAME>
• Outgoing claim type: Group
• Outgoing claim value: <GROUP NAME>

5. Add additional rules for passing group membership of other ADFS user groups at your organization.

Configure an RBAC group and role in PE
In the PE console, configure RBAC to grant permissions to new ADFS user groups.

1. In the console, on the Access control page, click the User groups tab.

2. In the Login field, enter the name of the ADFS user group and click Add Group.

Tip: This is the same <GROUP NAME> you added when configuring group membership rules.

3. Click the User roles tab, then click the role you want to add the group to. For example, Viewers.

4. Click the Member groups tab and, in the drop-down list, select your ADFS user group.

5. Click Add group and commit the change.

6. Add additional ADFS user groups at your organization to RBAC roles.

Test your SSO connection
Ensure your connection between PE and ADFS works by logging out and logging back in.

1. Log out of PE.

2. On the login screen, click Sign in with ADFS.

3. Log in to PE using your ADFS credentials.

After logging back in, your permissions match what is assigned to your ADFS group.

Connect Okta to PE
Connect to Puppet Enterprise (PE) to Okta so that users can log in to PE with their Okta credentials.

These steps assume you're familiar with common SAML terminology and the basic process to Connect a SAML
identity provider to PE on page 294.

You must have an Okta instance. To test this process, you might request a development instance from the Okta
Developer Portal.

Configure the Okta application
Configure settings in Okta to connect your Okta instance to Puppet Enterprise (PE).

Before you begin
Get URLs and the signing and encryption certificate on page 294 required to connect Okta to PE.

© 2024 Puppet, Inc., a Perforce company

https://developer.okta.com/
https://developer.okta.com/

pe | Managing access | 306

1. Log in to the Okta Admin Console and navigate to Applications > Applications > Create App Integration.
The App Integration Wizard starts.

2. Select SAML 2.0 for the Sign-in method, and click Next.

3. On the General Settings tab:

a) Enter Puppet Enterprise for the App name.
b) Optional: Upload an App logo and select App visibility options.
c) Click Next.

4. On the Configure SAML tab:

a) Paste the SAML assertion consumer service (ACS) URL from PE in the Single sign on URL field.
b) Paste the SAML metadata URL from PE in the Audience URI (SP Entity ID) field.
c) Optional: Set the Default RelayState.
d) Select a Name ID format and Application username.

5. Click Advanced Settings, and specify parameters that you'll match to service provider configuration options in
PE later.

a) Select options for Response, Assertion Signature, Signature Algorithm, Digest Algorithm, and Assertion
Encryption.

b) Select Allow application to initiate Single Logout, and then paste the SAML Single Logout URL from PE in
the Single Logout URL field.

c) Paste the SAML assertion consumer service (ACS) URL from PE in the SP Issuer field.
d) For the Signature Certificate, upload the file containing the Signing and Encryption Certificate from PE.
e) Configure the Assertion Inline Hook, Authentication context class, Honor Force Authentication, and

SAML Issuer ID.

Tip: Take note of the Authentication context class setting. You'll need this value when you configure the Okta
connection settings in PE.

6. Click Next, complete the feedback survey (if desired), and then click Finish.

7. Copy the URLs and download the certificate from the How to Configure SAML 2.0 for Puppet Enterprise
Application page. You'll need this information to connect to Okta in the PE console.

Connect to Okta in the PE console on page 306

Connect to Okta in the PE console
Configure your Okta integration settings in the Puppet Enterprise (PE) console.

Before you begin
You need the URLs and certificate from the How to Configure SAML 2.0 for Puppet Enterprise Application page
(which appears after you Configure the Okta application on page 305). You also need to know the values of the
Signature Algorithm and Authentication context class settings in Okta.

For more information about PE's SAML configuration fields and their corresponding IdP and RBAC API mappings,
refer to the SAML configuration reference on page 296 and Okta's documentation.

1. In the console, on the Access control page, click the SSO tab.

2. Click Configure.

3. Input a Display Name. This name is visible on the PE home page.

4. Complete the Identity provider information fields:

• Identity provider entity ID: Input the Identity Provider Issuer URL from Okta.
• Identity provider SSO URL: Input the Identity Provider Single Sign-On URL from Okta.
• Identity provider SLO URL: Input the Identity Provider Single Logout URL from Okta.
• Identity provider SSO response URL: Optional and can be blank.
• Identity provider certificate: Paste the entire X.509 Certificate from Okta, including the begin and end tags.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 307

5. Configure the Service provider configuration options as follows:

• Name ID encrypted?: Yes
• Sign authentication requests?: Yes
• Sign logout response?: Yes
• Sign logout requests?: Yes
• Require signed messages?: Yes
• Require signed assertions?: Yes
• Sign metadata?: Yes
• Require encrypted assertions?: No (leave unselected)
• Require name ID encryption?: No (leave unselected)
• Requested authentication context: Input the value of the Authentication context class from Okta in the

following format:

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

• Requested authentication context comparison: Select minimum
• Allow duplicated attribute name: No (leave unselected)
• Validate xml?: No (leave unselected)
• Signature algorithm: Must match the Signature Algorithm setting you chose in Okta, such as rsa-sha256

6. Input Organization and Contacts information.

7. The values in the Attribute binding fields must exactly match the corresponding fields in Okta.

These settings define attributes and map them to user information in Okta, then PE uses these settings to
understand user information received from Okta.

Your Okta Administrator can provide these details, or you can retrieve them from Okta. Navigate to Applications
> SAML General > Advanced settings > Attribute Statements, and then use the values from the Name fields in
Okta to populate the Attribute binding fields in PE.

8. Commit your changes.

Configure RBAC for an Okta integration on page 307

Configure RBAC for an Okta integration
In the PE console, connect Okta user groups to PE RBAC roles.

1. In the console, on the Access control page, click the User roles tab.

2. Click the Name of the PE role you want to connect to an Okta user group.

3. On the Member users tab, select the Okta data from the User name drop-down menu, such as
$(user.firstName) $(user.lastName).

The value for this option derives from the Attribute Statements data in Okta. If no such value is available on the
drop-down menu, check the Attribute binding settings in PE (refer to Connect to Okta in the PE console on page
306 for details).

The Login and Status fields automatically populate after you select the User name.

4. Switch to the Member groups tab and select the relevant Okta group from the Group name drop-down menu.

5. Commit the changes.

6. Repeat to configure additional groups.

Test your Okta SSO connection
Make sure you can log in to PE with Okta.

1. Log out of PE.

2. Go to the PE login screen (home page) and click Sign in with Okta SSO.

3. Log in to PE using your Okta credentials.

If the configuration is correct, you'll be redirected to the PE status page. Make sure you have the correct permissions.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 308

Token-based authentication
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

Authentication tokens manage access to these Puppet Enterprise (PE) services:

• Activity service
• Code Manager
• Node classifier
• PuppetDB
• Puppet orchestrator
• RBAC

You can generate authentication tokens using the PE console, the puppet-access command, or the RBAC API
v1 Tokens endpoints on page 348. You can also generate one-off tokens that do not need to be saved, which are
typically used by a service.

In the PE console, you can view or revoke your own tokens on the Tokens tab of the My account page.
Administrators can view and revoke tokens for other users on the User details page. You can also Configure RBAC
and token-based authentication settings on page 227 in the PE Infrastructure node group.

Related information
Installing client tools on page 168
PE client tools are a set of command line tools that let you access Puppet Enterprise services from a workstation that
might or might not be managed by Puppet.

Reference: User permissions and names on page 273
This reference describes the permissions granted to the five default Puppet Enterprise (PE) user roles, as well as the
display name and system name for each type and permission.

Configure puppet-access
The puppet-access command allows users to generate and manage authentication tokens from the command
line of any workstation (Puppet-managed or not), without the need to SSH into the primary server. If you want to use
puppet-access, ensure it is configured correctly before using it to generate authentication tokens.

The configuration file for puppet-access allows you to define default settings so that you can generate tokens
from the CLI without having to pass additional flags.

Whether you are running puppet-access on a PE-managed server or installing it on a separate work station, you
need a global configuration file and a user-specified configuration file.

Global configuration file

The global configuration file is located at:

• On *nix systems: /etc/puppetlabs/client-tools/puppet-access.conf
• On Windows systems: C:/ProgramData/PuppetLabs/client-tools/puppet-access.conf

On machines managed by Puppet Enterprise (PE), the global configuration file is created for you. The configuration
file is formatted in JSON. For example:

{
 "service-url": "https://<CONSOLE_HOSTNAME>:4433/rbac-api",
 "token-file": "~/.puppetlabs/token",
 "certificate-file": "/etc/puppetlabs/puppet/ssl/certs/ca.pem"
}

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 309

Tip: PE determines and populates the service-url setting.

If you're running puppet-access from a workstation not managed by PE, you must create the global file and
populate it with the required configuration file settings.

User-specified configuration file

The user-specified configuration file is located at ~/.puppetlabs/client-tools/puppet-access.conf
for both *nix and Windows systems.

The user-specified configuration file always takes precedence over the global configuration file. For example, if the
two files have contradictory settings for the token-file, the user-specified setting prevails.

You must create the user-specified file and populate it with the configuration file settings. A list of configuration file
settings is found in Configuration file settings for puppet-access on page 309.

Important: User-specified configuration files must be in JSON format. HOCON and INI-style formatting are not
supported.

Configuration file settings for puppet-access
You can manually add or edit configuration settings in your user-specified or global puppet-access configuration
files.

The class that manages the global configuration file is: puppet_enterprise::profile::controller

You can also change configuration settings by specifying flags when you Generate a token using puppet-access on
page 310 on the command line.

Setting Description Command line flag

token-file The location for storing
authentication tokens. Defaults to:
~/.puppetlabs/token

-t or --token-file

certificate-file The location of the CA that signed
the console-services server's
certificate. Defaults to the PE CA
cert location: /etc/puppetlabs/
puppet/ssl/certs/ca.pem

--ca-cert

config-file Changes the location of your
configuration file. Defaults to:
~/.puppetlabs/client-
tools/puppet-access.conf

-c or --config-file

service-url The URL for your RBAC API.
Defaults to the URL automatically
determined during the client tools
package installation process,
which is usually: https://
<CONSOLE_HOSTNAME>:4433/
rbac-api

Usually, you need to change this
only if you are moving your console
server.

--service-url

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 310

Generate a token in the console
Use the console to generate an authentication token that you can use to access PE APIs. If SAML is configured, you
must have a token to use CLI tools, such as orchestrator jobs or PuppetDB queries triggered from the command line.
Generate and export a token to the machine you want to run the CLI tool on.

1. In the console, on the My account page, click the Tokens tab.

2. Click Generate new token.

3. Under Description, enter a description for your new token.

4. Under Lifetime, select the length of time you want your token to be good for.

5. Click Get token.

6. Click Copy token.

Important: Store the token somewhere secure and do not share it with others. You cannot regenerate this token
again once you close this page.

7. Click Close.

Generate a token using puppet-access
Use the puppet-access command to generate an authentication tokens from the command line of any workstation
(Puppet-managed or not), without the need to SSH into the primary server.

Before you begin
Install the PE client tools package and Configure puppet-access on page 308.

For information about modifying commands for Windows and privilege escalation, refer to Using example commands
on page 25 and Commands with elevated privileges on page 27.

1. Choose one of the following options, depending on how long you need your token to last:

• To generate a token with the default one-hour lifetime, run:

sudo puppet-access login

• To generate a token with a specific lifetime, run:

sudo puppet-access login --lifetime <TIME_PERIOD>

For example, to generate a token that lasts five hours, run:

puppet-access login --lifetime 5h

2. When prompted, enter the user name and password that you use to log into the PE console.

The puppet-access command uses RBAC API v1 Tokens endpoints on page 348. If your login credentials are
correct, the RBAC service generates a token.

The token is generated and stored in a file for later use. The default token storage location is ~/.puppetlabs/
token. You can print the token at any time, such as in curl commands, by using puppet-access show.

You can continue to use this token until it expires, or until your access is revoked. The token has the same
permissions as the user that generated it.

CAUTION: If you run the login command with the --debug flag, the client outputs the token, as well as
the username and password. For security reasons, exercise caution when using the --debug flag with the
login command.

Important: If a remote user generates a token, and the user is then deleted from your external directory service,
the deleted user cannot log into the console. However, because the token has already been authenticated, the RBAC

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 311

service does not contact the external directory service again when the token is used in the future. To fully remove the
token's access, you need to manually revoke or delete the user from PE.

Related information
Set a token-specific lifetime on page 313
If you want a token to have a different lifetime than the default lifetime, you can set a different lifetime when you
generate the token. This allows you to keep one token for multiple sessions.

Generate a token using the RBAC API
The RBAC API v1 /auth/token endpoint allows you to generate a token.

1. Call the POST /auth/token on page 349 or POST /tokens on page 350 endpoint.

2. Save the token by:

• Copying the token to a text file.
• Saving the token as an environment variable using: export TOKEN=<TOKEN>

You can use the token until it expires, or until your access is revoked. The token has the same permissions as the user
associated with it.

Important: If a remote user generates a token, and that user is then deleted from your external directory service,
the deleted user cannot log into the Puppet Enterprise (PE) console. However, because the token has already been
authenticated, the RBAC service does not contact the external directory service again when the token is used in the
future. To prevent the user from accessing the system through the token, you need to manually revoke or delete the
user from PE.

Use a token with PE API endpoints
The example below shows how to use a token in an API endpoint request. For more information, refer to the
documentation for the particular API or endpoint you want to use.

Before you begin
Generate a token using puppet-access login.

1. Generate a token in the console on page 296, Generate a token using puppet-access on page 310, or Generate
a token using the RBAC API on page 311.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 312

2. Supply the token in the endpoint using one of these methods (if necessary, replacing /etc/puppetlabs/
puppet/ssl/certs/ca.pem with the correct path to your CA certificate file):

• An X-Authentication header using puppet-access show to call a stored token:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/rbac-api/v1/users/
current"

curl --cacert "/etc/puppetlabs/puppet/ssl/certs/ca.pem" --header
 "$auth_header" "$uri"

• An X-Authentication header with the token supplied in full:

auth_header="X-Authentication: <TOKEN>"
uri="https://$(puppet config print server):4433/rbac-api/v1/users/
current"

curl --cacert "/etc/puppetlabs/puppet/ssl/certs/ca.pem" --header
 "$auth_header" "$uri"

• Appended as a query parameter:

GET https://$(puppet config print server):4433/rbac-api/v1/users/
current?token=<TOKEN>"

For general information about forming curl commands, authentication in commands, and Windows modifications,
go to Using example commands on page 25.

Generate a token for use by a service
If you need to generate a token that a Puppet Enterprise (PE) service can use, and the token doesn't need to be saved,
use the --print option with the puppet-access command.

Before you begin
Install the PE client tools package and Configure puppet-access on page 308.

To generate a token for a service, run:

sudo puppet-access login [username] --print

This command generates a token, and then displays the token content as stdout (standard output) rather than saving it
to disk.

Tip: When generating a token for a service, consider specifying a longer token lifetime so that you don't have to
regenerate the token too frequently.

For information about modifying commands for Windows and privilege escalation, refer to Using example commands
on page 25 and Commands with elevated privileges on page 27.

View token activity
Token activity is logged by the activity service. You can see recent token activity on any user's account in the
console.

1. In the console, on theAccess control page, click the Users tab and select the full name of the user you are
interested in.

2. Click the Activity tab.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 313

Change the default token lifetime
Tokens have a default authentication lifetime of one hour, but this default value can be adjusted in the console. You
can also change the maximum permitted lifetime, which defaults to 10 years.

1. In the console, click Node groups.

2. Open the PE Infrastructure node group and click the PE Console node group.

3. On the Classes tab, find the puppet_enterprise::profile::console class.

4. In the Parameter field, select the parameter you want to adjust:

• rbac_token_auth_lifetime: Set the default token lifetime. The default is one hour.
• rbac_token_maximum_lifetime: Set the maximum allowable lifetime for all tokens. The default is 10

years.

5. In the Value field, enter the new default authentication lifetime.

Specify a numeric value followed by:

• y (years)
• d (days)
• h (hours)
• m (minutes)
• s (seconds)

For example, 12h sets the lifetime to 12 hours.

Do not add a space between the numeric value and the unit of measurement.

If you do not specify a unit, it is assumed to be seconds (s).

The rbac_token_auth_lifetime cannot exceed the rbac_token_maximum_lifetime value.

6. Click Add parameter, and commit changes.

Set a token-specific lifetime
If you want a token to have a different lifetime than the default lifetime, you can set a different lifetime when you
generate the token. This allows you to keep one token for multiple sessions.

If you Generate a token using puppet-access on page 310, use the --lifetime option. For example: puppet-
access login --lifetime 2h generates a token with a two-hour lifetime.

If you're using the POST /auth/token on page 349 endpoint, use the lifetime key. For example, this JSON body
specifies a token lifetime of two hours:

{"login": "<YOUR PE USER NAME>", "password": "<YOUR PE PASSWORD>",
 "lifetime": "2h"}

Format the lifetime as a numeric value followed by one of the following:

• y (years)
• d (days)
• h (hours)
• m (minutes)
• s (seconds)

For example, 12h sets the lifetime to 12 hours.

Do not add a space between the numeric value and the unit of measurement.

If you do not specify a unit, it is assumed to be seconds (s).

To set the maximum possible lifetime, set the lifetime to 0. This sets the lifetime to the value of
rbac_token_maximum_lifetime. The default value for this setting is 10 years.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 314

If omitted, tokens get the default lifetime, which is one hour, unless you Change the default token lifetime on page
313.

Set a token-specific label
You can affix a plain-text, user-specific label to tokens you generate with the RBAC v1 API. Token labels help you
quickly call a token when working with RBAC API endpoints or when revoking your own token.

To generate a token with a label, use the label key in requests to the POST /auth/token on page 349 endpoint.
The value of the label key becomes the token's label. For example:

{"login": "<YOUR_PE_USER_NAME>",
 "password": "<YOUR_PE_PASSWORD>",
 "label": "My token"}

Labels:

• Can't have more than 200 characters.
• Can't contain commas.
• Can't contain only spaces.

Whitespace is allowed within the label string; however, leading and trailing whitespace is trimmed. For example, "
my token label " becomes "my token label".

Token labels are assigned on a per-user basis. This means two users can both have a token labelled my token, but a
single user cannot have two tokens both labelled my token.

You cannot use labels to refer to other users’ tokens.

Revoke a token using the API
Revoke tokens by username, label, or full token with the DELETE /tokens on page 373 endpoint.

All token revocation attempts are logged in the activity service, and they can be viewed on the user's Activity tab in
the console.

You can revoke your own token by username, label, or full token.

You can also revoke any other full token you possess.

Users with the permission to revoke other users access can also revoke those users' tokens, because the
users:disable permission includes token revocation. Revoking users' tokens does not revoke the users' PE
accounts. If a user's account is revoked, all tokens associated with that user account are also automatically revoked.

Revoke a token in the console
Revoke your tokens on the My Account page in the console. Administrators can also revoke other users' tokens.

Administrators can revoke another user's token on the User details page.

To revoke your own token:

1. In the console, on the My account page, click the Tokens tab.

2. Find the token you want to revoke and click Revoke token.

Delete a token file
If you used puppet-access to generate a token, you can remove the token file by running the delete-token-
file action. This is useful if you are working on a server that is used by multiple people.

Deleting the token file prevents other users from using your authentication token, but does not revoke the token. After
the token has expired, there's no risk of obtaining the contents of the token file.

From the command line, run one of the following commands, depending on the path to your token file:

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 315

• If your token is at the default token file location, run:

puppet-access delete-token-file

• If you used a different path to store your token file, run:

puppet-access delete-token-file --token-path <TOKEN_PATH>

RBAC API
Use the RBAC API to manage users, user groups, roles, permissions, tokens, password, and LDAP or SAML
connections.

Endpoint Use

users Manage local users as well as those from a directory
service, get lists of users, and create new local users.
This endpoint has a v1 and v2. The v2 GET /users on
page 370 endpoint has more filtering options.

groups Get lists of groups and add a new remote user group.
This endpoint has a v1 and v2. The v2 POST /groups
(deprecated) on page 372 endpoint has the option to
validate the group against LDAP before creating it.

roles Get lists of user roles and create new roles.

permissions Get information about available objects and the
permissions that can be constructed for those objects.

ds (directory service) Get information about the directory service, test your
directory service connection, and replace directory
service connection settings. This endpoint has a v1 and
v2. Use the v2 GET /ds (deprecated) on page 379
endpoint to get information about your directory service.

saml Configure SAML, get SAML configuration details, and
get the public certificate and URLs for configuration.

password Generate password reset tokens and update user
passwords.

tokens Generate authentication tokens to access PE. Use the v1
token endpoints to create tokens, and use the v2 token
endpoints to revoke and validate tokens.

rbac-service Use the Status API to check the status of the RBAC
service.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 316

• Forming RBAC API requests on page 316
The role-based access control (RBAC) API accepts well-formed HTTPS requests. Token-based authentication is
required for most endpoints. You can use either user authentication tokens or allowed certificates to authenticate
requests.
• RBAC service errors on page 318
RBAC API error responses can be formatted as ctext/html or JSON objects.
• RBAC API v1 on page 321
Use the role-based access control (RBAC) API v1 endpoints to manage users, directory service groups, roles,
permissions, tokens, passwords, and LDAP and SAML connection settings.
• RBAC API v2 on page 369
The role-based access control (RBAC) API v2 service enables you to fetch information about users, create groups,
revoke tokens, validate tokens, and get information about your LDAP directory service.

Related information
Status API on page 429
You can use the status API to check the health of Puppet Enterprise (PE) components and services. It is useful for
automatically monitoring your infrastructure, removing unhealthy service instances from a load-balanced pool,
checking configuration values, or troubleshooting issues in PE.

Configure RBAC and token-based authentication settings on page 227
You can configure RBAC and token-based authentication settings, such as setting the number of failed attempts a
user has before they are locked out of the console or the amount of time tokens are valid.

Forming RBAC API requests
The role-based access control (RBAC) API accepts well-formed HTTPS requests. Token-based authentication is
required for most endpoints. You can use either user authentication tokens or allowed certificates to authenticate
requests.

RBAC API requests must include a URI path following the pattern:

https://<DNS>:4433/rbac-api/<VERSION>/<ENDPOINT>

The variable path components derive from:

• DNS: Your PE console host's DNS name. You can use localhost, manually enter the DNS name, or use a
puppet command (as explained in Using example commands on page 25).

• VERSION: Either v1 or v2, depending on the endpoint.
• ENDPOINT: One or more sections specifying the endpoint, such as users or roles. Some endpoints require

multiple sections, such as the POST /command/roles/add-users on page 340 endpoint.

Tip: The RBAC service listens on port 4433 by default. If you change the RBAC service's port, you'll need to change
the port in your API calls.

For example, you could use any of these paths to call the GET /users on page 322 endpoint:

https://$(puppet config print server):4433/rbac-api/v1/users
https://localhost:4433/rbac-api/v1/users
https://puppet.example.dns:4433/rbac-api/v1/users

To form a complete curl command, you need to provide appropriate curl arguments, authentication, and you might
need to supply the content type and/or additional parameters specific to the endpoint you are calling.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 317

Token authentication

For most RBAC API endpoints, you must authenticate your requests with user authentication tokens. For instructions
on generating, configuring, revoking, and deleting authentication tokens in PE, go to Token-based authentication on
page 308.

To use a token in an RBAC API request, you can use puppet-access show, such as:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/rbac-api/v1/users"

curl --header "$auth_header" "$uri"

Or you can use the actual token, such as:

auth_header="X-Authentication: <TOKEN>"
uri="https://$(puppet config print server):4433/rbac-api/v1/users"

curl --header "$auth_header" "$uri"

For some endpoints, you might append the token (or token variable) directly to the URI path, such as:

https://$(puppet config print server):4433/rbac-api/v1/users/current?token=
$(puppet-access show)
https://$(puppet config print server):4433/rbac-api/v1/users/current?
token=<TOKEN>

CAUTION: Tokens supplied as query parameters might be recorded in server access logs.

Allowed certificate authentication

You can authenticate requests with a certificate listed in RBAC's certificate allowlist, which is located at:

/etc/puppetlabs/console-services/rbac-certificate-allowlist

Important: If you edit the rbac-certificate-allowlist file, you must reload the pe-console-
services service for your changes to take effect. To reload the service run: sudo service pe-console-
services reload

To use a certificate in a curl command, include the allowed certificate name (which must match a name in the rbac-
certificate-allowlist file) and, if necessary, the private key. For example:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/rbac-api/v1/users/current"

curl --cert "$cert" --cacert "$cacert" --key "$key" "$uri"

Tip: You do not need to use an agent certificate for authentication. You can use the puppet cert generate
command to create a certificate to use specifically with the RBAC API.

Permissions objects

Payloads that use JSON objects for permissions must represent each of the three components: Type
(object_type), permission (action), and object (instance), as described in Structure of user permissions on
page 273. In RBAC API requests, you must use the system names (not the display names) described in Reference:
User permissions and names on page 273.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 318

Related information
Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

RBAC API Content-Type headers
The RBAC API accepts only JSON payloads in PUT and POST requests.

If you provide a JSON payload, you must specify that the content is in JSON format. Thus, all PUT and POST
requests with non-empty bodies must have the Content-Type header set to application/json.

RBAC service errors
RBAC API error responses can be formatted as ctext/html or JSON objects.

Error response format
RBAC API error responses can use the following keys:

Key Definition

kind The kind of error encountered.

msg A human-readable message associated with the error.

For error responses formatted as text/html, the body
is the contents of this key.

details Additional, potentially machine-readable, information
about the error condition.

General error responses
RBAC API endpoints that accept a JSON body might return these responses.

Response Response code Description

malformed-request 400 The submitted data is not valid
JSON. The details key contains
an error message from the JSON
parser.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 319

Response Response code Description

schema-violation 400 The submitted data has an
unexpected structure, such as invalid
fields or missing required fields.
The msg key describes the problem,
and the details key is an object
containing:

• submitted: The submitted
data as it was seen during schema
validation.

• schema: The expected structure
of the data.

• error: A structured description
of the error.

inconsistent-id 400 ID data in the request body doesn't
match the ID in the request's URI
path. The details key shows the
two IDs.

invalid-id-filter 400 The request's URI path contains
a filter on the ID with an invalid
format. No details are given with this
error.

invalid-uuid 400 An invalid UUID was submitted. No
details are given with this error.

user-unauthenticated 401 An unauthenticated user attempted
to access an endpoint that requires
authentication.

user-revoked 401 A revoked user attempted to
access an endpoint that requires
authentication.

api-user-login 401 A person attempted to log in as
the api_user with a password.
The api_user does not support
username/password authentication.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 320

Response Response code Description

remote-user-conflict 401 A remote user who is not yet known
to RBAC attempted to authenticate,
but a local user with the same login
already exists.

The solution is to change either
the local user's login in RBAC,
or to change the remote user's
login. To change the remote user's
login you can either change the
user_lookup_attr in the DS
settings or change the value in the
directory service itself.

permission-denied 403 A user attempted an action that they
are not permitted to perform.

admin-user-immutable

admin-user-not-in-admin-
role

default-roles-immutable

403 A user attempted to edit metadata or
associations belonging to the default
user roles or default users (admin
or api_user) that they are not
allowed to change.

conflict 409 You submitted a value for a field
that is supposed to be unique, but
another object already has that value.
For example, when you attempt to
create a user with the same login as
an existing user.

invalid-associated-id 422 An object was submitted with a
list of associated IDs (for example,
user_ids) and one or more of
those IDs does not correspond to an
object of the correct type.

no-such-user-LDAP

no-such-group-LDAP

422 An object was submitted with a
list LDAP user or group IDs, and
one or more of those IDs does not
correspond to an existing LDAP user
or group.

non-unique-lookup-attr 422 A login was attempted, but LDAP
found multiple users with the
given username. Your directory
service settings must use a
user_lookup_attr that is
guaranteed to be unique within the
provided user's RDN.

server-error 500 Occurs when the server throws an
unspecified exception. A message
and stack trace are usually available
in the logs.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 321

RBAC API v1
Use the role-based access control (RBAC) API v1 endpoints to manage users, directory service groups, roles,
permissions, tokens, passwords, and LDAP and SAML connection settings.

• Users endpoints on page 321
With role-based access control (RBAC), you can manage local users and remote users (created on a directory
service). Use the users endpoints to get lists of users, create local users, and delete, revoke, and reinstate users in
PE.
• User groups endpoints on page 331
User groups allow you to quickly assign one or more roles to a set of users by placing all relevant users in the group.
This is more efficient than assigning roles to each user individually. Use the groups endpoints to get lists of groups
and add, delete, and change groups.
• User roles endpoints on page 335
User roles contain sets of permissions. When you assign a user (or a user group) to a role, you can assign the entire
set of permissions at once. This is more organized and easier to manage than assigning individual permissions to
individual users. Use the roles endpoints to manage roles.
• Permissions endpoints on page 343
You add permissions to roles to control what users can access and do in PE. Use the permissions endpoints to
get information about objects you can create permissions for, what types of permissions you can create, and whether
specific users can perform certain actions.
• Tokens endpoints on page 348
Authentication tokens control access to PE services. Use the auth/token and tokens endpoints to create tokens.
• LDAP endpoints on page 350
Use the v1 LDAP endpoints to test and configure LDAP directory service connections.
• SAML endpoints on page 359
Use the saml endpoints to configure SAML, retrieve SAML configuration details, and get the public certificate and
URLs needed for configuration.
• Passwords endpoints on page 363
When local users forget their Puppet Enterprise (PE) passwords or lock themselves out of PE by attempting to log in
with incorrect credentials too many times, you must generate a password reset token for them. Use the password
endpoints to generate password reset tokens, use tokens to reset passwords, change the authenticated user's password,
and validate potential user names and passwords.
• Disclaimer endpoints on page 366
Use these endpoints to modify the disclaimer text that appears on the Puppet Enterprise (PE) console login page.

Related information
API index on page 30
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Users endpoints
With role-based access control (RBAC), you can manage local users and remote users (created on a directory
service). Use the users endpoints to get lists of users, create local users, and delete, revoke, and reinstate users in
PE.

You can:

• GET /users on page 322: Get a list of all local and remote users.
• GET /users/<sid> on page 324: Get information about specific users.
• GET /users/current on page 325: Get information about the current authenticated user.
• GET /users/<sid>/tokens on page 325: Get a list of tokens for a user.
• POST /users on page 326: Create a local user.
• PUT /users/<sid> on page 327: Edit a user.
• DELETE /users/<sid> on page 328: Delete a user from the PE console.
• POST /command/users/add-roles on page 329: Assign roles to a user.
• POST /command/users/remove-roles on page 330: Remove roles from a user.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 322

• POST /command/users/revoke on page 330: Revoke a user's PE access.
• POST /command/users/reinstate on page 330: Reinstate a revoked user.

Tip: You'll want to be familiar with the Users endpoints keys on page 322 that appear in these endpoints' requests
and responses.

Users endpoints keys
These keys are used with the RBAC API v1 users endpoints.

Key Definition Example

id A UUID string identifying the user. "4fee7450-54c7-11e4-916c-0800200c9a66"

login A string used by the user to log in.
Must be unique among users and
groups.

"admin"

email An email address string. Not
currently utilized by any code in PE.

"hill@example.com"

display_name The user's name as a string. "Kalo Hill"

role_ids An array of role IDs indicating roles
to directly assign to the user. An
empty array is valid.

[3 6 5]

is_group

is_remote

is_superuser

These flags indicate whether a user
is remote and/or a super user. For all
users, is_group is always false.

true or false

is_revoked Setting this flag to true prevents
the user from accessing any routes
until the flag is unset or the user's
password is reset via token.

true or false

last_login A timestamp in UTC-based
ISO-8601 format (YYYY-MM-
DDThh:mm:ssZ) indicating when
the user last logged in. If the user has
never logged in, this value is null.

"2014-05-04T02:32:00Z"

inherited_role_ids (remote
users only)

An array of role IDs indicating which
roles a remote user inherits from their
groups.

[9 1 3]

group_ids (remote users only) An array of UUIDs indicating which
groups a remote user inherits roles
from.

["3a96d280-54c9-11e4-916c-0800200c9a66"]

identity_provider_id The UUID of the LDAP identity
provider associated with the user.

"4522ca7e-5623-11ed-
bdc3-0242ac120002"

GET /users
Fetches all local and remote users, including the superuser. You can also query specific users by user ID.
Authentication is required.

Important: You can use the v1 GET /users endpoint to query all users or specific users by ID; however, the v2
GET /users on page 370 endpoint provides more query options and control over the response content.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 323

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/users" -H "X-
Authentication:$(puppet-access show)"

To query specific users, append a comma-separated list of user IDs:

curl "https://$(puppet config print server):4433/rbac-api/v1/users?
id=<SID>,<SID>" -H "X-Authentication:$(puppet-access show)"

Response format

The response is a JSON object that contains metadata for all requested users. For example:

[{
 "id": "fe62d770-5886-11e4-8ed6-0800200c9a66",
 "login": "Kalo",
 "email": "kalohill@example.com",
 "display_name": "Kalo Hill",
 "role_ids": [1,2,3...],
 "is_group" : false,
 "is_remote" : false,
 "is_superuser" : true,
 "is_revoked": false,
 "last_login": "2014-05-04T02:32:00Z"
},{
 "id": "07d9c8e0-5887-11e4-8ed6-0800200c9a66",
 "login": "Jean",
 "email": "jeanjackson@example.com",
 "display_name": "Jean Jackson",
 "role_ids": [2, 3],
 "inherited_role_ids": [5],
 "is_group" : false,
 "is_remote" : true,
 "is_superuser" : false,
 "group_ids": ["2ca57e30-5887-11e4-8ed6-0800200c9a66"],
 "is_revoked": false,
 "last_login": "2014-05-04T02:32:00Z"
},{
 "id": "1cadd0e0-5887-11e4-8ed6-0800200c9a66",
 "login": "Amari",
 "email": "amariperez@example.com",
 "display_name": "Amari Perez",
 "role_ids": [2, 3],
 "inherited_role_ids": [5],
 "is_group" : false,
 "is_remote" : true,
 "is_superuser" : false,
 "group_ids": ["2ca57e30-5887-11e4-8ed6-0800200c9a66"],
 "is_revoked": false,
 "last_login": "2014-05-04T02:32:00Z"
}]

For information about keys in the response, refer to Users endpoints keys on page 322.

For information about error responses, refer to RBAC service errors on page 318.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 324

GET /users/<sid>
Fetches information about specific users identified by subject ID (<sid>). Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, provide authentication and specify a user ID,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/users/<SID>" -H
 "X-Authentication:$(puppet-access show)"

To request multiple users, append a comma-separated list of user IDs, such as

curl "https://$(puppet config print server):4433/rbac-api/v1/users?
id=<SID>,<SID>" -H "X-Authentication:$(puppet-access show)"

Tip: Querying multiple users technically calls the GET /users on page 322 endpoint with the id parameter.

Response format

The response is a JSON object that contains metadata for the requested user (or users). For example, this response is
for a local user:

{"id": "fe62d770-5886-11e4-8ed6-0800200c9a66",
"login": "Amari",
"email": "amariperez@example.com",
"display_name": "Amari Perez",
"role_ids": [1,2,3...],
"is_group" : false,
"is_remote" : false,
"is_superuser" : false,
"is_revoked": false,
"last_login": "2014-05-04T02:32:00Z"}

And this response is for a remote user:

{"id": "07d9c8e0-5887-11e4-8ed6-0800200c9a66",
"login": "Jean",
"email": "jeanjackson@example.com",
"display_name": "Jean Jackson",
"role_ids": [2,3...],
"inherited_role_ids": [],
"is_group" : false,
"is_remote" : true,
"is_superuser" : false,
"group_ids": ["b28b8790-5889-11e4-8ed6-0800200c9a66"],
"is_revoked": false,
"last_login": "2014-05-04T02:32:00Z"}

For information about keys in the response, refer to Users endpoints keys on page 322.

For information about error responses, refer to RBAC service errors on page 318.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 325

GET /users/current
Fetches data about the current authenticated user. The user's ID is assumed from the authentication context.
Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/users/current"
 -H "X-Authentication:$(puppet-access show)"

Response format

The response is the same as GET /users/<sid> on page 324.

GET /users/<sid>/tokens
Fetches a list of tokens for a given user. Authentication required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, you must supply a user ID in the URI path, such
as:

https://$(puppet config print server):4433/rbac-api/v1/users/
c97c716a-5f42-49d8-b5a4-d0888a879d21/tokens

You can append these optional parameters to the request:

Parameter Definition

limit An integer specifying the maximum number of records
to return. If omitted, all records are returned.

offset Specify a zero-indexed integer to specify the index value
of the first record to return. If omitted, the default is
position 0 (the first record). For example, offset=5
would start from the 6th record.

order_by Specify one of the following strings to define the order
in which records are returned:

• creation_date

• expiration_date

• last_active_date

• client

If omitted, the default is creation_date.

order Determines the sort order as either ascending (asc) or
descending (desc). If omitted, the default is asc.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 326

For example:

curl "https://$(puppet config print server):4433/rbac-api/v1/users/<SID>/
tokens?limit=20" \
-H "X-Authentication:$(puppet-access show)"

Response format

The response is a JSON object describing each token and the pagination information from the request.

Tokens are containing in an items array. Each token is represented as an object using these keys:

• id: The token's ID
• creation_date: The date and time the token was created in ISO-8601 format.
• expiration_date: The date and time the token expires (or expired) in ISO-8601 format.
• last_active_date: The date and time the token was last used in ISO-8601 format.
• client: Client information.
• description: Arbitrary description information.
• session_timeout: An integer, present with a timeout (in minutes), if this is a session-based token.
• label: A label, if one was supplied at creation. Refer to Set a token-specific label on page 314.

The pagination object reiterates the query pameters from the request as well as the total number of records
available (regardless of limit or offset).

For example:

{"items": [{
 "id": <token_id>
 "creation_date": <ISO-8601>,
 "expiration_date": <ISO-8601>,
 "last_active_date": <ISO-8601>,
 "client": "",
 "description": "",
 "session_timeout": ,
 "label": ""
 }, ...
],
 "pagination": {
 "limit": 20,
 "offset": 0,
 "order_by": "creation_date",
 "order": "asc"
 "total": 25
 }
}

Error response

If a user with the provided use ID doesn't exist, the endpoint returns a 404 Not Found response.

For other errors, refer to RBAC service errors on page 318.

POST /users
Create a local user. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• email: Specify the user's email address.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 327

• display_name: The user's name as you want it shown in the console.
• login: The username for the user to use to login.
• role_ids: An array of role IDs defining the roles that you want to assign to the new user. An empty array is

valid, but the user can't do anything in PE if they are not assigned to any roles.
• password: A password the user can use to login. For the password to work in the PE console, it must be at least

six characters. This field is optional, however user accounts are not usable until a password is set. You can also
use the Passwords endpoints on page 363 to generate a password reset token the user can use to login for the
first time.

For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/users"
 \
-H "X-Authentication: $(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"login": "Kalo",
 "email": "kalohill@example.com",
 "display_name": "Kalo Hill",
 "role_ids": [1123,6643,1218],
 "password": "Welc0me!"}'

Response format

If creation is successful, the endpoint returns 201 Created with a location header pointing to the new resource.

Error responses

If the email or login for the user conflicts with an existing user's login, the endpoint returns a 409 Conflict
response.

For other errors, refer to RBAC service errors on page 318.

PUT /users/<sid>
Replace the content of the specified user object. For example, you can update a user's email address or role
assignments. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json.
The body must be a JSON object using all keys supplied in the GET /users/<sid> on page 324 endpoint response,
modified as needed to update the user. For descriptions of each key, refer to Users endpoints keys on page 322.
Not all keys can be updated, such as last_login.

The role_ids array indicates the roles to assign to the user. An empty role_ids array removes all roles directly
assigned to the user.

An example, this JSON body is for a local user:

{"id": "c8b2c380-5889-11e4-8ed6-0800200c9a66",
"login": "Amari",
"email": "amariperez@example.com",
"display_name": "Amari Perez",
"role_ids": [1, 2, 3],
"is_group" : false,
"is_remote" : false,
"is_superuser" : false,
"is_revoked": false,
"last_login": "2014-05-04T02:32:00Z"}

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 328

And this body is for a remote user:

{"id": "3271fde0-588a-11e4-8ed6-0800200c9a66",
"login": "Jean",
"email": "jeanjackson@example.com",
"display_name": "Jean Jackson",
"role_ids": [4, 1],
"inherited_role_ids": [],
"group_ids: [],
"is_group" : false,
"is_remote" : true,
"is_superuser" : false,
"is_revoked": false,
"last_login": "2014-05-04T02:32:00Z"}

Here is an example of a complete curl request to this endpoint:

curl -X PUT "https://$(puppet config print server):4433/rbac-api/v1/users/
c97c716a-5f42-49d8-b5a4-d0888a879d21" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"id": "c97c716a-5f42-49d8-b5a4-d0888a879d21",
 "login": "replace-test",
 "email": "replace-test@example.com",
 "display_name": "Replaced User",
 "role_ids": [],
 "is_group": false,
 "is_remote": false,
 "is_superuser": false,
 "is_revoked": false,
 "last_login": "2014-05-04T02:32:00Z"}'

Response format

Returns 200 OK and a user object showing the changes made. For example:

{"email":"replace-test@example.com",
 "is_revoked":false,
 "last_login":null,
 "is_remote":false,
 "login":"replace-test",
 "is_superuser":false,
 "id":"c97c716a-5f42-49d8-b5a4-d0888a879d21",
 "role_ids":[],
 "display_name":"Replaced User",
 "is_group":false}

Error responses

If the user's login user conflicts with an existing user login, the endpoint returns a 409 Conflict response.

For other errors, refer to RBAC service errors on page 318.

DELETE /users/<sid>
Deletes the user with the specified ID, regardless of whether they are a user defined in PE RBAC (local) or a user
defined by a directory service (remote). Authentication is required.

Remember: The admin user and the api_user can't be deleted. The API user is for service-to-service
authentication within PE. It cannot be used with the standard login, and it is only available through certificate-based
authentication. The RBAC allow list identifies (by certname) the certificates you can use for API user authentication.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 329

Request format

When Forming RBAC API requests on page 316 to this endpoint, the URI path must include the ID of the user you
want to delete from the PE console. For example:

curl -X DELETE "https://$(puppet config print server):4433/rbac-api/v1/
users/76351f96-3d89-4947-bde9-bc3d86542839" \
-H "X-Authentication:$(puppet-access show)"

Response format

If the user is successfully deleted, the endpoint returns a 204 No Content response.

Important: When removing directory service users (remote users), this action removes the user from the PE console,
but the user is still able to log in if they are not revoked. When a non-revoked directory service user logs in, their
account is re-added to the console. Make sure to use the POST /command/users/revoke on page 330 endpoint to
revoke the user's access.

Error responses

If the requesting user (based on the authentication in the request) does not have the users:edit permission for the
specified user, the endpoint returns a 403 Forbidden response.

If there is no user with the provided ID, the endpoint returns a 404 Not Found response.

For other errors, refer to RBAC service errors on page 318.

POST /command/users/add-roles
Assign roles to a user.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• user_id: The ID of the user you want to assign roles to.
• role_ids: An array of role IDs defining the roles that you want to assign to the user. An empty array is valid,

but the user can't do anything in PE if they are not assigned to any roles.

Example payload:

{ "user_id": <user-id>, "role_ids":[1,2,3] }

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/users/add-roles" \
-H "X-Authentication: $(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"user_id": "c97c716a-5f42-49d8-b5a4-d0888a879d21", "role_ids": [1]}'

Tip: To assign multiple users to the same role at once, use the POST /command/roles/add-users on page 340
endpoint.

Response format

Returns 204 No Content if the roles are successfully assigned to the user.

For errors, refer to RBAC service errors on page 318.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 330

POST /command/users/remove-roles
Remove roles from a user.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• user_id: The ID of the user you want to remove roles from.
• role_ids: An array of role IDs defining the roles that you want to remove from the user.

Example payload:

{ "user_id": <user-id>, "role_ids":[1,2,3] }

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/users/remove-roles" \
-H "X-Authentication: $(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"user_id": "c97c716a-5f42-49d8-b5a4-d0888a879d21", "role_ids": [1]}'

Response format

Returns 204 No Content if the user exists and the roles are successfully unassigned.

For errors, refer to RBAC service errors on page 318.

POST /command/users/revoke
Revoke a user's access to PE.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object containing the user_id key, which specifies the ID of the user you want to revoke.

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/users/revoke" \
-H "X-Authentication: $(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"user_id": "c97c716a-5f42-49d8-b5a4-d0888a879d21"}'

Response format

Returns 204 No Content if the user is revoked successfully.

For errors, refer to RBAC service errors on page 318.

POST /command/users/reinstate
Reinstate a user after they have been revoked.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json.
The body must be a JSON object containing the user_id key, which specifies the UUID of the user you want to
reinstate.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 331

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/users/reinstate" \
-H "X-Authentication: $(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"user_id": "c97c716a-5f42-49d8-b5a4-d0888a879d21"}'

Response format

Returns 204 No Content if the user is successfully reinstated.

Returns 404 Not Found if the specified user doesn't exist.

For other errors, refer to RBAC service errors on page 318.

User groups endpoints
User groups allow you to quickly assign one or more roles to a set of users by placing all relevant users in the group.
This is more efficient than assigning roles to each user individually. Use the groups endpoints to get lists of groups
and add, delete, and change groups.

Remember: Group membership is determined by your directory service hierarchy. Therefore, local users (that exist
only in the PE console) can't be in directory groups. You'll need to use the Users endpoints on page 321 to manage
these users' roles.

User groups endpoints keys
These keys are used with the RBAC API v1 groups endpoints.

Key Definition Example

id A UUID string identifying the group. "c099d420-5557-11e4-916c-0800200c9a66"

login The identifier for the user group on
the directory server.

"admins"

display_name The group's name as a string. "Admins"

role_ids An array of role IDs indicating roles
to assign to the group's members. An
empty array is valid.

Tip: This is the only field that
can be updated via RBAC; the rest
are immutable or synced from the
directory service.

[3 6 5]

is_group

is_remote

is_superuser

These flags indicate that the group is
a group, derived from the directory
service, and not a super user
(inherently, a group can't be a user).

These are set to true, true, and
false, respectively

is_revoked No effect. Because groups are not
user objects, setting this flag to true
does nothing.

true orfalse

user_ids An array of UUIDs indicating which
users belong to the group.

["3a96d280-54c9-11e4-916c-0800200c9a66"]

identity_provider_id The UUID of the LDAP identity
provider associated with the group.

"4522ca7e-5623-11ed-
bdc3-0242ac120002"

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 332

GET /groups
Fetch information about all user groups. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/groups" \
-H "X-Authentication:$(puppet-access show)"

To query specific groups, append a comma-separated list of group IDs:

curl "https://$(puppet config print server):4433/rbac-api/v1/groups?
id=<SID>,<SID>" \
-H "X-Authentication:$(puppet-access show)"

Response format

The response is a JSON object that lists the metadata for all requested groups. For example:

[{
 "id": "65a068a0-588a-11e4-8ed6-0800200c9a66",
 "login": "admins",
 "display_name": "Admins",
 "role_ids": [2, 3],
 "is_group" : true,
 "is_remote" : true,
 "is_superuser" : false,
 "user_ids": ["07d9c8e0-5887-11e4-8ed6-0800200c9a66"]}
},{
 "id": "75370a30-588a-11e4-8ed6-0800200c9a66",
 "login": "owners",
 "display_name": "Owners",
 "role_ids": [2, 1],
 "is_group" : true,
 "is_remote" : true,
 "is_superuser" : false,
 "user_ids":
 ["1cadd0e0-5887-11e4-8ed6-0800200c9a66","5c1ab4b0-588b-11e4-8ed6-0800200c9a66"]
},{
 "id": "ccdbde50-588a-11e4-8ed6-0800200c9a66",
 "login": "viewers",
 "display_name": "Viewers",
 "role_ids": [2, 3],
 "is_group" : true,
 "is_remote" : true,
 "is_superuser" : false,
 "user_ids": []
}]

For information about keys in the response, refer to User groups endpoints keys on page 331.

For information about error responses, refer to RBAC service errors on page 318.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 333

GET /groups/<sid>
Fetches information about a single user group identified by ID. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, provide authentication and specify a group ID,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/groups/<SID>" \
-H "X-Authentication:$(puppet-access show)"

To request information for multiple specific groups, use the GET /groups on page 332 endpoint with the id
parameter.

Response format

The response is a JSON object containing information about the requested group. For example:

{"id": "65a068a0-588a-11e4-8ed6-0800200c9a66",
"login": "hamsters",
"display_name": "Hamster club",
"role_ids": [2, 3],
"is_group" : true,
"is_remote" : true,
"is_superuser" : false,
"user_ids": ["07d9c8e0-5887-11e4-8ed6-0800200c9a66"]}

For information about keys in the response, refer to User groups endpoints keys on page 331.

Error responses

If the user who submits the GET request has not successfully authenticated, the endpoint returns a 401
Unauthorized response.

If the requesting user does not have the appropriate user permissions to request the group data, the endpoint returns a
403 Forbidden response.

For other error responses, refer to RBAC service errors on page 318.

POST /command/groups/create
Create a remote directory user group. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• login: Defines the group for an external IdP, such as an LDAP login or a SAML identifier for the group.
• role_ids: An array of IDs defining the roles that you want to assign to users in this group. Roles grant

permissions to group members.
• identity_provider_id: Specify the UUID of an identity provider to bind to the group.
• display_name: Optional. Specify a name for the group that is visible in the PE console. If this group

originates from an LDAP group, this value is determined by the group's Display name setting in LDAP.

Request example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/groups/create" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 334

 "login": "augmentators",
 "role_ids": [1,2,3],
 "display_name": "The Augmentators"
 "identity_provider_id": "0e1a11bd-658f...-732887"
 }'

Response format

If the group is created successfully, the endpoint returns 200 OK.

If you don't have permission to create groups, the response is 403 Not Permitted

Malformed requests return 400 Bad Request.

For other errors, refer to RBAC service errors on page 318.

PUT /groups/<sid>
Replaces the content of the specified user group object. For example, you can update the group's roles or membership.
Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using all keys supplied in the GET /groups/<sid> on page 333 endpoint response.
You must supply all keys; however, the only key you can update is role_ids. Any values supplied in role_ids
replace the group's current role values. If you want to add roles, you need to supply all of the group's current role IDs
plus the new role IDs. If role_ids is empty, all roles are removed from the group (and, by extension, the roles are
removed from users who belong to this group). Changes to keys other than role_ids are ignored.

Example curl request:

curl -X PUT "https://$(puppet config print server):4433/rbac-api/v1/
groups/75370a30-588a-11e4-8ed6-0800200c9a66" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"id":"75370a30-588a-11e4-8ed6-0800200c9a66",
 "login":"admins",
 "display_name":"Admins",
 "role_ids":[2,1],
 "is_group":true,
 "is_remote":true,
 "is_superuser":false,
 "user_ids":
["1cadd0e0-5887-11e4-8ed6-0800200c9a66","5c1ab4b0-588b-11e4-8ed6-0800200c9a66"]}'

Response format

If the operation is successful, the endpoint returns a 200 OK response and a group object with updated roles.

For errors, refer to RBAC service errors on page 318.

DELETE /groups/<sid>
Deletes the user group with the specified ID from PE RBAC. This endpoint does not change the directory service.
Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the URI path must include the ID of the group
you want to delete from the PE console. For example:

curl -X DELETE "https://$(puppet config print server):4433/rbac-api/v1/
groups/75370a30-588a-11e4-8ed6-0800200c9a66" \

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 335

-H "X-Authentication:$(puppet-access show)"

Response format

If the user group is successfully deleted, the endpoint returns a 204 No Content response.

Error responses

If the requesting user does not have the user_groups:delete permission for this user group, the endpoint
returns a 403 Forbidden response.

If there is no user group with the specified ID, the endpoint returns a 404 Not Found response.

For other errors, refer to RBAC service errors on page 318.

POST /groups (deprecated)
Creates a new remote directory user group. Authentication is required.

Important: This endpoint is deprecated. Instead, use POST /command/groups/create on page 333.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• login: Defines the group for an external IdP. This could be an LDAP login or a SAML identifier for the group.
• role_ids: An array of role IDs defining the roles that you want to assign to users in this group. An empty array

might be valid, but users can't do anything in PE if they are not assigned to any roles.

For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/groups"
 \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"login":"augmentators",
 "role_ids": [1,2,3]}'

Response format

If the create operation is successful, the endpoint returns 201 Created with a location header that points to the
new resource.

Error responses

If the login for the group conflicts with an existing group login, the endpoint returns a 409 Conflict response.

For other errors, refer to RBAC service errors on page 318.

User roles endpoints
User roles contain sets of permissions. When you assign a user (or a user group) to a role, you can assign the entire
set of permissions at once. This is more organized and easier to manage than assigning individual permissions to
individual users. Use the roles endpoints to manage roles.

You can:

• GET /roles on page 336: Get a list of roles.
• GET /roles/<rid> on page 337: Get information about a specific role.
• POST /roles on page 337: Create a role.
• PUT /roles/<rid> on page 339: Edit a role.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 336

• DELETE /roles/<rid> on page 339: Delete a role.
• POST /command/roles/add-users on page 340: Assign a role to users.
• POST /command/roles/remove-users on page 340: Remove a role from users.
• POST /command/roles/add-groups on page 341: Assign a role to user groups.
• POST /command/roles/remove-groups on page 341: Remove a role from user groups.
• POST /command/roles/add-permissions on page 342: Add permissions to a role.
• POST /command/roles/remove-permissions on page 343: Remove permissions from a role.

Tip: You'll want to be familiar with the User roles endpoints keys on page 336 that appear in these endpoints'
requests and responses.

Some command endpoints are similar to other endpoints, such as the POST /command/users/add-roles on page
329 endpoint. However, in this case, the role is the focus. For example, whereas the POST /command/users/add-
roles on page 329 endpoint assigns multiple roles to one user, the POST /command/roles/add-users on page 340
endpoint assigns one role to multiple users.

User roles endpoints keys
These keys are used with the RBAC API v1 roles endpoints.

Key Definition Example

id An integer identifying the role. 18

display_name The role's name as a string. "Viewers"

description A string describing the role's
function.

"View-only permissions"

permissions An array containing permission
objects that indicate what
permissions a role grants. An empty
array is valid. See Permissions
endpoints keys on page 344 for
possible content.

[]

user_ids

group_ids

An array of UUIDs indicating
which users and groups are directly
assigned to the role. An empty array
is valid. Users belonging to specified
groups receive the role through the
group, but those users aren't listed
individually.

["fc115750-555a-11e4-916c-0800200c9a66"]

GET /roles
Fetches information about all user roles. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/roles" -H "X-
Authentication:$(puppet-access show)"

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 337

Response format

The response is a JSON object that lists metadata for roles, including permissions objects, and lists of users and
groups assigned to the role. For example:

[{"id": 123,
 "permissions": [{"object_type":"node_groups",
 "action":"edit_rules",
 "instance":"*"}, ...],
 "user_ids":
 ["1cadd0e0-5887-11e4-8ed6-0800200c9a66","5c1ab4b0-588b-11e4-8ed6-0800200c9a66"],
 "group_ids": ["2ca57e30-5887-11e4-8ed6-0800200c9a66"],
 "display_name": "A role",
 "description": "Edit node group rules"},
...]

For information about keys in the response, refer to User roles endpoints keys on page 336.

For information about error responses, refer to RBAC service errors on page 318.

GET /roles/<rid>
Fetches information about a single role indentified by its role ID (rid). Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, provide authentication and specify a role ID,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/roles/1234" -H
 "X-Authentication:$(puppet-access show)"

Response format

Returns a 200 OK response with a JSON object containing information about the requested role. For example:

{"id": 123,
 "permissions": [{"object_type":"node_groups",
 "action":"edit_rules",
 "instance":"*"}, ...],
 "user_ids":
 ["1cadd0e0-5887-11e4-8ed6-0800200c9a66","5c1ab4b0-588b-11e4-8ed6-0800200c9a66"],
 "group_ids": ["2ca57e30-5887-11e4-8ed6-0800200c9a66"],
 "display_name": "A role",
 "description": "Edit node group rules"}

For information about keys in the response, refer to User roles endpoints keys on page 336.

For error responses, refer to RBAC service errors on page 318.

POST /roles
Create a role. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• permissions: An array of permission objects (consisting of sets of object_type, action, and
instance) defining the permissions associated with this role. Required, but can be empty. An empty array
means no permissions are associated with the role.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 338

• group_ids: An array of group IDs defining the user groups you want to assign this role to. All users in the
groups (or added to the groups in the future) receive this role through their group membership. Required, but can
be empty. An empty array means the role is not assigned to any groups.

• user_ids: An array of user IDs defining the individual users that you want to assign this role to. You do not
need to repeat any users who are part of a group mentioned in group_ids. Required, but can be empty. An
empty array means the role is not assigned to any individual users.

• display_name: A string naming the role.
• description: A string describing the role's purpose. Can be null.

For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/roles"
 \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"permissions": [{"object_type":"node_groups", "action":"edit_rules",
 "instance":"*"}],
 "user_ids": ["1cadd0e0-5887-11e4-8ed6-0800200c9a66",
 "5c1ab4b0-588b-11e4-8ed6-0800200c9a66"],
 "group_ids": ["2ca57e30-5887-11e4-8ed6-0800200c9a66"],
 "display_name": "A role",
 "description": "Edit node group rules"}'

For more information about these keys, refer to User roles endpoints keys on page 336.

Tip:

If you're writing a role for a task-target, you must include unique action and instance key values to specify
permissions:

Key Value Explanation

action run_with_constraints Specifies that the user has permission
to run a task on certain nodes within
the confines of a given task-target.

instance <task-target_ID> Specifies the ID of the task-target the
user has permission to run.

For the complete task-target workflow, refer to the Puppet Enterprise RBAC API, or how to manage access to tasks
blog post.

Response format

If the role was successfully created, the endpoint returns a 201 Created response with a location header pointing
to the new resource.

Tip: If your request included any empty arrays, you can use these endpoints to add permissions, groups, and users to
your role:

• POST /command/roles/add-permissions on page 342
• POST /command/roles/add-groups on page 341
• POST /command/roles/add-users on page 340

Error responses

Returns a 409 Conflict response if the role has a name that collides with an existing role.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/blog/puppet-enterprise-rbac-api-or-how-to-manage-access-to-tasks/

pe | Managing access | 339

For other errors, refer to RBAC service errors on page 318.

Related information
POST /command/task_target on page 707
Create a task-target, which is a set of tasks and nodes/node groups you can use to provide specific privilege escalation
for users who would otherwise not be able to run certain tasks or run tasks on certain nodes or node groups. When
you grant a user permission to use a task-target, the user can run the task(s) in the task-target on the set of nodes
defined in the task-target.

PUT /roles/<rid>
Replaces the content of the specified role object. For example, you can update the role's permissions or user
membership. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using all keys supplied in the GET /roles/<rid> on page 337 endpoint response. You
must supply all keys; however, you can't update the id key. Any values supplied in editable keys replace the role's
current values. If you want to values, you need to supply all of the role's current values plus the new values. If you
supply an empty array (or a null description), the current content is removed. For example, supplying an empty
user_ids array removes any individual users that were assigned to the role.

For example:

curl -X PUT "https://$(puppet config print server):4433/rbac-api/v1/<rid>" \
-H "X-Authentication: $(puppet-access show)" \
-H "Content-type: application/json" \
-d '{
 "permissions": [{"object_type":"node_groups", "action":"edit_rules",
 "instance":"*"}],
 "user_ids": ["1cadd0e0-5887-11e4-8ed6-0800200c9a66",
 "5c1ab4b0-588b-11e4-8ed6-0800200c9a66"],
 "group_ids": ["2ca57e30-5887-11e4-8ed6-0800200c9a66"],
 "display_name": "A role",
 "description": "Edit node group rules"}'

Response format

If the operation is successful, the endpoint returns a 200 OK response with the updated role object.

Error responses

For errors, refer to RBAC service errors on page 318.

DELETE /roles/<rid>
Deletes the role with the specified role ID. Users who had this role (either directly or through a user group)
immediately lose the role and all permissions granted by it, but their session is otherwise unaffected. The next action
the user takes in PE is determined by their permissions without the deleted role.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the URI path must include the ID of the role you
want to delete. For example:

curl -X DELETE "https://$(puppet config print server):4433/rbac-api/v1/
roles/1234" \
-H "X-Authentication:$(puppet-access show)"

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 340

Response format

Returns a 200 OK response if the role was deleted.

Error responses

Returns a 404 Not Found response if no role exists for the specified role ID.

Returns a 403 Forbidden response if the requesting user lacks permission to delete the role identified by role ID.

For other errors, refer to RBAC service errors on page 318.

POST /command/roles/add-users
Assign a role to one or more users.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• role_id: The ID of the role you want to assign users to.
• user_ids: An array of user IDs defining the users that you want to assign to the role.

Example payload:

{ "role_id": <role_id>, "user_ids": [<user_id1>, <user_id2>,
 <user_id3>, ...]}

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/roles/add-users" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"role_id": 1, "user_ids": ["5c1ab4b0-588b-11e4-8ed6-0800200c9a66"]}'

Tip: To assign multiple roles to a single user at once, use the POST /command/users/add-roles on page 329
endpoint.

Response format

Returns 204 No Content if the users are successfully assigned the role.

Returns 404 Not Found if any of the users don't exist.

For other errors, refer to RBAC service errors on page 318.

POST /command/roles/remove-users
Remove a role from one or more users.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• role_id: The ID of the role you want to remove users from.
• user_ids: An array of user IDs defining the users that you want to remove from the role.

Example payload:

{ "role_id": <role_id>, "user_ids": [<user_id1>, <user_id2>,
 <user_id3>, ...]}

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 341

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/roles/remove-users" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"role_id": 1, "user_ids": ["5c1ab4b0-588b-11e4-8ed6-0800200c9a66"]}'

Response format

Returns 204 No Content if the users are removed from the role.

Note: A request with an invalid role_id still returns 204 No Content even though no users were removed
from the nonexistent role.

Returns 400 Bad request if a user doesn't exist.

For other errors, refer to RBAC service errors on page 318.

POST /command/roles/add-groups
Add a role to one or more user groups.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• role_id: The ID of the role you want to assign to groups.
• group_ids: An array of user group IDs defining the groups that you want to assign the role to.

Example payload:

{ "role_id": <role-id>, "group_ids":[<id>,<id>,<id>] }

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/roles/add-groups" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"role_id": 1, "group_ids": ["2ca57e30-5887-11e4-8ed6-0800200c9a66"]}'

Response format

Returns 204 No Content if the user groups are successfully added to the role.

For errors, refer to RBAC service errors on page 318.

POST /command/roles/remove-groups
Remove a role from one or more user groups.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• role_id: The ID of the role you want to remove groups from.
• group_ids: An array of user group IDs defining the groups that you want to remove the role from.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 342

Example payload:

{ "role_id": <role-id>, "group_ids":[1,2,3] }

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/roles/remove-groups" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"role_id": 1, "group_ids": ["a2450020-4217-439d-9bc4-258f6d2d7e76"]}'

Response format

Returns 204 No Content if the user groups are successfully removed from the role.

For errors, refer to RBAC service errors on page 318.

POST /command/roles/add-permissions
Add permissions to a role.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• role_id: The ID of the role you want to add permissions to.
• permissions: An array of permissions objects describing the permissions to add to the role. Permissions

objects consist of sets of object_type, action, and instance.

Example payload:

{
 "role_id": <role-id>,
 "permissions:[
 {"object_type": <TYPE>,
 "action": <ACTION>,
 "instance": <INSTANCE>},
...]

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/roles/add-permissions" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"role_id": 1,
 "permissions": [
 {"object_type":"node_groups",
 "action":"edit_rules",
 "instance":"*"}
]
 }'

Response format

Returns 204 No Content if the permissions are successfully added to the role.

For errors, refer to RBAC service errors on page 318.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 343

POST /command/roles/remove-permissions
Remove permissions from a role.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• role_id: The ID of the role you want to remove permissions from.
• permissions: An array of permissions objects describing the permissions to remove from the role. Permissions

objects consist of sets of object_type, action, and instance.

Example payload:

{
 "role_id": <role-id>,
 "permissions:[
 {"object_type": <TYPE>,
 "action": <ACTION>,
 "instance": <INSTANCE>},
...]

Example curl request:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/roles/remove-permissions" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"role_id": 1,
 "permissions": [
 {"object_type":"node_groups",
 "action":"edit_rules",
 "instance":"*"}
]
 }'

Response format

Returns 204 No Content when the permissions are successfully removed from the role.

An error in the standard format is returned for all other responses.

Permissions endpoints
You add permissions to roles to control what users can access and do in PE. Use the permissions endpoints to
get information about objects you can create permissions for, what types of permissions you can create, and whether
specific users can perform certain actions.

Tip: Before using these endpoints, you'll want to be familiar with User permissions and user roles on page 272,
particularly Best practices for assigning permissions on page 281.

A permission consists of three components:

• Type (object_type)
• Permission (action)
• Object (instance, not to be confused with a JSON object)

These three components are described in Structure of user permissions on page 273, as well as the crucial All
object ("*").

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 344

RBAC API requests and responses use the system names (not the display names) described in Reference: User
permissions and names on page 273. This reference also provides helpful information about some permissions,
such as some permissions that require the All ("*") object.

Permissions endpoints keys
These keys are used with the RBAC API v1 permissions endpoints.

Key Definition Example

object_type A string identifying what PE object
type the permission applies to, such
as node groups, users, roles, and so
on.

"node_groups"

action A string indicating the permitted
action, such as viewing, editing, or
creating.

"modify_children"

actions An array representing multiple
actions, formatted as JSON objects.

Each JSON object contains:

• name: The action's system name.
• display_name: The action's

name as it appears in the PE
console.

• description:
• has_instances: Boolean

indicating whether you can apply
instance specification to
this action. If false, you must
supply "*" for the instance
when including the action in
a permission JSON object.
Refer to instance for more
information.

instance A string describing the scope of the
permission.

To apply the permission to
all instances of the specified
object_type, use "*" to indicate
all instances.

To limit the permission to
specific instances of the specified
object_type, supply the
appropriate UUID, such as a specific
node group ID or user ID.

For any object_type that doesn't
allow instance specification, you
must supply "*".

• To permit all instances (or if the
object_type doesn't support
instance specification): "*"

• To define a specific
instance, supply a UUID
as a string, such as:
"cec7e830-555b-11e4-916c-0800200c9a66"

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 345

Key Definition Example

display_name A string containing the
object_type name as it appears
in the PE console.

"Node Groups"

description A string describing an
object_type.

"Groups that nodes can be
assigned to."

token In the POST /permitted on page
346 endpoint, this is a string
representing the UUID of a user or
user group.

"cec7e830-555b-11e4-916c-0800200c9a66"

Tip: You'll use object_type, action, and instance to build permissions. Use the GET /types on page 345
endpoint to get values you can use for these keys when writing permissions. For object_type and action, you
must use system names, not display names.

Related information
Structure of user permissions on page 273
User permissions are structured as a triple of type, permission, and object.

Reference: User permissions and names on page 273
This reference describes the permissions granted to the five default Puppet Enterprise (PE) user roles, as well as the
display name and system name for each type and permission.

GET /types
Lists each object_type that you can regulate with RBAC permissions, the available actions for each type, and
whether each action allows instance specification. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/types" -H "X-
Authentication:$(puppet-access show)"

Response format

The response is 200 OK and an array of object_type objects and actions for each type. For example:

[{ "object_type": "node_groups",
 "display_name": "Node Groups",
 "description": "Groups that nodes can be assigned to."
 "actions": [{ "name": "view",
 "display_name": "View",
 "description": "View the node groups",
 "has_instances": true
 },{
 "name":"modify",
 "display_name": "Configure",
 "description": "Modify description, variables and classes",
 "has_instances": true
 }, ...]
 },...]

For information about response keys and instance specification, refer to Permissions endpoints keys on page 344.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 346

Error responses

Returns a 401 Unauthorized response if authentication is invalid.

Returns a 403 Forbidden response if the requesting user lacks permission to view types.

For other errors, refer to RBAC service errors on page 318.

POST /permitted
Query whether a user or user group can perform specified actions. Use this to check if a user or group already has a
certain permission. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object specifying a user or user group and one or more specific permissions. You must use
these keys:

• token: The UUID of a user or user group.
• permissions: An array of JSON objects representing permissions. Each permissions object includes the

object_type, action, and instance keys. For more information about these keys and how to populate
them, refer to Permissions endpoints keys on page 344.

Tip: For any object_type that doesn't support instance specification, you must supply "instance": "*".

For example, the following body queries a user or group with the UUID 456. It checks if this user or group can edit
rules for a specific node group, and if the user or group can disable all ("*") user accounts. The response returns
an array of Boolean values representing each JSON object in the permissions array. A true response indicates
that the user or group can perform the specified action, whereas false indicates the user or group can't perform that
action.

{"token": "456",
 "permissions": [{"object_type": "node_groups",
 "action": "edit_rules",
 "instance": "<NODE_GROUP_UUID"},
 {"object_type": "users",
 "action": "disable",
 "instance": "*"}]
}

Here is an example of a complete curl request to the permitted endpoint:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
permitted" \
-H "X-Authentication: 0RrYy80wuJZLNDcOwxnl19DJAe7LAkpPZtCbx8Jh3NxQ" \
-H "Content-type: application/json" \
-d '{"token": "42bf351c-f9ec-40af-84ad-e976fec7f4bd",
 "permissions": [{"object_type": "node_groups",
 "action": "edit_rules",
 "instance": "4"}]}'

Response format

If the request is well-formed and valid, the endpoint returns a 200 OK response with an array of Boolean values
representing each JSON object in the permissions array in the request body.

The response array has the same length as the request's permissions array. Each returned Boolean value
corresponds to the submitted permission query at the same index. For example, if you query two permissions, the
response array contains two values, such as:

[true, false]

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 347

A true response indicates that the user or group can perform the specified action (described at the corresponding
index position in the request), whereas false indicates the user or group can't perform that action.

The response is based on a full evaluation of permissions, including inherited roles and matching general permissions
to more specific queries. For example, a query for users:edit:1 returns true if the token subject has either
permission to edit that specific user (users:edit:1) or permission to edit all users (users:edit:*).

For error responses, refer to RBAC service errors on page 318.

GET /permitted/<object-type>/<action>
For a specific object_type and action, get a list of instance IDs that the current authenticated user is
permitted to take the specified action on. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the URI path must include the name of an
object_type and applicable action for that object type. For example, this request refers to the node_groups
type and the view action:

curl "https://$(puppet config print server):4433/rbac-api/v1/permitted/
node_groups/view" \
-H "X-Authentication:$(puppet-access show)"

Tip: This endpoint checks permissions for the current authenticated user. If you want to check permissions for
another user, use the GET /permitted/<object-type>/<action>/<uuid> on page 347 endpoint.

Response format

A valid request returns 200 OK and an array of instance IDs that the authenticated user is permitted to perform
the supplied action on. For example, this response has one instance:

["00000000-0000-4000-8000-000000000000"]

If the user does not have permission to act on any instance, an empty array is returned.

Error responses

Returns 404 Not Found if:

• The supplied object_type does not map to a known object_type. Make sure your request used the type's
system name, not the display name. System names are listed in Reference: User permissions and names on page
273.

• The supplied action does not exist for the given object_type. You can use the GET /types on page 345
endpoint to get a list of actions for each object_type.

For other errors, refer to RBAC service errors on page 318.

GET /permitted/<object-type>/<action>/<uuid>
For a specific object_type and action, get a list of instance IDs that the specific user (identified by UUID)
is permitted to take the specified action on. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the URI path must include the name of an
object_type, an applicable action for that object type, and a user's UUID. For example, this request checks if a
specific user can take the view action on node groups:

curl "https://$(puppet config print server):4433/rbac-api/v1/permitted/
node_groups/view/42bf351c-e976fec7f4bd" \

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 348

-H "X-Authentication:$(puppet-access show)"

Response format

A valid request returns 200 OK and an array of instance IDs that the specified user is permitted to perform the
supplied action on. For example, this response has one instance:

["00000000-0000-4000-8000-000000000000"]

If the user does not have permission to act on any instance, an empty array is returned.

Error responses

Returns 404 Not Found if:

• The supplied object_type does not map to a known object_type. Make sure your request used the type's
system name, not the display name. System names are listed in Reference: User permissions and names on page
273.

• The supplied action does not exist for the given object_type. You can use the GET /types on page 345
endpoint to get a list of actions for each object_type.

• The uuid does not map to a known user.

For other errors, refer to RBAC service errors on page 318.

Tokens endpoints
Authentication tokens control access to PE services. Use the auth/token and tokens endpoints to create tokens.

You can use the v2 Tokens endpoints on page 373 to revoke or validate tokens.

Related information
Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

Tokens endpoints keys
These keys are used with the tokens endpoints.

Key Description

login The user's login for the PE console.

Only valid with POST /auth/token on page 349.

password The user's password for the PE console.

Only valid with POST /auth/token on page 349.

lifetime Used to Set a token-specific lifetime on page 313. If
omitted, the default token lifetime is used.

description Optional description of the token.

client Optional description about the client making the token
request, such as PE console.

label Optional key used to Set a token-specific label on page
314.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 349

POST /auth/token
Generate an authorization token for a user identified by login and password. This token can be used to authenticate
requests to Puppet Enterprise (PE) services, such as by using an X-Authentication header or a token query
parameter in an API request.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json.
The body must be a JSON object identifying the user you want to create a token for and optional token settings.
You must supply the login and password keys. Other keys, such as the lifetime or label, are optional. For
descriptions of keys, refer to Tokens endpoints keys on page 348.

Note: This endpoint accepts only login and password credentials for authentication. Generating a token using SSO
credentials is not supported.

For example:

type_header='Content-Type: application/json'
cacert="$(puppet config print cacert)"
uri="https://$(puppet config print server):4433/rbac-api/v1/auth/token"
data='{"login": "<USER>",
 "password": "<PASSWORD>",
 "lifetime": "4h",
 "label": "four-hour token"}'

curl --header "$type_header" –cacert "$cacert" --request POST "$uri" --data
 "$data"

Tip: This route is intended to require zero authentication to generate the key. While HTTPS is still required (unless
PE is explicitly configured to permit HTTP), neither an allowed cert nor a session cookie is required to post to this
endpoint.

The --cacert <FILE> argument in the above curl command specifies an authentication certificate as described
in Forming RBAC API requests on page 316. Alternatively, at your discretion and understanding of the risks,
you could use the -k or --insecure flag to turn off SSL verification of the RBAC server so that you can use the
HTTPS protocol without providing a CA cert. If you do not provide one of these options in your curl request, you
might get an error or warning about not being able to verify the RBAC server.

Here is an additional curl request example:

curl --insecure -X POST "https://$(puppet config print server):4433/rbac-
api/v1/auth/token" \
-H "Content-type: application/json" \
-d '{"login": "test",
 "password": "Test123!",
 "lifetime": "4m",
 "label": "personal workstation token"}'

Response format

If the credentials are valid and the specified user is not revoked, the endpoint returns 200 OK and the new token,
such as:

{"token":"0QX-WR3kgP0R9C2dA0I2nfnp0QgAT95_xH3iylBhqroA"}

From here, you can save the token, as described in Generate a token using the RBAC API on page 311.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 350

Error responses

Returns 401 Unauthenticated if the credentials are invalid or the user is revoked.

Returns 400 Malformed if something is wrong with the request body.

For other errors, refer to RBAC service errors on page 318.

POST /tokens
Create a token for the authenticated user. Doesn't allow certificate authentication.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body can be a JSON object identifying token settings, such as the lifetime or label. For descriptions of keys,
refer to Tokens endpoints keys on page 348.

For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/tokens"
 \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"lifetime": "1y",
 "description": "A token to be used with joy and care.",
 "client": "PE console"}'

Response format

If the supplied authentication is valid, not expired, and the attached user is not revoked, the endpoint returns 200 OK
and the new token, such as:

{"token":"0QX-WR3kgP0R9C2dA0I2nfnp0QgAT95_xH3iylBhqroA"}

Error responses are similar to the POST /auth/token on page 349 error responses.

LDAP endpoints
Use the v1 LDAP endpoints to test and configure LDAP directory service connections.

Tip: To connect to the directory service anonymously, set the Lookup user and Lookup password fields to null
or leave them blank.

Use the v2 LDAP endpoints to get information about your LDAP connections.

Related information
External directory settings on page 286
The table below lists the LDAP external directory connection fields in the PE console, the equivalent system name for
each field as used by the RBAC API, and provides examples of each settings for an Active Directory service and an
OpenLDAP service. Additional details are provided below the table.

POST /command/ldap/create
Configure a new LDAP connection. Authentication and appropriate permissions are required.

To edit existing connections, use POST /command/ldap/update on page 352.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object containing directory service settings.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 351

Important: You must specify all required External directory settings on page 286 in the request body. Specify the
following optional settings only if you need to change them from their default values or if they are required by your
LDAP configuration:

• cert_chain has no default value.
• disable_ldap_matching_in_chain defaults to false if omitted.
• search_nested_groups defaults to false if omitted.
• ssl_hostname_validation defaults to true if omitted.
• ssl_wildcard_validation defaults to false if omitted.
• start_tls defaults to false if omitted. However, if ssl is false, then start_tls must be true.

Request example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/ldap/create" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"help_link": "https://example.com/login-help.html",
 "ssl": true,
 "group_name_attr": "name",
 "group_rdn": null,
 "connect_timeout": 15,
 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.example.com",
 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=pe-orch,ou=service,ou=users,dc=example,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "ldap.example.com",
 "search_nested_groups": true,
 "start_tls": false}'

Searching nested groups

When authorizing users, the RBAC service can search nested groups. Nested groups are groups that belong to
external directory groups. For example, assume your external directory has a System Administrators group, and
you've given that group a Superusers user role in RBAC. In addition to assigning the Superusers role to individual
users in the System Administrators group, RBAC looks for other groups in the System Administrators group and
assigns the Superusers role to the individual users in those nested groups.

By default, RBAC does not search nested groups. To enable nested group searches, set search_nested_groups
to true.

Important: This setting causes RBAC to search the entire group hierarchy when users log in; therefore, you might
experience slowdowns in performance if you have many nested groups. To avoid these performance issues, set
search_nested_groups to false. This disables nested group searches so RBAC searches only the groups it is
configured to use for user roles.

Remember: In Puppet Enterprise (PE) versions 2015.3 and earlier, RBAC searched nested groups by default. When
you upgrade from one of these earlier versions, this setting is preserved and RBAC continues to search nested groups

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 352

by default. If you no longer want to use nested searching, you must disable it by setting search_nested_groups
to false.

Using StartTLS connections

To use StartTLS to secure the connection to the directory service, set start_tls to true. Any certificates you
configured through the DS trust chain setting are used to verify the identity of the directory service. If you set
start_tls to true, then ssl must be false.

Disabling LDAP_MATCHING_RULE_IN_CHAIN

By default, disable_ldap_matching_rule_in_chain is set to false, which allows PE to
freely use the the LDAP_MATCHING_RULE_IN_CHAIN feature when it detects an Active Directory
that supports this feature. Under specific circumstances, you might need to disable this setting by setting
disable_ldap_matching_rule_in_chain to true.

Response format

A successful, well-formed request returns 200 OK with the ID of the new connection's configuration object.

If you don't have permission to create LDAP connections, the response is 403 Not Permitted.

A malformed request returns 400 with a schema failure.

For other errors, refer to RBAC service errors on page 318.

POST /command/ldap/update
Replace an existing directory service connection's settings. Authentication and appropriate permissions are required.

This endpoint updates an existing LDAP connection. To create a connection, use POST /command/ldap/create on
page 350. To test a connection, use POST /command/ldap/test on page 354. To remove a connection, use
POST /command/ldap/delete on page 354.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json.
The body must be a JSON object containing the ID of the directory service connection you want to modify and the
connection's settings.

Important: Your request body must contain the connection's ID, all required settings, and any previously-configured
optional settings, including settings you aren't changing. Omitting a setting resets it to the default value (if any) or
assigns a null value. For information about required and optional values refer to External directory settings on page
286 and POST /command/ldap/create on page 350.

Tip: Use GET /ldap on page 377 or GET /ldap/<id> on page 378 to retrieve the connection's complete settings
object and use it as a template for your POST /command/ldap/update request. This helps avoid accidentally
omitting a setting.

Request example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/ldap/update" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"id": "e97188aa-9573-413b-945e-07f5f261613e",
 "help_link": "https://example.com/login-help.html",
 "ssl": true,
 "group_name_attr": "name",
 "group_rdn": null,
 "connect_timeout": 15,

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 353

 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.example.com",
 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=pe-orch,ou=service,ou=users,dc=example,dc=com",
 "password": "somepassword",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "ldap.example.com",
 "search_nested_groups": true,
 "start_tls": false}'

Response format

A successful request returns 200 OK with an object showing the updated connection settings. For example:

{
 "id": "e97188aa-9573-413b-945e-07f5f261613e",
 "help_link": "https://example.com/login-help.html",
 "ssl": true,
 "group_name_attr": "name",
 "group_rdn": null,
 "connect_timeout": 15,
 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.example.com",
 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=pe-orch,ou=service,ou=users,dc=example,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "ldap.example.com",
 "search_nested_groups": true,
 "start_tls": false
}

If there is no match for the given ID, the response is 404 Not Found.

If you don't have permission to modify LDAP connection settings, the response is 403 Not Permitted.

A malformed request, such as omitting a required setting, returns 400 with a schema failure.

For other errors, refer to RBAC service errors on page 318.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 354

POST /command/ldap/delete
Delete an existing directory service connection. Requires authentication and appropriate permissions.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object containing the ID of the LDAP connection that you want to remove. For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/ldap/delete" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"id": "e97188aa-9573-413b-945e-07f5f261613e"}'

Tip: Use GET /ldap on page 377 to get the LDAP connection ID.

Response format

Returns 204 No Content if you have appropriate permissions and the request was well-formed. If a connection
with the given ID exists, then this response means the connection was successfully removed. However, this response
is returned for ANY well-formed, permitted request, even if there is no match for the given ID.

When you disconnect an LDAP directory that has imported groups, all users and groups associated with that directory
are removed from PE RBAC.

Error responses

If you don't have permission to delete LDAP connections, the response is 403 Not Permitted.

For other errors, refer to RBAC service errors on page 318.

POST /command/ldap/test
Test a directory service connection based on supplied settings. Authentication and appropriate permissions are
required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json.
The body must be a JSON object using all directory service setting keys. For information about each setting, refer to
External directory settings on page 286.

Tip: If an LDAP connection already exists, use GET /ldap on page 377 or GET /ldap/<id> on page 378 to
retrieve the current settings object and use it as a template for your POST /command/ldap/test request. The id
key is ignored if you include it in your request.

Request example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/ldap/test" \
-H "X-Authentication: 0F4DITVB7HP3z8YnD95kx1W1jY0z5Pnc3ixB5uGAXzLY" \
-H "Content-type: application/json" \
-d '{"help_link": "https://example.com/login-help.html",
 "ssl": true,
 "group_name_attr": "name",
 "group_rdn": null,
 "connect_timeout": 15,
 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.example.com",

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 355

 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=pe-orch,ou=service,ou=users,dc=example,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "ldap.example.com",
 "search_nested_groups": true,
 "start_tls": false}'

Response format

If the test succeeds, the endpoint returns 200 OK and a JSON object containing the elapsed time in seconds, for
example: {"elapsed": 10}.

If the test fails, the endpoints returns 200 OK and a body containing the elapsed time and an error key, for example:
{"elapsed": 20, "error": "..."}.

If you're satisfied with the test results, you can use POST /command/ldap/create on page 350 or POST /command/
ldap/update on page 352 to apply these settings to an actual LDAP connection.

If the test can't run, the endpoint returns:

• 403 Not Permitted if you don't have appropriate permissions.
• 400 if the request is malformed.
• Other errors as described in RBAC service errors on page 318.

GET /ds/test (deprecated)
Test the connection to the connected directory service. Authentication is required.

Important: GET /ds/test is deprecated. Instead, use POST /command/ldap/test on page 354. The
information on this page reflects conditions and behavior prior to this endpoint's deprecation. Requirements are
different in newer endpoints.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/ds/test" -H "X-
Authentication:$(puppet-access show)"

Response format

If the test is successful, the response is 200 OK and a JSON object containing the directory service connection
settings. For example:

{
 "help_link": "https://help.example.com",
 "ssl": true,
 "group_name_attr": "name",
 "password": <password>,
 "group_rdn": null,
 "connect_timeout": 15,
 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 356

 "hostname": "ldap.example.com",
 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=ldapuser,ou=service,ou=users,dc=example,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "Acme Corp Ldap server",
 "search_nested_groups": true,
 "start_tls": false
}

For information about each setting, refer to External directory settings on page 286.

If the request was well-formed and valid, but the test failed, response body contains the elapsed time and the reason
the test failed. For example, {"elapsed": 20, "error": "..."}.

Error responses

Returns 400 Bad Request if the request is malformed.

Returns 401 Unauthorized if no user is authenticated.

Returns 403 Forbidden if the current user lacks permission to test the directory settings.

For other errors, refer to RBAC service errors on page 318.

PUT /ds/test (deprecated)
Tests a directory service connection based on supplied settings, rather than stored settings. Authentication is required.

Important: PUT /ds/test is deprecated. Instead, use POST /command/ldap/test on page 354. The
information on this page reflects conditions and behavior prior to this endpoint's deprecation. Requirements are
different in newer endpoints.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using all directory service setting keys. For example:

curl -X PUT "https://$(puppet config print server):4433/rbac-api/v1/ds/test"
 \
-H "X-Authentication: 0F4DITVB7HP3z8YnD95kx1W1jY0z5Pnc3ixB5uGAXzLY" \
-H "Content-type: application/json" \
-d '{"help_link": "https://help.example.com",
 "ssl": true,
 "group_name_attr": "name",
 "password": <password>,
 "group_rdn": null,
 "connect_timeout": 15,
 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.example.com",
 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=ldapuser,ou=service,ou=users,dc=example,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 357

 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "Acme Corp Ldap server",
 "search_nested_groups": true,
 "start_tls": false}'

For information about each setting, refer to External directory settings on page 286.

Tip: If you have an LDAP connection configured, you can use the GET /ds (deprecated) on page 379 endpoint to
retrieve the current settings object and use it as a template for your PUT /ds/test request.

Response format

If the test succeeds, the endpoint returns a JSON object with information about the test, such as the amount of time
the test ran. For example: {"elapsed": 10}

Error responses

If the test fails, the body contains the elapsed time and information about the failure: {"elapsed": 20,
"error": "..."}.

For other errors, refer to RBAC service errors on page 318.

PUT /ds (deprecated)
Replace current directory service connection settings. You can update the settings or disconnect the service (by
removing all settings). Authentication is required.

Important: PUT /v1/ds is deprecated. Instead, use POST /command/ldap/create on page 350, POST /
command/ldap/update on page 352, and POST /command/ldap/delete on page 354. The information on this
page reflects conditions and behavior prior to this endpoint's deprecation. Requirements are different in newer
endpoints.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json.

To change the settings, the body must be a JSON object containing, at minimum, all required directory service setting
keys.

Important: When changing any directory service settings, you must specify all required directory service settings
in the request body, including required settings that you aren't changing. However, you don't need to specify optional
settings unless you are changing them.

If you omit a required setting, the setting is removed or reset to the default value.

All External directory settings on page 286 are required except help-link, login, password, user_rdn,
and group_rdn. However, your specific LDAP configuration might require some of these fields, in which case you
must treat those fields as required fields.

Here is an example curl request to change settings:

curl -X PUT "https://$(puppet config print server):4433/rbac-api/v1/ds" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"help_link": "https://help.example.com",
 "ssl": true,
 "group_name_attr": "name",
 "password": <password>,

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 358

 "group_rdn": null,
 "connect_timeout": 15,
 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.example.com",
 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=ldapuser,ou=service,ou=users,dc=example,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "Acme Corp Ldap server",
 "search_nested_groups": true,
 "start_tls": false}'

If you want to disconnect the directory service from PE, you can supply an empty object ({}) or set all required
settings set to null.

Tip: If you have an LDAP connection configured, you can use the GET /ds (deprecated) on page 379 endpoint
to retrieve the current settings object and use it as a template for your PUT /ds request. This also helps avoid
accidentally omitting a setting.

Searching nested groups

When authorizing users, the RBAC service can search nested groups. Nested groups are groups that belong to
external directory groups. For example, assume your external directory has a System Administrators group, and
you've given that group a Superusers user role in RBAC. In addition to assigning the Superusers role to individual
users in the System Administrators group, RBAC looks for other groups in the System Administrators group and
assigns the Superusers role to the individual users in those nested groups.

By default, RBAC does not search nested groups. To enable nested group searches, set search_nested_groups
to true.

Important: This setting causes RBAC to search the entire group hierarchy when users log in; therefore, you might
experience slowdowns in performance if you have a lot of nested groups. To avoid these performance issues, set
search_nested_groups to false. This disables nested group searches so RBAC only searches the groups it is
configured to use for user roles.

Note: In Puppet Enterprise (PE) versions 2015.3 and earlier, RBAC searched nested groups by default. If you
upgrade from one of these earlier versions, this setting is preserved and RBAC continues to search nested groups by
default. You'll need to disable it (by setting search_nested_groups to false) if you don't want to use nested
searching anymore.

Using StartTLS connections

You can set start_tls to true to use StartTLS to secure the connection to the directory service. Any certificates
you configured through the DS trust chain setting are used to verify the identity of the directory service. If you set
start_tls to true, make sure ssl is set to false.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 359

Disabling matching rule in chain

When PE detects an Active Directory that supports the LDAP_MATCHING_RULE_IN_CHAIN feature,
PE automatically uses it. Under specific circumstances, you might need to disable this setting by setting
disable_ldap_matching_rule_in_chain to true. Otherwise, this setting is optional.

Response format

Returns 200 OK with an object showing the updated connection settings. For example:

{
 "help_link": "https://help.example.com",
 "ssl": true,
 "group_name_attr": "name",
 "password": <password>,
 "group_rdn": null,
 "connect_timeout": 15,
 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.example.com",
 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=ldapuser,ou=service,ou=users,dc=example,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "Acme Corp Ldap server",
 "search_nested_groups": true,
 "start_tls": false
}

For errors, refer to RBAC service errors on page 318.

SAML endpoints
Use the saml endpoints to configure SAML, retrieve SAML configuration details, and get the public certificate and
URLs needed for configuration.
PUT /saml
Use this endpoint to configure SAML. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object containing, at minimum, all required SAML setting keys.

Important: When changing any SAML settings, you must specify all required settings in the request body, including
required settings that you aren't changing. However, you don't need to specify optional settings unless you are
changing them.

If you omit a required setting, the setting is removed or reset to the default value.

The SAML configuration reference on page 296 indicates which settings are required or optional. However, your
specific SAML configuration might require some of the optional settings, in which case you must treat those settings
as required settings.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 360

Example curl request:

curl -X PUT "https://$(puppet config print server):4433/rbac-api/v1/saml" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"display_name": "Corporate Okta",
 "idp_sso_url": "https://idp.example.org/SAML2/SSO",
 "idp_slo_url": "https://ipd.example.com/SAML2/SLO",
 "idp_certificate": [<certificate>],
 "want_messages_signed": true,
 "want_assertions_signed": true,
 "sign_metadata": true,
 "want_assertions_encrypted": true,
 "want_name_id_encrypted": true,
 "allow_duplicated_attribute_name": true,
 "want_xml_validation": true,
 "signature_algorithm": "rsa-sha256",
 "requested_authn_context_comparison": "exact",
 "user_display_name_attr": "test",
 "user_lookup_attr": "test_lookup",
 "requested_auth_context": "test-request",
 "group_lookup_attr": "group_lookup_test",
 "user_email_attr": "email_attr",
 "idp_entity_id": "entity_id"}'

Tip: If you already have a SAML configuration, you can use the GET /saml on page 361 endpoint to retrieve
the current settings object and use it as a template for your PUT /saml request. This also helps avoid accidentally
omitting a setting.

Response format

If you provided new settings, the endpoint returns 201 Created and the new settings. For example:

{
 "want_xml_validation":true,
 "sign_metadata":true,
 "requested_authn_context_comparison":"exact",
 "want_assertions_encrypted":true,
 "want_name_id_encrypted":true,
 "want_messages_signed":true,
 "signature_algorithm":"rsa-sha256",
 "user_display_name_attr":"test",
 "want_assertions_signed":true,
 "user_lookup_attr":"test_lookup",
 "requested_auth_context":"test-request",
 "allow_duplicated_attribute_name":true,
 "idp_sso_url":"https://idp.example.org/SAML2/SSO",
 "group_lookup_attr":"group_lookup_test",
 "idp_certificate":["MIIGADCCA
+igAwIBAgIBAjANBgkqhkiG9w0BAQsFADBqMWgwZgYDVQQDDF9QdXBw"],
 "user_email_attr":"email_attr",
 "display_name":"Corporate Okta",
 "idp_entity_id":"entity_id",
 "idp_slo_url":"https://ipd.example.com/SAML2/SLO"
}

Returns 200 OK if you changed existing settings, and the changes were applied successfully.

Returns 400 Bad Request if the request was missing required settings. The SAML configuration reference on
page 296 specifies required settings.

Returns 403 Forbidden if the user lacks the directory_serivce:edit:* permission.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 361

For other errors, refer to RBAC service errors on page 318.

GET /saml
Retrieves the current SAML configuration settings. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/saml" -H "X-
Authentication:$(puppet-access show)"

Response format

If the authentication is valid and there is an existing SAML configuration, the endpoint returns 200 OK and a JSON
object containing the current SAML configuration settings. For example:

{
 "want_xml_validation":true,
 "sign_metadata":true,
 "requested_authn_context_comparison":"exact",
 "want_assertions_encrypted":true,
 "want_name_id_encrypted":true,
 "want_messages_signed":true,
 "signature_algorithm":"rsa-sha256",
 "user_display_name_attr":"test",
 "want_assertions_signed":true,
 "user_lookup_attr":"test_lookup",
 "requested_auth_context":"test-request",
 "allow_duplicated_attribute_name":true,
 "idp_sso_url":"https://idp.example.org/SAML2/SSO",
 "group_lookup_attr":"group_lookup_test",
 "idp_certificate":["MIIGADCCA
+igAwIBAgIBAjANBgkqhkiG9w0BAQsFADBqMWgwZgYDVQQDDF9QdXBw"],
 "user_email_attr":"email_attr",
 "display_name":"Corporate Okta",
 "idp_entity_id":"entity_id",
 "idp_slo_url":"https://ipd.example.com/SAML2/SLO"
}

Returns 404 Not Found if the SAML data is not configured.

For information about each setting, refer to SAML configuration reference on page 296.

For errors, refer to RBAC service errors on page 318.

DELETE /saml
Remove the current SAML configuration along with associated user groups and users. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl -X DELETE "https://$(puppet config print server):4433/rbac-api/v1/saml"
 -H "X-Authentication:$(puppet-access show)"

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 362

Response format

Returns 204 No Content if the SAML configuration is removed successfully. Deletion also removes all
associated user groups and users.

Returns 404 Not Found if no SAML configuration was set prior to making the DELETE request.

Returns 403 Forbidden if the user lacks the directory_service:edit* permission.

For other errors, refer to RBAC service errors on page 318.

GET /saml/meta
Retrieve the public SAML certificate and URLs you need to configure an identity provider. Authentication is
required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/saml/meta" -H
 "X-Authentication:$(puppet-access show)"

Response format

If the instance is not a replica and the certificate exists, the endpoint returns 200 OK and an object containing these
keys:

Key Definition

meta A URL to the public metadata endpoint for the
SAML service provider. Some IdP configurations
also require this URL in the entity-id and/or
audience_restriction fields

slo A URL to the public logout service for SAML.

acs A URL to the public assertion service for SAML.

cert A string representing the public SAML certificate.

For example:

{
 "meta": "https://localhost/saml/v1/meta",
 "acs": "https://localhost/saml/v1/acs",
 "slo": "https://localhost/saml/vi/slo",
 "cert": "-----BEGIN CERTIFICATE-----\nMIIFo ..."
}

Use these values to configure your identity provider. After configuration, your identity provider supplies the required
values for configuring SAML in Puppet Enterprise (PE). You can also see this information in the PE console on the
SSO tab.

Error response

Returns 404 Not Found if the public key file doesn't exist or the SAML key entries aren't present in the
configuration.

For other errors, refer to RBAC service errors on page 318.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 363

Passwords endpoints
When local users forget their Puppet Enterprise (PE) passwords or lock themselves out of PE by attempting to log in
with incorrect credentials too many times, you must generate a password reset token for them. Use the password
endpoints to generate password reset tokens, use tokens to reset passwords, change the authenticated user's password,
and validate potential user names and passwords.

Important: The password endpoints are for managing local user accounts within PE. You can't use these
endpoints to modify user information in SAML or LDAP.

Tip: By default, users can make 10 login attempts before being locked out. You can change the amount of allowed
attempts by configuring the failed-attempts-lockout parameter.

You can reset the PE console admin password with a password reset script available on the PE console node.

Related information
Creating and managing local users and user roles on page 282
Role-based access control (RBAC) in Puppet Enterprise (PE) lets you to manage users—what they can and can't
create, edit, or view—in an organized, high-level way that is more efficient than managing user permissions on a per-
user basis. User roles are sets of permissions you can apply to multiple users. You can't assign permissions directly to
users in PE, only to user roles. You then assign roles to users.

Configure RBAC and token-based authentication settings on page 227
You can configure RBAC and token-based authentication settings, such as setting the number of failed attempts a
user has before they are locked out of the console or the amount of time tokens are valid.

Reset the console administrator password on page 270
If you're unable to log in to the console as admin, you can change the password from the command line of the node
that is running console services.

POST /users/<uuid>/password/reset
Generate a single-use, limited-lifetime password reset token for a specific local user. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, provide authentication and specify a user ID,
such as:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
users/297f1d72-d96e/password/reset" \
-H "X-Authentication:$(puppet-access show)"

Response format

A successful request returns 200 OK and the new token. Use this token with POST /auth/reset on page 364 to
reset the user's password.

Restriction: Password reset tokens can be used only once, and these tokens have a limited lifetime. The lifetime is
based on the value of the rbac_password_reset_expiration parameter. The default is 24 hours. For more
information, refer to Configure RBAC and token-based authentication settings on page 227.

Error responses

Returns 403 Forbidden if:

• The requesting user does not have permission to create a reset token for the specified user.
• The specified user is a remote user. You must manage remote user information within the relevant remote system,

such as SAML or LDAP.

Returns 404 Not Found if there is no user with the given UUID.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 364

For other error responses, refer to RBAC service errors on page 318.

POST /auth/reset
Use a password reset token to change a local user's password. Authentication is not required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• token: A password reset token obtained from the POST /users/<uuid>/password/reset on page 363 endpoint.
• password: A new password to assign to the user attached to the password reset token.

Authentication is not required.

For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/auth/
reset" \
-H "Content-type: application/json" \
-d '{"token": "0FlAtJ-84LMswcyzC8h9c2Hkreq1l4W6UeWKJJScYUUk",
 "password":"W3lcome!"}'

The body doesn't explicitly identify the user, because the user is identified through the password reset token.

Response format

Returns 200 OK if the password reset token is valid and the password was successfully changed. The user can now
log in with the new password.

This endpoint only resets the password; it does not establish a valid log-in session for the user.

Error responses

Returns 403 Forbidden if the password reset token was already used or has expired.

Remember: Password reset tokens can be used only once, and these tokens have a limited lifetime. The lifetime is
based on the value of the rbac_password_reset_expiration parameter. The default is 24 hours. For more
information, refer to Configure RBAC and token-based authentication settings on page 227.

For other errors, refer to RBAC service errors on page 318.

PUT /users/current/password
Changes the current authenticated local user's password. You must provide the current password in the request.
Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• current_password: The authenticated user's current password.
• password: A new password to assign to the authenticated user.

Authentication is required.

For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/users/
current/password" \
-H "Content-type: application/json" \
-H "X-Authentication: $(puppet access show)" \
-d '{"current_password": "old_password",

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 365

 "password": "new_password"}'

The body doesn't explicitly identify the user, because the user is identified through authentication.

Response format

Returns 204 No Content if the password was successfully changed. You can now log in with the new password.

This endpoint only resets the password; it does not establish a valid log-in session.

Error response

Returns 403 Forbidden if the authenticated user is a remote user or if current_password doesn't match the
user's stored password.

For other errors, refer to RBAC service errors on page 318.

POST /command/validate-password
Check whether a password is valid. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using one or both of these keys:

• password: A password string to validate for compliance with password format and complexity requirements.
• reset-token: If your request uses certificate authentication, you can provide a password reset token to identify

the user for password validation. You can get password reset tokens from the POST /users/<uuid>/password/reset
on page 363 endpoint. Otherwise you can use token-based authentication (as an X-Authentication header) to
identify the relevant user.

Use this body format for a token-authenticated request:

{ "password": <password>}

Use this body format is for a certificate-authenticated request:

{
 "password": <password>,
 "reset-token": <reset_token>
}

For example, this request uses token-based authentication to identify a user:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/validate-password" \
-H 'Content-Type: application/json' \
-H "X-Authentication: $(puppet access show)" \
-d '{ "password": "password" }'

Response format

If the password is valid, the endpoint returns 200 OK and { "valid": true }.

If the password isn’t valid, the endpoint returns 200 OK and information about why the password is not valid. For
example:

{
 "valid": false,
 "failures": [
 {

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 366

 "rule-identifier": "letters-required",
 "friendly-error": "Passwords must have at least 2 letters."
 }
]
}

If the request has formatting issues, the endpoint returns 400 Bad Request.

For other errors, refer to RBAC service errors on page 318.

POST /command/validate-login
Check whether a user name (login) is valid. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object containing the login key, which specifies the user name to validate. For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/validate-login" \
-H 'Content-Type: application/json' \
-H "X-Authentication: $(puppet-access show)" \
-d '{ "login": "1" }'

Response format

If the user name is valid, the endpoint returns 200 OK and { "valid": true }.

If the user name is invalid, the endpoint returns 200 OK and information about why the username is not valid. For
example:

{
 "valid": false,
 "failures": [
 {
 "rule-identifier": "login-minimum-length",
 "friendly-error": "The login for the user must be a minimum of 3
 characters."
 }
]
}

If the request has formatting issues, the endpoint returns 400 Bad Request.

For other errors, refer to RBAC service errors on page 318.

Disclaimer endpoints
Use these endpoints to modify the disclaimer text that appears on the Puppet Enterprise (PE) console login page.

You can use a disclaimer.txt file to Create a custom login disclaimer on page 270; however, the disclaimer
endpoints allow you to configure your custom login disclaimer message without needing to reference a specific file
location on disk.

Important: These endpoints do not modify or interact with disclaimer.txt files.

If you provide disclaimer text through both a disclaimer.txt file and POST /command/config/set-
disclaimer, PE uses the set-disclaimer text.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 367

GET /config/disclaimer
Retrieve the current disclaimer text, as specified by POST /command/config/set-disclaimer. This
endpoint does not retrieve the contents of any disclaimer.txt file.

Request format

You must have the configuration:view_disclaimer permission to use this endpoint.

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v1/config/
disclaimer" -H "X-Authentication: $(puppet access show)"

Response format

If POST /command/config/set-disclaimer on page 367 was previously used to specify disclaimer text, a well-
formed request returns 200 OK and the disclaimer text, such as:

{
 "disclaimer": "Not to be accessed by unauthorized users"
}

The endpoint return 404 Not Found if:

• You haven't specified disclaimer text with POST /command/config/set-disclaimer on page 367.
• Previously-specified text was removed with POST /command/config/remove-disclaimer on page 368.
• You've only used a disclaimer.txt file to Create a custom login disclaimer on page 270. The GET /

config/disclaimer endpoint doesn't check for the existence of a disclaimer.txt file, and it doesn't
return the contents of such a file.

If you lack permission to retrieve the disclaimer text, the response is 403 Not Permitted.

For other error responses, refer to RBAC service errors on page 318.

Related information
User permissions and user roles on page 272
The role in role-based access control (RBAC) refers to a system of user roles, which are assigned to user groups and
the users in those groups. Those roles contain permissions, which define what a user with that role can or can't do
within Puppet Enterprise (PE).

POST /command/config/set-disclaimer
Change the disclaimer text that is on the PE console login page.

Request format

This endpoint requires authentication, and the requesting user must have the
configuration:edit_disclaimer permission.

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object containing the disclaimer key, which accepts string-formatted disclaimer text. For
example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/config/set-disclaimer" \
-H 'Content-Type: application/json' \
-H "X-Authentication: $(puppet access show)" \
-d '{ "disclaimer": "Unauthorized access prohibited." }' \

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 368

Tip: To remove the disclaimer text, use POST /command/config/remove-disclaimer on page 368. Setting
disclaimer to an empty string or whitespace-only string causes the Disclaimer banner to be present, but empty,
on the console login page.

Response format

A successful request returns 204 No Content.

Error responses

Returns 403 Not Permitted if you don't have the configuration:edit_disclaimer permission.

Returns 400 Bad Request if the disclaimer value is not a string.

For other errors, refer to RBAC service errors on page 318.

Related information
User permissions and user roles on page 272
The role in role-based access control (RBAC) refers to a system of user roles, which are assigned to user groups and
the users in those groups. Those roles contain permissions, which define what a user with that role can or can't do
within Puppet Enterprise (PE).

POST /command/config/remove-disclaimer
Remove the disclaimer text set through POST /command/config/set-disclaimer.

Request format

This endpoint requires authentication, and the requesting user must have the
configuration:edit_disclaimer permission.

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v1/
command/config/remove-disclaimer" \
-H "X-Authentication: $(puppet access show)"

Response format

A successful request returns 204 No Content and the Disclaimer banner is removed from the PE console login
page.

However, if you had previously used a disclaimer.txt file to Create a custom login disclaimer on page 270,
and the disclaimer.txt file still exists in the appropriate location, then PE falls back to this file and displays the
content of this file on the console login page.

Error responses

Requests must contain the Content-Type: application/json header.

Returns 403 Not Permitted if you don't have the configuration:edit_disclaimer permission.

For other errors, refer to RBAC service errors on page 318.

Related information
User permissions and user roles on page 272

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 369

The role in role-based access control (RBAC) refers to a system of user roles, which are assigned to user groups and
the users in those groups. Those roles contain permissions, which define what a user with that role can or can't do
within Puppet Enterprise (PE).

RBAC API v2
The role-based access control (RBAC) API v2 service enables you to fetch information about users, create groups,
revoke tokens, validate tokens, and get information about your LDAP directory service.

The v2 endpoints either extend or replace some RBAC API v1 on page 321 endpoints.

• Users endpoints on page 369
With role-based access control (RBAC), you can manage local users and remote users (created on a directory
service). Use the RBAC API v2 GET /users endpoint to get lists of users and information about users.
• User group endpoints on page 372
User groups allow you to quickly assign one or more roles to a set of users by placing all relevant users in the group.
This is more efficient than assigning roles to each user individually. The v2 POST /groups endpoint has additional
optional parameters you can use when creating groups.
• Tokens endpoints on page 373
Authentication tokens control access to PE services. Use the v2 tokens endpoints to revoke and validate tokens.
• LDAP endpoints on page 377
Use the v2 ldap endpoints to get information about your LDAP directory service connections.

Related information
API index on page 30
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Users endpoints
With role-based access control (RBAC), you can manage local users and remote users (created on a directory
service). Use the RBAC API v2 GET /users endpoint to get lists of users and information about users.

Use the RBAC API v1 Users endpoints on page 321 for other user functions, including creating, editing, deleting,
revoking, and reinstating users.

Users endpoints keys
These keys appear in RBAC API v2 GET /users endpoint responses:

Key Definition Example

id A UUID string identifying the user. "4fee7450-54c7-11e4-916c-0800200c9a66"

login A string used by the user to log in.
Must be unique among users and
groups.

"admin"

email An email address string. Not
currently utilized by any code in PE.

"hill@example.com"

display_name The user's name as a string. "Kalo Hill"

role_ids An array of role IDs indicating roles
to directly assign to the user. An
empty array is valid.

[3 6 5]

is_group

is_remote

is_superuser

These flags indicate whether a user
is remote and/or a super user. For all
users, is_group is always false.

true/false

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 370

Key Definition Example

is_revoked Setting this flag to true prevents
the user from accessing any routes
until the flag is unset or the user's
password is reset via token.

true/false

last_login A timestamp in UTC-based
ISO-8601 format (YYYY-MM-
DDThh:mm:ssZ) indicating when
the user last logged in. If the user has
never logged in, this value is null.

"2014-05-04T02:32:00Z"

inherited_role_ids (remote
users only)

An array of role IDs indicating which
roles a remote user inherits from their
groups.

[9 1 3]

group_ids (remote users only) An array of UUIDs indicating which
groups a remote user inherits roles
from.

["3a96d280-54c9-11e4-916c-0800200c9a66"]

identity_provider_id The UUID of the LDAP identity
provider associated with the user.

"4522ca7e-5623-11ed-
bdc3-0242ac120002"

GET /users
Fetches all users, both local and remote (including the superuser) with options for filtering and sorting response
content. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v2/users" -H "X-
Authentication:$(puppet-access show)"

The default request fetches all users (limited to 500 records, sorted by subject ID in ascending order). You can append
these optional query parameters to modify the response:

• offset: Specify a zero-indexed integer to retrieve user records starting from the offset point. The default is 0.
This parameter is useful for omitting initial, irrelevant results, such as test data.

• limit: Specify a positive integer to limit the number of user records returned. The default is 500 records.
• order: Specify, as a string, whether records are returned in ascending (asc) or descending (desc) order. The

default is asc. The order_by parameter specifies the basis for sorting.
• order_by: Specify, as a string, what information to use to sort the records. Choose from login, email,

display_name, last_login, id, or creation_date. The default is id.
• filter: Specify a case-insensitive partial string. This parameter queries the email, display_name, and

login fields. For example, filter="example.com" searches for users with example.com in any of those
three fields.

• include_roles: Specify whether you want the response to include role information. The default is false.

To include parameters in your request, start with:

curl "https://$(puppet config print server):4433/rbac-api/v2/users?"

Then, add each parameter separated by an ampersand, such as:

limit=400&order="desc"

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 371

Enclose string values in double quotes. To form a complete request, make sure to close the single quote after your last
parameter and include authentication details. For example:

curl "https://$(puppet config print server):4433/rbac-api/v2/users?
limit=400&offset=1&order="desc"&order_by="last_login"&filter="example.com"&include_roles=true"
 \
-H "X-Authentication:$(puppet-access show)"

Response format

The response is a JSON array of user objects followed by a copy of the request parameters. User objects contain
role information only if you put include_roles=true in the request. For example, this response includes three
records with role information:

{
 "users": [
 {
 "id": "fe62d770-5886-11e4-8ed6-0800200c9a66",
 "login": "Kalo",
 "email": "kalohill@example.com",
 "display_name": "Kalo Hill",
 "role_ids": [1, 2, 3],
 "is_group": false,
 "is_remote": false,
 "is_superuser": true,
 "is_revoked": false,
 "last_login": "2014-05-04T02:32:00Z"
 },
 {
 "id": "07d9c8e0-5887-11e4-8ed6-0800200c9a66",
 "login": "Jean",
 "email": "jeanjackson@example.com",
 "display_name": "Jean Jackson",
 "role_ids": [2, 3],
 "inherited_role_ids": [5],
 "is_group": false,
 "is_remote": true,
 "is_superuser": false,
 "group_ids": [
 "2ca57e30-5887-11e4-8ed6-0800200c9a66"
],
 "is_revoked": false,
 "last_login": "2014-05-04T02:32:00Z"
 },
 {
 "id": "1cadd0e0-5887-11e4-8ed6-0800200c9a66",
 "login": "Amari",
 "email": "amariperez@example.com",
 "display_name": "Amari Perez",
 "role_ids": [2, 3],
 "inherited_role_ids": [5],
 "is_group": false,
 "is_remote": true,
 "is_superuser": false,
 "group_ids": [
 "2ca57e30-5887-11e4-8ed6-0800200c9a66"
],
 "is_revoked": false,
 "last_login": "2014-05-04T02:32:00Z"
 }
],
 "pagination": {

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 372

 "total": 1,
 "limit": 400,
 "offset": 1,
 "order": "desc",
 "filter": "example.com",
 "order_by": "last_login"
 }
}

For information about user object keys, refer to Users endpoints keys on page 369. The pagination keys are
described in the Request format section, above.

For information about error responses, refer to RBAC service errors on page 318.

User group endpoints
User groups allow you to quickly assign one or more roles to a set of users by placing all relevant users in the group.
This is more efficient than assigning roles to each user individually. The v2 POST /groups endpoint has additional
optional parameters you can use when creating groups.

Use the v1 User groups endpoints on page 331 to perform other user group functions, such as getting information
about groups and deleting groups.

Remember: Group membership is determined by your directory service hierarchy. Therefore, local users (that exist
only in the PE console) can't be in directory groups. You'll need to use the Users endpoints on page 321 to manage
these users' roles.

POST /groups (deprecated)
Create a new remote directory user group. Authentication is required.

Important: This endpoint is deprecated. Instead, use POST /command/groups/create on page 333.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using the following keys:

• login: The name to assign to the group.
• role_ids: An array of role IDs defining the roles that you want to assign to users in this group. An empty array

might be valid, but users can't do anything in PE if they are not assigned to any roles.

The endpoint accepts a JSON body containing these keys:

Key Definition

login Required. Defines the group for an external IdP. This
could be an LDAP login or a SAML identifier for the
group.

role_ids Required. An array of role IDs defining the roles that
you want to assign to users in this group. An empty array
might be valid, but users can't do anything in PE if they
are not assigned to any roles.

display_name Optional. Specify a name for the group as you want it
to appear in the PE console. If the group you're creating
originates from an LDAP group, the LDAP group's
Display name setting overrides this parameter.

identity_provider_id Optional. Specify the UUID of an identity provider
(SAML or LDAP) to bind to the group.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 373

Key Definition

validate Optional. A Boolean specifying whether you want to
validate if the group exists on the LDAP server prior
to creating it. The default is true. Set this to false
if you don't want to validate the group's existence in
LDAP.

For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v2/groups"
 \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{
 "login": "augmentators",
 "role_ids": [1,2,3],
 "display_name": "The Augmentators"
 "idnetity_provider_id": "0e1a11bd-658f...-732887"
 }'

Response format

If the new remote group is created successfully, the endpoint returns 303 See Other with a location header
pointing to the new resource.

Error response

Returns 409 Conflict if the new group conflicts with an existing group.

For other errors, refer to RBAC service errors on page 318.

Tokens endpoints
Authentication tokens control access to PE services. Use the v2 tokens endpoints to revoke and validate tokens.

You can use the v1 Tokens endpoints on page 348 to create tokens.

Related information
Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

DELETE /tokens
Use this endpoint to revoke one or more authentication tokens, ensuring the tokens can no longer be used with RBAC
to access PE services.

Request format

When Forming RBAC API requests on page 316 to this endpoint, your request must use at least one of these query
parameters to specify the tokens you want to revoke:

• revoke_tokens: Supply a list of complete authentication tokens you want to revoke. Any user can revoke any
token by supplying the complete token in this parameter.

• revoke_tokens_by_usernames: Supply a list of user names identifying users whose tokens you want to
revoke. To revoke tokens by user name, the user making the request must have the Users Revoke permission for
the specified users.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 374

• revoke_tokens_by_labels: Supply a list of labels identifying tokens to revoke. To be revoked in this
manner, the tokens must belong to the requesting user and have been assigned a token-spcific label.

• revoke_tokens_by_ids: Supply a list of UUIDs for users whose tokens you want to revoke. To revoke
tokens by user name, the user making the request must have the Users Revoke permission for the specified users.

You can append the parameters to the URI path, supply a JSON-encoded body, or both.

For example, this request uses an appended query parameter.

curl -X DELETE "https://$(puppet config print server):4433/rbac-api/v2/
tokens?revoke_tokens_by_usernames=<USER_NAME>,<USER_NAME>" \
-H "X-Authentication:$(puppet-access show)"

When supplying parameters in a JSON-encoded body, specify the content type as application/json, format the
entire body as a JSON object, and format each value list as an array. For example:

curl -X DELETE "https://$(puppet config print server):4433/rbac-api/v2/
tokens" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{"revoke_tokens": ["<TOKEN>", "TOKEN"],
 "revoke_tokens_by_labels": ["Workstation Token", "VPS Token"],
 "revoke_tokens_by_usernames": ["<USER_NAME>", "<USER_NAME>"]}'

When supplying multiple values, use commas to separate tokens, labels, user names, and IDs.

If you supply values by appending parameters and in a JSON body, the values from the both sources are combined.

It is not an error to specify the same token using multiple means. For example, you could supply the entire token to
the revoke_tokens parameter and also include its label in the value of revoke_tokens_by_labels.

All operations on this endpoint are idempotent. It is not an error to revoke the same token multiple times.

Response format

The server sends a 204 No Content response if all operations succeed.

Error responses

In the case of an error, malformed input, or bad request data, the endpoint still attempts to revoke as many tokens
as possible. This means it's possible to encounter multiple error conditions in a single request while some requested
operations succeed. For example, you would get multiple errors if a request included some malformed user names and
a database error occurred when trying to revoke the well-formed user names.

Error codes include:

• 500 Application Error: There was a database error when trying to revoke tokens.
• 403 Forbidden: The user lacks permission to revoke one of the supplied user names and no database error

occurred.
• 400 Malformed: One of these conditions is true:

• At least one of the tokens, user names, labels, or IDs is malformed.
• At least one of the user names or IDs does not exist in the RBAC database.
• The request contains no parameters or values to revoke.
• The request contains illegal parameters.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 375

In the error response, the msg key contains information about encountered errors and either No tokens were
revoked or All other tokens were successfully revoked, depending on whether any operations
were successful. For example:

"msg": "The following user does not exist: FormerEmployee. All other tokens
 were successfully revoked."

The error response also returns unprocessed or erroneous values in the details key in the error response. For
example, this response had one failed operation and succeeded in all other operations:

{"kind": "malformed-request",
 ,
 "details": {"malformed_tokens": [],
 "malformed_labels": [],
 "malformed_usernames": [],
 "malformed_ids": [],
 "nonexistent_usernames": ["FormerEmployee"],
 "permission_denied_usernames": [],
 "permission_denied_ids": [],
 "unrecognized_parameters": [],
 "permission_denied_usernames": []
 "unrecognized_parameters": []
 "other_tokens_revoked": true}}

Error categories include:

• malformed_tokens, malformed_usernames, malformed_labels, and malformed_ids: Contain
any values from the request that aren't properly formatted as tokens, user names, labels, or UUIDs.

• nonexistent_usernames: Contains any value from the revoke_tokens_by_usernames parameter
that doesn't match an existing user's user name.

• permission_denied_usernames and permission_denied_ids: The requesting user doesn't have
permission to revoke tokens for users identified in these arrays.

• unrecognized_parameters: The request contained an invalid or malformed parameter.

The other_tokens_revoked Boolean indicates whether any non-erroneous values were successfully revoked.

For more information about RBAC API errors and errors not described here, refer to RBAC service errors on page
318.

DELETE /tokens/<token>
Use this endpoint to revoke a single token, ensuring that it can no longer be used with RBAC. Authentication is
required.

Request format

Only admins or API users can use this endpoint.

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication and
a single token specified in the URI path. For example:

curl -X DELETE "https://$(puppet config print server):4433/rbac-api/v2/
tokens/<TOKEN>" \
-H "X-Authentication:$(puppet-access show)"

Tip: This endpoint is equivalent to using the DELETE /tokens on page 373 endpoint with the revoke_tokens
parameter and a single token value. If you're not an admin, try the DELETE /tokens route for revoking tokens.

Response format

The server returns 204 No Content if the revocation was successful.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 376

Error responses

Error response are similar to DELETE /tokens on page 373 error responses, except that only one token is
processed.

POST /auth/token/authenticate
Use this endpoint to exchange a token for a map representing an RBAC subject and associated token data.
Authentication isn't required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the content type is application/json. The
body must be a JSON object using these keys:

• token: An authentication token
• update_last_activity?: A Boolean indicating whether you want a successful request to update the token's

last_active timestamp.

For example:

curl -X POST "https://$(puppet config print server):4433/rbac-api/v2/auth/
token/authenticate" \
-H "X-Authentication:$(puppet-access show)" \
-H "Content-type: application/json" \
-d '{
 "token": "<TOKEN>",
 "update_last_activity?": false
 }'

Response format

A successful request returns a 200 OK response and JSON object representing the RBAC subject and associated
token data, such as:

{
 "description":null,
 "creation":"YYYY-MM-DDT22:24:30Z",
 "email":"franz@kafka.com",
 "is_revoked":false,
 "last_active":"YYYY-MM-DDT22:24:31Z",
 "last_login":"YYYY-MM-DDT22:24:31.340Z",
 "expiration":"YYYY-MM-DDT22:29:30Z",
 "is_remote":false,
 "client":null,
 "login":"franz@kafka.com",
 "is_superuser":false,
 "label":null,
 "id":"c84bae61-f668-4a18-9a4a-5e33a97b716c",
 "role_ids":[1, 2, 3],
 "user_id":"c84bae61-f668-4a18-9a4a-5e33a97b716c",
 "timeout":null,
 "display_name":"Franz Kafka",
 "is_group":false
}

For information about keys describing the user, refer to Users endpoints keys on page 322. For information about
keys describing the token, refer to Tokens endpoints keys on page 348.

Error responses

Invalid requests return these errors:

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 377

• 400 invalid-token: The provided token was either tampered with or could not be parsed.
• 403 token-revoked: The provided token has been revoked.
• 403 token-expired: The token has expired and is no longer valid.
• 403 token-timed-out: The token has timed out due to inactivity.

For other errors, refer to RBAC service errors on page 318.

LDAP endpoints
Use the v2 ldap endpoints to get information about your LDAP directory service connections.

Use the v1 LDAP endpoints to test and configure LDAP connections.

GET /ldap
Get details of configured LDAP connections. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication, for
example:

curl "https://$(puppet config print server):4433/rbac-api/v2/ldap" -H "X-
Authentication:$(puppet-access show)"

Response format

A successful request returns an array of objects in which each object represents one LDAP server's External directory
settings on page 286. For example, this response contains information for one LDAP server:

[
 {
 "help_link": "",
 "ssl": false,
 "group_name_attr": "name",
 "group_rdn": "ou=groups",
 "connect_timeout": 10,
 "user_display_name_attr": "*",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.internal",
 "base_dn": "dc=glauth,dc=com",
 "user_lookup_attr": "cn",
 "port": 3893,
 "login": "cn=serviceuser,ou=svcaccts,dc=glauth,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "id": "e97188aa-9573-413b-945e-07f5f261613e",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "ldap.internal",
 "search_nested_groups": true,
 "start_tls": false
 }
]

You must have the directory_service:edit:* permission to get complete responses. Otherwise, responses
are limited to the id and display_name, for example:

[
 {

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 378

 "id": "e97188aa-9573-413b-945e-07f5f261613e",
 "display_name": "ldap.internal"
 }
]

An empty array means there are no LDAP connections configured.

For error responses, refer to RBAC service errors on page 318.

GET /ldap/<id>
Get details for a specific LDAP connection. Authentication is required.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication and
a specific LDAP connection ID, for example:

curl "https://$(puppet config print server):4433/rbac-api/v2/ldap/
e97188aa-9573-413b-945e-07f5f261613e" \
-H "X-Authentication:$(puppet-access show)"

You can use GET /ldap on page 377 to get the id.

Response format

A successful request returns an object containing the connection's External directory settings on page 286. For
example:

{
 "help_link": "",
 "ssl": false,
 "group_name_attr": "name",
 "group_rdn": "ou=groups",
 "connect_timeout": 10,
 "user_display_name_attr": "*",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.internal",
 "base_dn": "dc=glauth,dc=com",
 "user_lookup_attr": "cn",
 "port": 3893,
 "login": "cn=serviceuser,ou=svcaccts,dc=glauth,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "id": "e97188aa-9573-413b-945e-07f5f261613e",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "ldap.internal",
 "search_nested_groups": true,
 "start_tls": false
}

You must have the directory_service:edit:* permission to get all keys. Otherwise, responses are limited to
the id and display_name, for example:

{
 "id": "e97188aa-9573-413b-945e-07f5f261613e",
 "display_name": "ldap.internal"
}

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 379

For error responses, refer to RBAC service errors on page 318.

GET /ds (deprecated)
Get information about your directory service. Authentication is required.

Important: GET /ds is deprecated. Instead, use GET /ldap on page 377.

Request format

When Forming RBAC API requests on page 316 to this endpoint, the request is a basic call with authentication,
such as:

curl "https://$(puppet config print server):4433/rbac-api/v2/ds" -H "X-
Authentication:$(puppet-access show)"

Response format

Returns an array of objects, where each object represents a currently-configured LDAP server. For example, this
response contains information for one LDAP server:

[
 {
 "id": "6e33eb78-820f-463a-a65c-e1ef291d59a8",
 "help_link": "https://help.example.com",
 "ssl": true,
 "group_name_attr": "name",
 "group_rdn": null,
 "connect_timeout": 15,
 "user_display_name_attr": "cn",
 "disable_ldap_matching_rule_in_chain": false,
 "ssl_hostname_validation": true,
 "hostname": "ldap.example.com",
 "base_dn": "dc=example,dc=com",
 "user_lookup_attr": "uid",
 "port": 636,
 "login": "cn=ldapuser,ou=service,ou=users,dc=example,dc=com",
 "group_lookup_attr": "cn",
 "group_member_attr": "uniqueMember",
 "ssl_wildcard_validation": false,
 "user_email_attr": "mail",
 "user_rdn": "ou=users",
 "group_object_class": "groupOfUniqueNames",
 "display_name": "Acme Corp Ldap server",
 "search_nested_groups": true,
 "start_tls": false
 }
]

Returns an empty array if no LDAP servers are configured.

You must have the directory_service:edit permission to view all fields; otherwise, only the display name
of the directory server is returned.

For information about each setting, refer to External directory settings on page 286.

For errors, refer to RBAC service errors on page 318.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 380

Activity service API
The activity service records changes to role-based access control (RBAC) entities, such as users, directory groups,
and user roles. Use the activity service API to query event data.

• Forming activity service API requests on page 380
Token-based authentication is required to access the activity service API. You can authenticate requests with user
authentication tokens or allowed certificates.
• Event types reported by the activity service on page 381
Activity reporting provides a useful audit trail for actions that change role-based access control (RBAC) entities, such
as users, directory groups, and user roles.
• Events endpoints on page 384
Use the events endpoints to retrieve activity service events.

Related information
API index on page 30
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Forming activity service API requests
Token-based authentication is required to access the activity service API. You can authenticate requests with user
authentication tokens or allowed certificates.

RBAC API requests must include a URI path following the pattern:

https://<DNS>:4433/activity-api/<VERSION>/<ENDPOINT>

The variable path components derive from:

• DNS: Your PE console host's DNS name. You can use localhost, manually enter the DNS name, or use a
puppet command (as explained in Using example commands on page 25).

• VERSION: Either v1 or v2, depending on the endpoint.
• ENDPOINT: Either events or events.csv, depending on the endpoint.

For example, you could use any of these paths to call the GET /v1/events on page 384 endpoint:

https://$(puppet config print server):4433/activity-api/v1/events
https://localhost:4433/activity-api/v1/events
https://puppet.example.dns:4433/activity-api/v1/events

To form a complete curl command, you need to provide appropriate curl arguments, authentication, and you might
need to supply additional parameters specific to the endpoint you are calling.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Token authentication

You can use token or certificate authentication with the activity service API.

For instructions on generating, configuring, revoking, and deleting authentication tokens in PE, go to Token-based
authentication on page 308.

To use a token in an request, you can use puppet-access show, such as:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/activity-api/v1/events"

curl --header "$auth_header" "$uri"

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 381

Or you can use the actual token, such as:

auth_header="X-Authentication: <TOKEN>"
uri="https://$(puppet config print server):4433/activity-api/v1/events"

curl --header "$auth_header" "$uri"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Allowed certificate authentication

You can authenticate requests with a certificate listed in RBAC's certificate allowlist, which is located at:

/etc/puppetlabs/console-services/rbac-certificate-allowlist

Important: If you edit the rbac-certificate-allowlist file, you must reload the pe-console-
services service for your changes to take effect. To reload the service run: sudo service pe-console-
services reload

To use a certificate in a curl command, include the allowed certificate name (which must match a name in the rbac-
certificate-allowlist file) and, if necessary, the private key. For example:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/activity-api/v1/events"

curl --cert "$cert" --cacert "$cacert" --key "$key" "$uri"

Tip: You do not need to use an agent certificate for authentication. You can use the puppet cert generate
command to create a certificate to use specifically with the activity service API.

Related information
Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

Event types reported by the activity service
Activity reporting provides a useful audit trail for actions that change role-based access control (RBAC) entities, such
as users, directory groups, and user roles.

User and authentication token events

In the PE console, you can view records related to local and remote users on the Activity tab of the user's page.
Remote user pages only show the Role membership and Revocation events. All user pages can show authentication
token events.

Event Description Example

Creation A new local user is created. An initial
value for each metadata field is
reported.

Created with login set to
"jean".

Metadata Any change to the login,
display name, or email keys.

Display name set to "Jean
Jackson".

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 382

Event Description Example

Role membership A user is added or removed from a
role. The display name and user ID
of the affected user are displayed.
These events are also shown on the
Activities tab of the role's page.

User Jean Jackson
(973c0cee-5ed3-11e4-
aa15-123b93f75cba) added
to role Operators.

Authentication The user logged in. The display name
and user ID of the affected user are
displayed.

User Jean Jackson
(973c0cee-5ed3-11e4-
aa15-123b93f75cba) logged
in.

Password reset token A token is generated to reset the
user's password. The display name
and user ID of the affected user are
shown.

A password reset token
was generated for
user Jean Jackson
(973c0cee-5ed3-11e4-
aa15-123b93f75cba).

Password changed A user successfully changed their
password with a password reset
token.

Password reset for
user Jean Jackson
(973c0cee-5ed3-11e4-
aa15-123b93f75cba).

Revocation A user is revoked or reinstated. User revoked.

The user page also reports these authentication token events:

Event Description Example

Creation A token is generated for the user. The
Creation event appears on the page
of the user who owns the token.

Amari Perez (c84bae61-
f668-4a18-9a4a-5e33a97b716c)
generated an
authentication token.

Direct revocation An individual token was revoked.
This event appears on the page of the
user who requested the revocation,
not the user whose token was
revoked.

Administrator (42bf351c-
f9ec-40af-84ad-
e976fec7f4bd) revoked
an authentication
token belonging to
Amari Perez (c84bae61-
f668-4a18-9a4a-5e33a97b716c),
issued at
2016-02-17T21:53:23.000Z
and expiring at
2016-02-17T21:58:23.000Z.

Revocation by username Revoked all tokens belonging to
a specific user name. This event
appears on the page of the user who
requested the revocation, not the user
whose token was revoked.

Administrator (42bf351c-
f9ec-40af-84ad-
e976fec7f4bd) revoked
all authentication
tokens belonging to
Amari Perez (c84bae61-
f668-4a18-9a4a-5e33a97b716c).

Directory user group events

These events are listed in the console on the Activity tab of the user group's page.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 383

Event Description Example

Importation A directory group is imported. The
initial value for each metadata field is
reported (these cannot be updated in
the console).

Created with display name
set to "Engineers".

Role membership A group is added to or removed
from a role. These events are also
shown on the role's page. The group's
display name and ID are provided.

Group Engineers
(7dee3acc-5ed4-11e4-
aa15-123b93f75cba) added
to role Operators.

User role events

These events are listed in the console on the Activity tab of the role's page.

Event Description Example

Metadata A role's display name or
description changes.

Description set to
"Sysadmins with full
privileges for node
groups."

Members A group is added to or removed from
a role. The display name and ID of
the user or group are provided. These
events are also displayed on the user's
or group's page.

User Kalo Hill
(76483e62-5ed4-11e4-
aa15-123b93f75cba)
removed from role
Operators.

Permissions A permission is added to or removed
from a role.

Permission
users:edit:76483e62-5ed4-11e4-
aa15-123b93f75cba added
to role Operators.

The activity service also records a Delete event when a role is removed. However, information about Delete events
are only available through the activity service API Events endpoints on page 384.

Orchestrator events

These events are listed in the console on the Activity tab of the node's page.

Event Description Example

Agent runs Puppet ran as part of an orchestration
job. This includes Puppet runs started
from the orchestrator or the PE
console.

Request Puppet agent run
on node.example.com via
orchestrator job 12.

Task runs Tasks ran as part of orchestration
jobs that were set up in the console or
on the command line.

Request echo task on
neptune.example.com via
orchestrator job 9,607

Directory service settings events

These events are not exposed in the console. You must use the activity service API Events endpoints on page 384
to get information about these events.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 384

Event Description Example

Update settings (except password) A setting changed in the directory
service settings, other than the
password.

User rdn set to
"ou=users".

Update directory service password The directory service password
changed.

Password updated.

Events endpoints
Use the events endpoints to retrieve activity service events.

GET /v1/events
Fetch information about events the activity service tracks. Web session authentication is required.

Request format

When Forming activity service API requests on page 380 to this endpoint, the request is a basic call with
authentication and one or more query parameters, such as:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/activity-api/v1/events?
service_id=classifier"

curl --header "$auth_header" "$uri"

The following parameters are supported. You must append the service_id parameter. Other parameters are
optional or conditionally required.

Parameter Value

service_id Required. The ID of the service you want to query.

subject_type Limit the activity query to a specific subject type (which
is the actor of the activity). Use subject_id to further
limit the query to specific IDs within the specified type.
For example, you can query all user activities or specific
users' activities.

subject_id A comma-separated list of IDs associated with the
defined subject type. Optional, but, if supplied, then
subject_type is required.

object_type Limit the activity query to a specific object type (which
is the target of activities). Use object_id to further
limit the query to specific IDs within the specified type.

object_id A comma-separated list of IDs associated with the
defined object type. Optional, but, if supplied, then
object_type is required.

offset Specify a zero-indexed integer to retrieve activity
records starting from the offset point. If omitted, the
default is 0. This parameter is useful for omitting initial,
irrelevant results, such as test data.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 385

Parameter Value

order Specify, as a string, whether records are returned in
ascending (asc) or descending (desc) order. If omitted,
the default is desc. Sorting is based on the activity
record's submission time.

limit Specify a positive integer to limit the number of user
records returned. If omitted, the default is 1000 events.

after_service_commit_time Specify a timestamp in ISO-8601 format if you want
to fetch results after a specific service commit time.
Optional.

Tip: For more nuanced queries and additional query parameters, use the GET /v2/events on page 388 endpoint.

Response format

The response contains a series of JSON objects representing event records. The response also reports the total-
rows, which represents the total number of records matching the supplied query.

For example, this response was based on a request that queried the classifier service (service_id=classifier),
and events performed by a specific user (subject_type=users&subject_id=kai):

{
 "commits": [
 {
 "object": {
 "id": "415dfsvdf-dfgd45dfg-4dsfg54d",
 "name": "Default Node Group"
 },
 "subject": {
 "id": "dfgdfc145-545dfg54f-fdg45s5s",
 "name": "Kai Evans"
 },
 "timestamp": "2014-06-24T04:00:00Z",
 "events": [
 {
 "message": "Create Node"
 },
 {
 "message": "Create Node Class"
 }
]
 }
],
 "total-rows": 1
}

As another example, this response was based on a request that queried the classifier
service (service_id=classifier), and events that targeted a specific node group
(object_type=node_groups&object_id=2):

{
 "commits": [
 {
 "object": {
 "id": "415dfsvdf-dfgd45dfg-4dsfg54d",
 "name": "Default Node Group"
 },

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 386

 "subject": {
 "id": "dfgdfc145-545dfg54f-fdg45s5s",
 "name": "Kai Evans"
 },
 "timestamp": "2014-06-24T04:00:00Z",
 "events": [
 {
 "message": "Create Node"
 },
 {
 "message": "Create Node Class"
 }
]
 }
],
 "total-rows": 1
}

GET /v1/events.csv
Fetch information about events the activity service tracks in a flat CSV format. Token-based authentication is
required.

Request format

When Forming activity service API requests on page 380 to this endpoint, the request is a basic call with
authentication and one or more query parameters, such as:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/activity-api/v1/events.csv?
service_id=classifier&limit=50"

curl --header "$auth_header" "$uri"

The following parameters are supported. You must append the service_id parameter. Other parameters are
optional or conditionally required.

Parameter Definition

service_id Required. The ID of the service you want to query.

subject_type Limit the activity query to a specific subject type (which
is the actor of the activity). Use subject_id to further
limit the query to specific IDs within the specified type.
For example, you can query all user activities or specific
users' activities.

subject_id A comma-separated list of IDs associated with the
defined subject type. Optional, but, if supplied, then
subject_type is required.

object_type Limit the activity query to a specific object type (which
is the target of activities). Use object_id to further
limit the query to specific IDs within the specified type.

object_id A comma-separated list of IDs associated with the
defined object type. Optional, but, if supplied, then
object_type is required.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 387

Parameter Definition

offset Specify a zero-indexed integer to retrieve activity
records starting from the offset point. If omitted, the
default is 0. This parameter is useful for omitting initial,
irrelevant results, such as test data.

order Specify, as a string, whether records are returned in
ascending (asc) or descending (desc) order. If omitted,
the default is desc. Sorting is based on the activity
record's submission time.

limit Specify a positive integer to limit the number of user
records returned. If omitted, the default is 1000 events.

Tip: For more nuanced queries and additional query parameters, use the GET /v2/events.csv on page 392
endpoint.

Response format

The response contains all returned records in a flat CSV format. For example:

Submit Time,Subject Type,Subject Id,Subject Name,Object Type,Object
 Id,Object Name,Type,What,Description,Message
YYYY-MM-DD
 18:52:27.76,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,b55c209d-
e68f-4096-9a2c-5ae52dd2500c,web_servers,delete,node_group,delete_node_group,"Deleted
 the ""web_servers"" group with id b55c209d-e68f-4096-9a2c-5ae52dd2500c"
YYYY-MM-DD
 18:52:02.391,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,b55c209d-
e68f-4096-9a2c-5ae52dd2500c,web_servers,create,node_group,create_node_group,"Created
 the ""web_servers"" group with id b55c209d-e68f-4096-9a2c-5ae52dd2500c"
YYYY-MM-DD
 18:52:02.391,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,b55c209d-
e68f-4096-9a2c-5ae52dd2500c,web_servers,edit,node_group_description,edit_node_group_description,"Changed
 the description to """""
YYYY-MM-DD
 18:52:02.391,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,b55c209d-
e68f-4096-9a2c-5ae52dd2500c,web_servers,edit,node_group_environment,edit_node_group_environment,"Changed
 the environment to ""production"""
YYYY-MM-DD
 18:52:02.391,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,b55c209d-
e68f-4096-9a2c-5ae52dd2500c,web_servers,edit,node_group_environment_override,edit_node_group_environment_override,Changed
 the environment override setting to false
YYYY-MM-DD
 18:52:02.391,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,b55c209d-
e68f-4096-9a2c-5ae52dd2500c,web_servers,edit,node_group_parent,edit_node_group_parent,Changed
 the parent to ec519937-8681-43d3-8b74-380d65736dba
YYYY-MM-DD
 00:41:18.944,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,ec519937-8681-43d3-8b74-380d65736dba,PE
 Orchestrator,edit,node_group_class_parameter,delete_node_group_class_parameter_puppet_enterprise::profile::orchestrator_use_application_services,"Removed
 the ""use_application_services"" parameter from the
 ""puppet_enterprise::profile::orchestrator"" class"
YYYY-MM-DD
 00:41:10.631,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,ec519937-8681-43d3-8b74-380d65736dba,PE
 Orchestrator,edit,node_group_class_parameter,add_node_group_class_parameter_puppet_enterprise::profile::orchestrator_use_application_services,"Added
 the ""use_application_services"" parameter to the
 ""puppet_enterprise::profile::orchestrator"" class"
YYYY-MM-DD
 20:41:30.223,users,6868e4af-2996-46c6-8e42-1ae873f8a0ba,kai.evens,node_groups,46e34005-28e4-4009-
bc48-4813221e9ffb,PE

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 388

 Agent,schedule_deploy,node_group,schedule_puppet_agent_on_node_group,Schedule
 puppet agent run on nodes in this group to be run at 2019-01-16T08:00:00Z

GET /v2/events
Fetches information about events the activity service tracks. Allows filtering through query parameters and supports
multiple objects for filtering results. Requires token-based authentication.

Request format

When Forming activity service API requests on page 380 to the /v2/events endpoint, you can provide multiple
optional parameters for filtering results. Parameters are either appended to the URI path or supplied in a JSON body.

You can append the following parameters to the URI path:

Parameter Definition

service_id The ID of the service you want to query. If omitted, all
services are queried.

offset Specify a zero-indexed integer to retrieve activity
records starting from the offset point. If omitted, the
default is 0. This parameter is useful for omitting initial,
irrelevant results, such as test data.

order Specify, as a string, whether records are returned in
ascending (asc) or descending (desc) order. If omitted,
the default is desc. Sorting is based on the activity
record's submission time.

limit Specify a positive integer to limit the number of user
records returned. If omitted, the default is 1000 events.

You can append additional parameters in the JSON-formatted query array. If you use the query array, you must
append all parameters with --data-urlencode, instead of appending them to the URL. Each item in the query
array is an object consisting of a single parameter and a value, or a pair of related parameters and values. Some
parameters can be repeated to specify multiple values in the same category. For example:

--data-urlencode '{"query": [{"object_id": "3", "object_type":"users"}, \
 {"subject_type": "node_groups"}, \
 {"subject_type": "roles"}, \
 {"start": "2019-11-01T21:32:39Z", "end":
 "2019-12-01T00:00:00Z"}]}'

Parameters you can use in the query array include:

Parameter Definition

subject_id Required. Limit the query to the subject (a user) with
the specified ID. If subject_type is omitted, the type
is assumed to be users. Currently, users is the only
available subject_type.

Place subject_id and subject_type within the
same object, separated by a comma.

subject_type Optional, but if included, you must also include
subject_id. Refer to subject_id for more
information.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 389

Parameter Definition

object_type Limit the activity query to a specific object type (which
is the target of activities).

Use object_id to further limit the query to a specific
ID within the specified type.

Place object_type within an object. If you also
specify object_id, place it within the same object,
separated by a comma.

object_id An ID associated with a defined object type. If supplied,
then object_type is required.

Place object_id and object_type within the same
object, separated by a comma.

ip_address Specifies an IP address associated with activities.
Supports partial string matching.

start Supply a timestamp in ISO-8601 format. Must be used
with end to fetch results within a specific service
commit time range.

Place start and end within the same object, separated
by a comma.

Tip: Whereas other parameters use or logic, the
timestamp parameters use and logic.

end Supply a timestamp in ISO-8601 format. Must be used
with start to fetch results within a specific service
commit time range.

Place start and end within the same object, separated
by a comma.

Tip: Whereas other parameters use or logic, the
timestamp parameters use and logic.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 390

For example, the following request returns 10 classifier events performed by two specific users from 01 November
2019 through 01 December 2019:

curl -k -X GET -H "X-Authentication: $(puppet-access show)" \
-G "https://$(puppet config print server):4433/activity-api/v2/events" \
--data-urlencode 'service_id=classifier' \
--data-urlencode 'limit=10' \
--data-urlencode 'query=[{"object_id": "db2caca1-
d6a4-4145-8240-9de9b4e654d1","object_type": "users"}, \
{"subject_id": "db2caca1-d6a4-4145-8240-9de9b4e654d1"}, \
{"object_id": "5d5ab481-7614-4324-bfea-e9eeb0b22ce8",
 "object_type":"users"}, \
{"subject_id": "5d5ab481-7614-4324-bfea-e9eeb0b22ce8"}, \
{"start": "2019-11-01T21:32:39Z", "end": "2019-12-01T00:00:00Z"}]}'

Tip: If you supply the JSON-fomatted query array, make sure your request uses -G, --data-urlencode, and
other such valid arguments to allow the GET request to convey the JSON content.

Response format

The response contains a series of JSON objects representing event records, as well as pagination information
based on the submitted query.

For example, a request to the classifier service (service_id=classifier) about actions performed on a specific
node group (query=[{"object_id": "415", "object_type":"node_group"}]) might produce a
response similar to:

{
 "commits": [
 {
 "objects": [{
 "id": "415dfsvdf-dfgd45dfg-4dsfg54d",
 "name": "Default Node Group"
 }],
 "subject": {
 "id": "dfgdfc145-545dfg54f-fdg45s5s",
 "name": "Kai Evans"
 },
 "timestamp": "2014-06-24T04:00:00Z",
 "events": [
 {
 "message": "Create Node"
 },
 {
 "message": "Create Node Class"
 }
]
 }
],
 "pagination": {"total": "1", "limit": "1000", "offset: "0"}
}

Responses containing information about orchestrator events, including Puppet agent runs and task runs, can return
these keys:

• start_timestamp: A timestamp in ISO-8601 format reporting the job start time.
• finish_timestamp: A timestamp in ISO-8601 format reporting the job end time.
• duration: The job's elapsed run time, in seconds.
• state: One of new, ready, running, stopping, stopped, finished, or failed.

Failed and in-progress jobs do not return the finish_timestamp or duration keys.

© 2024 Puppet, Inc., a Perforce company

pe | Managing access | 391

For example, this partial response contains information about one commit for a Puppet run:

{
 "objects": [
 {
 "id": "example.delivery.puppetlabs.net",
 "name": "example.delivery.puppetlabs.net",
 "type": "node"
 }
],
 "subject": {
 "id": "11bf351c-f1ec-11af-11ad-e111fec1a1bd",
 "name": "admin"
 },
 "timestamp": "2022-08-08T23:18:52Z",
 "ip_address": "<IP_ADDRESS>",
 "events": [
 {
 "description": "request_puppet_agent_on_node",
 "finish_timestamp": "2022-08-08T23:18:52Z",
 "start_timestamp": "2022-08-08T23:18:47Z",
 "name": "puppet agent",
 "type": "puppet_agent",
 "duration": 4.898,
 "state": "finished",
 "what": "node",
 "message": "Request \"puppet agent\" run on
 \"example.delivery.puppetlabs.net\" over \"pcp\" via orchestrator job
 \"11\""
 }
]
},

This partial response example contains information about one commit for a task run:

{
 "objects": [
 {
 "id": "example.delivery.puppetlabs.net",
 "name": "example.delivery.puppetlabs.net",
 "type": "node"
 }
],
 "subject": {
 "id": "11bf351c-f1ec-11af-11ad-e111fec1a1bd",
 "name": "admin"
 },
 "timestamp": "2022-08-08T23:19:01Z",
 "ip_address": "<IP_ADDRESS>",
 "events": [
 {
 "description": "request_facter_on_node",
 "finish_timestamp": "2022-08-08T23:19:00Z",
 "start_timestamp": "2022-08-08T23:18:58Z",
 "name": "req_facter",
 "type": "run_task",
 "duration": 2.324,
 "state": "finished",
 "what": "node",
 "message": "Request \"req_facter\" task on
 \"example.delivery.puppetlabs.net\" over \"pcp\" via orchestrator job
 \"12\""
 }

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 392

]
},

Related information
Event types reported by the activity service on page 381
Activity reporting provides a useful audit trail for actions that change role-based access control (RBAC) entities, such
as users, directory groups, and user roles.

GET /v2/events.csv
Fetch information about events the activity service tracks in a flat CSV format. Allows filtering through query
parameters and supports multiple objects for filtering results. Token-based authentication is required.

Request format

Requests to the /v2/events.csv endpoint are formed in the same way as the GET /v2/events on page 388
endpoint, except that the URI path contains events.csv instead of events. For example:

curl -k -X GET -H "X-Authentication: $(puppet-access show)" \
-G "https://$(puppet config print server):4433/activity-api/v2/events.csv" \
--data-urlencode 'service_id=classifier' \
--data-urlencode 'query=[{"object_id": "3","object_type": "users"}, \
{"start": "2019-11-01T21:32:39Z", "end": "2019-12-01T00:00:00Z"}]}'

Response format

The response contains all returned records in a flat CSV format. For example:

Submit Time,Subject Type,Subject Id,Subject Name,Object Type,Object
 Id,Object Name,Type,What,Description,Message,Ip Address
2014-07-17 13:08:09.985221,users,kai,Kai Evans,node_groups,2,Default Node
 Group,create,node,create_node,Create Node,123.123.123.123
2014-07-17 13:08:09.985221,users,kai,Kai Evans,node_groups,2,Default
 Node Group,create,node_class,create_node_class,Create Node
 Class,123.123.123.123

Monitoring and reporting

The Puppet Enterprise (PE) console has several tools you can use to monitor the current state of your infrastructure,
review the results of planned or unplanned changes to your Puppet code, view reports, and investigate problems. You
can find these tools under the Enforcement and Admin sections of the console's navigation menu.

• Monitoring infrastructure state on page 393
When nodes fetch their configurations from the primary server, they send back inventory data and a report of their
run. This information is summarized on the Status page in the console.
• Identify operational issues affecting infrastructure nodes on page 399
Puppet Enterprise (PE) includes the pe_status_check module, which performs regular automatic checks on
infrastructure nodes to identify issues that could cause disruption to PE operations. The Operational status page in
the console summarizes the result of status checks from the last puppet agent run and lists any operational issues
affecting infrastructure nodes in your installation.
• Viewing and managing packages on page 400
The Packages page in the console shows all packages in use across your infrastructure by name, version, and
provider, as well as the number of instances of each package version in your infrastructure. Use the Packages page
to quickly identify which nodes are impacted by packages you know are eligible for maintenance updates, security
patches, and license renewals. Package management is available for all agent nodes.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 393

• Value report on page 401
Value analytics give you insight into time and money saved by Puppet Enterprise (PE) automation. You can access
this information on the Value report page in the console or through the value API.
• Infrastructure reports on page 405
Each time Puppet runs on a node, it generates a report that provides information such as when the run took place,
any issues encountered during the run, and the activity of resources on the node. These reports are collected on the
Reports page in the console.
• Analyzing changes across Puppet runs on page 409
The Events page in the console shows a summary of activity in your infrastructure. You can analyze the details of
important changes, and investigate common causes behind related events. You can also examine specific class, node,
and resource events, and find out what caused them to fail, change, or run as no-op.
• Puppet Enterprise metrics and status monitoring on page 411
You can use Puppet Enterprise (PE) metrics and status monitoring for your own performance tuning or provide the
information to Support for troubleshooting.
• View and manage Puppet Server metrics on page 413
Puppet Server tracks performance and status metrics you can use to monitor server health and performance over time.
• Metrics API on page 423
Use the metrics API to query Java Management Extension (JMX) metrics related to Puppet Server and the
orchestrator service.
• Status API on page 429
You can use the status API to check the health of Puppet Enterprise (PE) components and services. It is useful for
automatically monitoring your infrastructure, removing unhealthy service instances from a load-balanced pool,
checking configuration values, or troubleshooting issues in PE.

Monitoring infrastructure state
When nodes fetch their configurations from the primary server, they send back inventory data and a report of their
run. This information is summarized on the Status page in the console.

The Status page displays the most recent run status of each of your nodes so you can quickly find issues and diagnose
their causes. You can also use this page to gather essential information about your infrastructure at a glance, such as
how many nodes your primary server is managing, and whether any nodes are unresponsive.

Tip: The Status page describes the outcome of Puppet runs on nodes in your infrastructure. This is different from the
status of your overall Puppet Enterprise (PE) installation. To understand the status of your installation as a whole, use
Puppet Enterprise metrics and status monitoring on page 411.

Node run statuses
The Status page displays each node's run status for the most recent Puppet run. Possible statuses depend on the
Puppet run mode.

Nodes run in enforcement mode

 With failures

This node’s last Puppet run failed or Puppet encountered an error that prevented it from making changes.

The error is usually tied to a particular resource (such as a file) managed by Puppet on the node. The node as
a whole might still be functioning normally. Alternatively, the problem might be caused by a situation on the
primary server that is preventing the node's agent from verifying whether the node is compliant.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 394

 With corrective changes

During the last Puppet run, Puppet found inconsistencies between the last applied catalog and this node’s
configuration, and Puppet corrected those inconsistencies to match the catalog.

Corrective change reporting is available only on agent nodes running Puppet Enterprise (PE) 2016.4 and later.
Agents running earlier versions report all change events as With intentional changes.

 With intentional changes

During the last Puppet run, catalog changes were successfully applied to the node.

 Unchanged

This node's last Puppet run was successful, and the node was fully compliant. No changes were necessary.

Nodes run in no-op mode

No-op mode simulates a Puppet run without making changes. No-op mode reporting is available only on agent nodes
running PE 2016.4 and later. Agents running earlier versions report all no-op mode runs as Would be unchanged.

 With failures

This node’s last no-op Puppet run failed or Puppet encountered an error that prevented it from simulating
changes.

 Would have corrective changes

During the last no-op Puppet run, Puppet found inconsistencies between the last applied catalog and this node’s
configuration, and, in a true run,Puppet would correct those inconsistencies to match the catalog.

 Would have intentional changes

If the last no-op Puppet run had been a true run, catalog changes would have been applied to the node.

 Would be unchanged

This node’s last no-op Puppet run was successful, and the node was fully compliant. In a true run, no changes
would have been necessary.

Nodes not reporting

 Unresponsive

The node hasn't reported to the primary server recently. Something might be wrong.

The run status table shows the timestamp for the node's last known Puppet run and whether the node's last known
run was in no-op mode. Correct the problem to resume Puppet runs on the node.

The default cutoff time for considering a node unresponsive is one hour, but you can change this with the
puppet_enterprise::console_services::no_longer_reporting_cutoff parameter. Go to
Configure the PE console and console-services on page 232 for more information.

 Have no reports

Although Puppet Server is aware the node exists, the node has never submitted a Puppet report because the node
is a new node, the node has never come online, or the node's copy of Puppet is not configured correctly.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 395

Expired or deactivated nodes are shown on the Status page for seven days. To extend the amount of time that
you can view or search these nodes, change the node-ttl setting in PuppetDB. Changing this setting impacts
resources and exported resources.

Special categories

In addition to reporting each node's run status, the Status page provides a secondary count of nodes in special
categories:

Intended catalog failed

During the last Puppet run, the intended catalog for this node failed and Puppet substituted a cached catalog,
according to your configuration settings.

This typically occurs if there are compilation errors in your Puppet code. Check the Puppet run log for details.

This category is shown only if one or more agents failed to retrieve a valid catalog from Puppet Server.

Enforced resources found

During the last no-op Puppet run, one or more resources were enforced, according to your use of the noop =>
false metaparameter setting.

This category is shown only if enforced resources are present on at least one node.

How Puppet determines node run statuses
Puppet uses a hierarchical system to determine a single run status for each node. This system gives higher priority to
the activity types most likely to cause problems in your deployment, so you can focus on the nodes and events most in
need of attention.

During a Puppet run, several activity types might occur on a single node. A node's run status reflects the activity with
the highest alert level, regardless of how many events of each type took place during the run. Failure events have the
highest alert level, and no change events have the lowest alert level.

Run status icon Definitely happened Might also have happened

Failure Corrective change, intentional
change, no change

Corrective change Intentional change, no change

Intentional change No change

No change

For example, during a Puppet run in enforcement mode, a node with 100 resources receives intentional changes on 30
resources, corrective changes on 10 resources, and no changes on the remaining 60 resources. This node's run status is

 With corrective changes, because this status has the highest alert level of all statuses that occurred during the
run.

Node run statuses on page 393 also prioritize run mode (either enforcement or no-op) over the state of individual
resources. This means that a node run in no-op mode is always reported in the Nodes run in no-op column, even if
some of its resource changes were enforced. If the no-op flags on a node's resources are all set to false, then changes

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 396

to the resources are enforced, not simulated. Even so, because it is run in no-op mode, the node's run status is
Would have intentional changes.

Filtering nodes on the Status page
You can filter the list of nodes displayed on the Status page by run status and by node fact. If you set a run status
filter, and also set a node fact filter, the table takes both filters into account, and shows only those nodes matching
both filters.

Clicking Remove filter removes all filters currently in effect.

The filters you set are persistent. If you set run status or fact filters on the Status page, they continue to be applied
to the table until they're changed or removed, even if you navigate to other pages in the console or log out. The
persistent storage is associated with the browser tab, not your user account, and is cleared when you close the tab.

Important: The filter results count and the fact filter matching nodes counts are cached for two minutes after first
retrieval. This reduces the total load on PuppetDB and decreases page load time, especially for fact filters with
multiple rows. As a result, the displayed counts might be up to two minutes out of date.

Filter by node run status
The status counts section at the top of the Status page shows a summary of the number of nodes with each run status
as of the last Puppet run. Filter nodes by run status to quickly focus on nodes with failures or change events.

In the status counts section, select a run status (such as with corrective changes or have no reports) or a run status
category (such as Nodes run in no-op).

Filter by node fact
You can create a highly specific list of nodes for further investigation by using the fact filter tool.

For example, you can check that nodes you've updated have successfully changed, or find out the operating systems
or IP addresses of a set of failed nodes to better understand the failure. You might also filter by facts to fulfill an
auditor's request for information, such as the number of nodes running a particular version of software.

1. Click Filter by fact value. In the Fact field, select one of the available facts. An empty fact field is not allowed.

Tip: To see the facts and values reported by a node on its most recent run, click the node name in the Run status
table, then select the node’s Facts tab.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 397

2. Select an Operator:

Operator Meaning Notes

= is

!= is not

~ matches a regular expression
(regex)

Select this operator to use wildcards
and other regular expressions if you
want to find matching facts without
having to specify the exact value.

!~ does not match a regular expression
(regex)

> greater than Can be used only with facts that
have a numeric value.

>= greater than or equal to Can be used only with facts that
have a numeric value.

< less than Can be used only with facts that
have a numeric value.

<= less than or equal to Can be used only with facts that
have a numeric value.

3. In the Value field, enter a value. Strings are case-sensitive, so make sure you use the correct case.

The filter displays an error if you use an invalid string operator (for example, selecting a numeric value operator
such as >= and entering a non-numeric string such as pilsen as the value) or enter an invalid regular
expression.

Note: If you enter an invalid or empty value in the Value field, PE takes the following action in order to avoid a
filter error:

• Invalid or empty Boolean facts are processed as false, and results are retrieved accordingly.
• Invalid or empty numeric facts are processed as 0, and results are retrieved accordingly.
• Invalid or incomplete regular expressions invalidate the filter, and no results are retrieved.

4. Click Add.

5. As needed, repeat these steps to add additional filters. If filtering by more than one node fact, specify either Nodes
must match all rules or Nodes can match any rule.

Filtering nodes in your node list
Filter your node list by node name or by PQL query to more easily inspect them.

Filter your node list by node name
Filter your nodes list by node name to inspect them as a group.

Select Node name, type in the word you want to filter by, and click Submit.

Filter your nodes by PQL query
Filter your nodes list using a common PQL query.

Filtering your nodes list by PQL query enables you to manage them by specific factors, such as by operating system,
report status, or class.

Specify a target by doing one of the following:

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 398

• Enter a query that selects the target you want. See the Puppet Query Language (PQL) reference for more
information.

• Click Common queries, select one of the queries, and replace the defaults in the braces ({ }) with values that
specify the target you want.

Target PQL query

All nodes nodes[certname] { }

Nodes with a specific resource (example: httpd) resources[certname] { type =
"Service" and title = "httpd" }

Nodes with a specific fact and value (example: OS
name is CentOS)

inventory[certname] { facts.os.name =
"<OS>" }

Nodes with a specific report status (example: last run
failed)

reports[certname]
{ latest_report_status = "failed" }

Nodes with a specific class (example: Apache) resources[certname] { type = "Class"
and title = "Apache" }

Nodes assigned to a specific environment (example:
production)

nodes[certname] { catalog_environment
= "production" }

Nodes with a specific version of a resource type
(example: OpenSSL v1.1.0e)

resources[certname] {type =
"Package" and title="openssl"
and parameters.ensure =
"1.0.1e-51.el7_2.7" }

Nodes with a specific resource and operating system
(example: httpd and CentOS)

inventory[certname]
{ facts.operatingsystem = "CentOS"
and resources { type = "Service" and
title = "httpd" } }

Monitor PE services
You can monitor the status of core services in the Puppet Enterprise (PE) has console or with the puppet
infrastructure status command.

Component or service Console status monitor Command line status

Activity service Yes Yes

Agentless Catalog Executor (ACE)
service

No Yes

Bolt service No Yes

Classifier service Yes Yes

Code Manager service Yes Yes

Orchestrator service Yes Yes

Puppet Communications Protocol
(PCP) broker

No Yes

PostgreSQL No Yes

Puppet Server Yes Yes

PuppetDB Yes Yes

Role-based access control (RBAC)
service

Yes Yes

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/api/query/v4/pql.html

pe | Monitoring and reporting | 399

View the Puppet Services status monitor
The Puppet Services status monitor provides a visual overview of the current state of core services. You can use it to
quickly determine whether an unresponsive or restarting service is causing an issue with your deployment.

1. In the console, click Status.

2. Click Puppet Services status to open the monitor.

A check mark is shown next to Puppet Services status if all applicable services are accepting requests. If no data
is available, a question mark is shown. If any services are restarting or not accepting requests, a warning icon is
shown.

puppet infrastructure status command
The puppet infrastructure status command returns errors and alerts from Puppet Enterprise (PE)
components and services.

The command reports separately on the primary server and any compilers or replicas in your environment. You must
run the command as root.

Identify operational issues affecting infrastructure nodes
Puppet Enterprise (PE) includes the pe_status_check module, which performs regular automatic checks on
infrastructure nodes to identify issues that could cause disruption to PE operations. The Operational status page in
the console summarizes the result of status checks from the last puppet agent run and lists any operational issues
affecting infrastructure nodes in your installation.

Important: If you previously installed the pe_status_check module from the Forge or specified a version in
your Puppetfile, ensure that you remove the previously installed version. This allows the latest version bundled with
PE to be asserted.

The Operational status page displays the results of the latest status checks for the primary server and, where
applicable to your installation, any of the following infrastructure nodes:

• The primary server replica
• PE compilers
• Legacy compilers
• Database servers (PostgreSQL nodes)

View list of nodes with operational issues

1. In the console, in the Admin section, click Operational status.

2. View the Infrastructure status overview to understand whether there are any issues with your PE infrastructure
nodes.

Indicates that no issues were found.

Indicates there are issues requiring your attention.

3. If there are issues requiring your attention, review the list of affected infrastructure nodes and the specific status
checks that flagged the issues.

Status checks that flagged issues requiring your attention are listed under each affected infrastructure node.

You can use the dropdown to filter the listed infrastructure nodes by server type.

For information about actions to resolve issues, see pe_status_check module documentation.
Related information
About the pe_status_check module on page 412

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/pe_status_check/readme#fact-pe_status_check

pe | Monitoring and reporting | 400

The pe_status_check module can alert you when your Puppet Enterprise (PE) installation is not in an ideal state,
based on preset indicators, and describe how you can resolve or improve the detected issue.

Viewing and managing packages
The Packages page in the console shows all packages in use across your infrastructure by name, version, and
provider, as well as the number of instances of each package version in your infrastructure. Use the Packages page
to quickly identify which nodes are impacted by packages you know are eligible for maintenance updates, security
patches, and license renewals. Package management is available for all agent nodes.

Tip: Packages are gathered from all available providers. The package data reported on the Packages page can also
be obtained by using the puppet resource command to search for package.

Enable package data collection
Package data collection is disabled by default, so the Packages page in the console initially appears blank. In order to
view a node's current package inventory, enable package data collection.

You can choose to collect package data on all your nodes, or just a subset. Package inventory reporting is available on
nodes with Puppet agent 1.6.0 or later installed, including nodes that don't have an active configuration on the Puppet
Server.

1. In the console, click Node groups.

• If you want to collect package data on all your nodes, click the PE Agent node group.
• If you want to collect package data on a subset of your nodes, click Add group and create a new classification

node group. Select PE Agent as the group's parent name. After the new node group is set up, use the Rules tab
to dynamically add the relevant nodes.

2. Click Classes. In the Add new class field, select puppet_enterprise::profile::agent and click Add class.

3. In the puppet_enterprise::profile::agent class, set the Parameter to package_inventory_enabled and the
Value to true. Click Add parameter, and commit changes.

4. Run Puppet to apply these changes to the nodes in your node group.

Puppet enables package inventory collection on this Puppet run, and begins collecting package data and reporting
it on the Packages page on each subsequent Puppet run.

5. Run Puppet a second time to begin collecting package data, then click Packages.

View and manage package inventory
To view and manage the complete inventory of packages on your systems, use the Packages page in the console.

Before you begin

Make sure you have enabled package data collection for the nodes you wish to view.

Tip: If all the nodes on which a certain package is installed are deactivated, but the nodes' specified node-purge-
ttl period has not yet elapsed, instances of the package still appear in summary counts on the Packages page. To
correct this issue, adjust the node-purge-ttl setting and run garbage collection.

1. Run Puppet to collect the latest package data from your nodes.

2. In the console, click Packages to view your package inventory. To narrow the list of packages, enter the name or
partial name of a package in the Filter by package name field and click Apply.

3. Click any package name or version to enter the detail page for that package.

4. On a package's detail page, use the Version selector to locate nodes with a particular package version installed.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 401

5. Use the Instances selector to locate nodes where the package is not managed with Puppet, or to view nodes on
which a package instance is managed with Puppet.

To quickly find the place in your manifest where a Puppet-managed package is declared, select a code path in the
Instances selector and click Copy path.

6. To modify a package on a group of nodes:

• If the package is managed with Puppet, select a code path in the Instances selector and click Copy path, then
navigate to and update the manifest.

• If the package is not managed with Puppet, click Run > Task and create a new task.

View package data collection metadata
The puppet_inventory_metadata fact reports whether package data collection is enabled on a node, and it
shows the time spent collecting package data on the node during the last Puppet run.

Before you begin
Make sure you have enabled package data collection for the nodes you want to view.

1. Click Node groups and select the node group you created when enabling package data collection.

2. Click Matching nodes and select a node from the list.

3. On the node's inventory page, click Facts and locate puppet_inventory_metadata in the list.

The fact value looks something like:

{
 "packages" : {
 "collection_enabled" : true,
 "last_collection_time" : "1.9149s"
 }
}

Disable package data collection
If you need to disable package data collection, set package_inventory_enabled to false and run Puppet twice.

1. Click Node groups and select the node group you used when enabling package data collection.

2. On the Classes tab, find the puppet_enterprise::profile::agent class, locate package_inventory_enabled
parameter, and click Edit.

3. Change the Value of package_inventory_enabled to false and commit changes.

4. Run Puppet to apply these changes to the nodes in your node group and disable package data collection.

Package data is collected for the final time during this run.

5. Run Puppet a second time to purge package data from the impacted nodes' storage.

Value report
Value analytics give you insight into time and money saved by Puppet Enterprise (PE) automation. You can access
this information on the Value report page in the console or through the value API.

The information in the value report and the value API provide details about automated changes PE makes to nodes
and estimates time saved by each type of change based on intelligent defaults or values you provide. If you specify an
average hourly salary, the report also estimates cost savings from automated changes.

To ensure your value analysis is accurate:

• Make sure tasks, plans, and Puppet runs are processing normally because value analysis doesn't track failed runs.
• If you use the value API, query the endpoint regularly to gather data over time.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 402

Value report defaults
Value analytics uses intelligent defaults to estimate time freed by automated changes. These defaults are based on
customer research and take into account time to triage, research, and fix issues, as well as context switching. You can
also provide your own default values.

When you query the value API, you can specify low, med, or high estimates for time freed parameters, or provide
an exact value in minutes based on averages in your organization. In the console Value report, you specify an exact
value in minutes. Unless you specify otherwise, both the API and the console use the med values. The baseline
intelligent default values are as follows:

Parameter Intelligent default values

minutesFreedPerCorrectiveChange • low: 90 minutes
• med: 180 minutes
• high: 360 minutes

minutesFreedPerIntentionalChange • low: 30 min
• med: 90 minutes
• high: 180 minutes

minutesFreedPerTaskRun • low: 30 minutes
• med: 90 minutes
• high: 180 minutes

minutesFreedPerPlanRun • low: 90 minutes
• med: 180 minutes
• high: 360 minutes

You can change the low, med, and high times by specifying any of the value_report_* parameters in the PE
Console node group in the puppet_enterprise::profile::console class.

GET /api/reports/value
Use the GET /api/reports/value endpoint to retrieve information about time and money freed by Puppet
Enterprise (PE) automation.

Request format

You must provide well-formed HTTP(S) requests. By default, the value API uses the standard HTTPS port for
console communication, which is port 443. You can omit the port from your requests unless you want to specify a
different port.

You must authenticate requests to the value API using your Puppet CA certificate and an RBAC token. The RBAC
token must have viewing permissions for the console.

This is an example of a basic, authenticated value API request without any parameters:

curl -X GET --cacert "/etc/puppetlabs/puppet/ssl/certs/ca.pem" \

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 403

-H "X-Authentication: <RBAC_TOKEN>" \
"https://<HOSTNAME>/api/reports/value"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

You can use these parameters, attached with --data-urlencode, to modify your value API requests:

Parameter Description Default value

averageHourlySalary Numeric value specifying average
hourly salary to use to cost savings
for automated work.

None

startDate A date in yyyy-mm-dd format. Today less nine days (One week plus
two days in the past)

endDate A daate in yyyy-mm-dd format.

If you specify today's date, the
response contains provisional data.

today less two days

minutesFreedPerCorrectiveChangelow, med, high, or any numeric
value in minutes.

med

minutesFreedPerIntentionalChangelow, med, high, or any numeric
value in minutes.

med

minutesFreedPerTaskRun low, med, high, or any numeric
value in minutes.

med

minutesFreedPerPlanRun low, med, high, or any numeric
value in minutes.

med

The numerical basis for minutesFreed parameters are controlled by Value report defaults on page 402.

Response format

The response is a JSON object listing details about time and cost freed. Responses use these keys:

Key Definition

startDate Start date for the reporting period.

endDate End date for the reporting period.

totalCorrectiveChanges Total number of corrective changes made during the
reporting period.

minutesFreedByCorrectiveChanges Total number of minutes freed by automated
changes that prevent drift during regular Puppet
runs. The calculation is based on the average
minutes saved per change, as specified by the
minutesFreedPerCorrectiveChange query
parameter.

totalIntentionalChanges Total number of intentional changes made during the
reporting period.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 404

Key Definition

minutesFreedByIntentionalChanges Total number of minutes freed by automated
changes based on new values or Puppet code.
This calculation is based on the average
minutes saved per change, as specified by the
minutesFreedPerIntentionalChange query
parameter.

totalNodesAffectedByTaskRuns Total number of nodes affected by successful task runs
during the reporting period.

minutesFreedByTaskRuns Total number of minutes freed by automated task
runs. This calculation is based on the average
minutes saved per task run, as specified by the
minutesFreedPerTaskRun query parameter.

totalNodesAffectedByPlanRuns Total number of nodes affected by successful plan runs
during the reporting period.

minutesFreedByPlanRuns Total number of minutes freed by automated plan
runs. This calculation is based on the average
minutes saved per plan run, as specified by the
minutesFreedPerPlanRun query parameter.

totalMinutesFreed Total number of minutes free by all automated changes.

totalDollarsSaved If the query specified an averageHourlySalary,
total cost savings for all automated changes.

Request and response examples

This request generates a report for specified dates using the default time freed values:

curl -X GET --cacert "/etc/puppetlabs/puppet/ssl/certs/ca.pem" \
-H "X-Authentication: <RBAC_TOKEN>" \
-G "https://<HOSTNAME>/api/reports/value" \
--data-urlencode 'startDate=2020-07-08' \
--data-urlencode 'endDate=2020-07-15'

The result is:

{
 "startDate": "2020-07-08",
 "endDate": "2020-07-15",
 "totalCorrectiveChanges": 0,
 "minutesFreedByCorrectiveChanges": 0,
 "totalIntentionalChanges": 18,
 "minutesFreedByIntentionalChanges": 1620,
 "totalNodesAffectedByPlanRuns": 0,
 "totalNodesAffectedByTaskRuns": 0,
 "minutesFreedByPlanRuns": 0,
 "minutesFreedByTaskRuns": 0,
 "totalMinutesFreed": 1620
}

This request generates cost savings using default report dates and time freed values:

curl -X GET --cacert "/etc/puppetlabs/puppet/ssl/certs/ca.pem" \
-H "X-Authentication: <rbac token>" \
-G "https://<pe-console-fqdn>/api/reports/value" \

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 405

--data-urlencode 'averageHourlySalary=40'

The result is:

{
 "startDate": "2020-07-08",
 "endDate": "2020-07-15",
 "totalCorrectiveChanges": 0,
 "minutesFreedByCorrectiveChanges": 0,
 "totalIntentionalChanges": 18,
 "minutesFreedByIntentionalChanges": 1620,
 "totalNodesAffectedByPlanRuns": 0,
 "totalNodesAffectedByTaskRuns": 0,
 "minutesFreedByPlanRuns": 0,
 "minutesFreedByTaskRuns": 0,
 "totalMinutesFreed": 1620,
 "totalDollarsSaved": 1080,
}

This request generates a report with custom values for time freed:

curl -X GET --cacert "/etc/puppetlabs/puppet/ssl/certs/ca.pem" \
-H "X-Authentication: $(cat ~/.puppetlabs/token)" \
-G "https://<pe-console-fqdn>/api/reports/value" \
--data-urlencode 'minutesFreedPerCorrectiveChange=10' \
--data-urlencode 'minutesFreedPerIntentionalChange=20' \
--data-urlencode 'minutesFreedPerTaskRun=30' \
--data-urlencode 'minutesFreedPerPlanRun=40'

The result is:

{
 "startDate": "2020-07-01",
 "endDate": "2020-07-08",
 "totalCorrectiveChanges": 1,
 "minutesFreedByCorrectiveChanges": 10,
 "totalIntentionalChanges": 2,
 "minutesFreedByIntentionalChanges": 40,
 "totalNodesAffectedByTaskRuns": 3,
 "minutesFreedByTaskRuns": 90,
 "totalNodesAffectedByPlanRuns": 4,
 "minutesFreedByPlanRuns": 160,
 "totalMinutesFreed": 300
}

Infrastructure reports
Each time Puppet runs on a node, it generates a report that provides information such as when the run took place,
any issues encountered during the run, and the activity of resources on the node. These reports are collected on the
Reports page in the console.

Working with the reports table
The Reports page provides a summary view of key data from each report. Use this page to track recent node activity
so you can audit your system and perform root cause analysis over time.

The reports table lists the number of resources on each node in each of the following states:

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 406

Correction applied Number of resources that received a corrective change
after Puppet identified resources that were out of sync
with the applied catalog.

Failed Number of resources that failed.

Changed Number of resources that changed.

Unchanged Number of resources that remained unchanged.

No-op Number of resources that would have been changed if
not run in no-op mode.

Skipped Number of resources that were skipped because they
depended on resources that failed.

Failed restarts Number of resources that were supposed to restart but
didn’t.

For example, if changes to one resource notify another
resource to restart, and that resource doesn’t restart,
a failed restart is reported. It’s an indirect failure that
occurred in a resource that was otherwise unchanged.

The reports table also offers the following information:

• No-op mode: An indicator of whether the node was run in no-op mode.
• Config retrieval: Time spent retrieving the catalog for the node (in seconds).
• Run time: Time spent applying the catalog on the node (in seconds).

Tip: Report count caching is used to improve console performance. In some cases, caching might cause summary
counts of available reports to be displayed inaccurately the first time the page is accessed after a fresh install.

Filtering reports
You can filter the list of reports displayed on the Reports page by run status and by node fact. If you set a run status
filter, and also set a node fact filter, the table takes both filters into account, and shows only those reports matching
both filters.

Clicking Remove filter removes all filters currently in effect.

The filters you set are persistent. If you set run status or fact filters on the Reports page, they continue to be applied
to the table until they're changed or removed, even if you navigate to other pages in the console or log out. The
persistent storage is associated with the browser tab, not your user account, and is cleared when you close the tab.

Filter by node run status
Filter reports to quickly focus on nodes with failures or change events by using the Filter by run status bar.

1. Select a run status (such as No-op mode: with failures). The table updates to reflect your filter selection.

2. To remove the run status filter, select All run statuses.

Filter by node fact
You can create a highly specific list of nodes for further investigation by using the fact filter tool.

For example, you can check that nodes you've updated have successfully changed, or find out the operating systems
or IP addresses of a set of failed nodes to better understand the failure. You might also filter by facts to fulfill an
auditor's request for information, such as the number of nodes running a particular version of software.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 407

1. Click Filter by fact value. In the Fact field, select one of the available facts. An empty fact field is not allowed.

Tip: To see the facts and values reported by a node on its most recent run, click the node name in the Run status
table, then select the node’s Facts tab.

2. Select an Operator:

Operator Meaning Notes

= is

!= is not

~ matches a regular expression
(regex)

Select this operator to use wildcards
and other regular expressions if you
want to find matching facts without
having to specify the exact value.

!~ does not match a regular expression
(regex)

> greater than Can be used only with facts that
have a numeric value.

>= greater than or equal to Can be used only with facts that
have a numeric value.

< less than Can be used only with facts that
have a numeric value.

<= less than or equal to Can be used only with facts that
have a numeric value.

3. In the Value field, enter a value. Strings are case-sensitive, so make sure you use the correct case.

The filter displays an error if you use an invalid string operator (for example, selecting a numeric value operator
such as >= and entering a non-numeric string such as pilsen as the value) or enter an invalid regular
expression.

Note: If you enter an invalid or empty value in the Value field, PE takes the following action in order to avoid a
filter error:

• Invalid or empty Boolean facts are processed as false, and results are retrieved accordingly.
• Invalid or empty numeric facts are processed as 0, and results are retrieved accordingly.
• Invalid or incomplete regular expressions invalidate the filter, and no results are retrieved.

4. Click Add.

5. As needed, repeat these steps to add additional filters. If filtering by more than one node fact, specify either Nodes
must match all rules or Nodes can match any rule.

Working with individual reports
To examine a report in greater detail, click Report time. This opens a page that provides details for the node’s
resources in three sections: Events, Log, and Metrics.

Events

The Events tab lists the events for each managed resource on the node, its status, whether correction was applied to
the resource, and — if it changed — what it changed from and what it changed to. For example, a user or a file might
change from absent to present.

To filter resources by event type, click Filter by event status and choose an event.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 408

Sort resources by name or events by severity level, ascending or descending, by clicking the Resource or Events
sorting controls.

To download the events data as a .csv file, click Export data. The filename is events-<node name>-
<timestamp>.

Log

The Log tab lists errors, warnings, and notifications from the node's latest Puppet run.

Each message is assigned one of the following severity levels:

Standard Caution (yellow) Warning (red)

debug warning err

info alert emerg

notice crit

To read the report chronologically, click the time sorting controls. To read it in order of issue severity, click the
severity level sorting controls.

To download the log data as a .csv file, click Export data. The filename is log-<node name>-
<timestamp>.

Metrics

The Metrics tab provides a summary of the key data from the node's latest Puppet run.

Metric Description

Report submitted by: The certname of the primary server that submitted the
report to PuppetDB.

Puppet environment The environment assigned to the node.

Puppet run • The time that the Puppet run began
• The time that the primary server submitted the

catalog
• The time that the Puppet run finished
• The time PuppetDB received the report
• The duration of the Puppet run
• The length of time to retrieve the catalog
• The length of time to apply the resources to the

catalog

Catalog application Information about the catalog application that produces
the report: the config version that Puppet uses to match
a specific catalog for a node to a specific Puppet run, the
catalog UUID that identifies the catalog used to generate
a report during a Puppet run, and whether the Puppet run
used a cached catalog.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 409

Metric Description

Resources The total number of resources in the catalog.

Events A list of event types and the total count for each one.

Top resource types A list of the top resource types by time, in seconds, it
took to be applied.

Analyzing changes across Puppet runs
The Events page in the console shows a summary of activity in your infrastructure. You can analyze the details of
important changes, and investigate common causes behind related events. You can also examine specific class, node,
and resource events, and find out what caused them to fail, change, or run as no-op.

What is an event?
An event occurs whenever PE attempts to modify an individual property of a given resource. Reviewing events lets
you see detailed information about what has changed on your system, or what isn't working properly.

During a Puppet run, Puppet compares the current state of each property on each resource to the desired state for that
property, as defined by the node's catalog. If Puppet successfully compares the states and the property is already in
sync (in other words, if the current state is the desired state), Puppet moves on to the next resource without noting
anything. Otherwise, it attempts some action and records an event, which appears in the report it sends to the primary
server at the end of the run. These reports provide the data presented on the Events page in the console.

Event types
There are six types of event that can occur when Puppet reviews each property in your system and attempts to make
any needed changes. If a property is already in sync with its catalog, no event is recorded: no news is good news in
the world of events.

Event Description

Failure A property was out of sync; Puppet tried to make
changes, but was unsuccessful.

Corrective change Puppet found an inconsistency between the last applied
catalog and a property's configuration, and corrected the
property to match the catalog.

Intentional change Puppet applied catalog changes to a property.

Corrective no-op Puppet found an inconsistency between the last applied
catalog and a property's configuration, but Puppet was
instructed to not make changes on this resource, via
either the --noop command-line option, the noop
setting, or the noop => true metaparameter. Instead
of making a corrective change, Puppet logs a corrective
no-op event and reports the change it would have made.

Intentional no-op Puppet would have applied catalog changes to a
property., but Puppet was instructed to not make changes
on this resource, via either the --noop command-
line option, the noop setting, or the noop => true
metaparameter. Instead of making an intentional change,
Puppet logs an intentional no-op event and reports the
change it would have made.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 410

Event Description

Skip A prerequisite for this resource was not met, so
Puppet did not compare its current state to the desired
state. This prerequisite is either one of the resource's
dependencies or a timing limitation set with the
schedule metaparameter. The resource might be in
sync or out of sync; Puppet doesn't know yet..

If the schedule metaparameter is set for a given
resource, and the scheduled time hasn't arrived when
the run happens, that resource logs a skip event on the
Events page. This is true for a user-defined schedule,
but does not apply to built-in scheduled tasks that happen
weekly, daily, or at other intervals.

Working with the Events page
During times when your deployment is in a state of stability, with no changes being made and everything functioning
optimally, the Events page reports little activity, and might not seem terribly interesting. But when change occurs—
when packages require upgrades, when security concerns threaten, or when systems fail—the Events page helps you
understand what's happening and where so you can react quickly.

The Events page fetches data when loading, and does not refresh—even if there's a Puppet run while you're on the
page—until you close or reload the page. This ensures that shifting data won't disrupt an investigation.

You can see how recent the shown data is by checking the timestamp at the top of the page. Reload the page to update
the data to the most recent events.

Tip: Keeping time synchronized by running NTP across your deployment helps the Events page produce accurate
information. NTP is easily managed with PE, and setting it up is an excellent way to learn Puppet workflows.

Monitoring infrastructure with the Events summary pane

The Events page displays all events from the latest report of every responsive node in the deployment.

Tip: By default, PE considers a node unresponsive after one hour, but you can configure this setting to meet your
needs by adjusting the puppet_enterprise::console_services::no_longer_reporting_cutoff
parameter.

On the left side of the screen, the Events summary pane shows an overview of Puppet activity across your
infrastructure. This data can help you rapidly assess the magnitude of any issue.

The Events summary pane is split into three categories—the Classes summary, Nodes summary, and Resources
summary—to help you investigate how a change or failure event impacts your entire deployment.

Gaining insight with the Events detail pane

Clicking an item in the Events summary pane loads its details (and any sub-items) in the Events detail pane on the
right of the screen. The summary pane on the left always shows the list of items from which the one in the detail pane
on the right was chosen, to let you easily view similar items and compare their states.

Click any item in the the Classes summary, Nodes summary, or Resources summary to load more specific info into
the detail pane and begin looking for the causes of notable events. Switch between perspectives to find the common
threads among a group of failures or corrective changes, and follow them to a root cause.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 411

Analyzing changes and failures

You can use the Events page to analyze the root causes of events resulting from a Puppet run. For example, to
understand the cause of a failure after a Puppet run, select the class, node, or resource with a failure in the Events
summary pane, and then review the details of the failure in the Events detail pane.

You can view additional details by clicking on the failed item in the in the Events detail pane.

Use the Classes summary, Nodes summary, and Resources summary to focus on the information you need. For
example, if you’re concerned about a failed service, say Apache or MongoDB, you can start by looking into failed
resources or classes. If you’re experiencing a geographic outage, you might start by drilling into failed node events.

Understanding event display issues

In some special cases, events are not displayed as expected on the Events page. These cases are often caused by
the way that the console receives data from other parts of Puppet Enterprise, but sometimes are due to the way your
Puppet code is interpreted.

Runs that restart PuppetDB are not displayed

If a given Puppet run restarts PuppetDB, Puppet is not able to submit a run report from that run to PuppetDB
because PuppetDB is not available. Because the Events page relies on data from PuppetDB, and PuppetDB
reports are not queued, the Events page does not display any events from that run. Note that in such cases, a
run report is available on the Reports page. Having a Puppet run restart PuppetDB is an unlikely scenario, but
one that could arise in cases where some change to, say, a parameter in the puppetdb class causes the pe-
puppetdb service to restart.

Runs without a compiled catalog are not displayed

If a run encounters a catastrophic failure where an error prevents a catalog from compiling, the Events page does
not display any failures. This is because no events occurred.

Simplified display for some resource types

For resource types that take the ensure property, such as user or file resource types, the Events page displays a
single event when the resource is first created. This is because Puppet has changed only one property (ensure),
which sets all the baseline properties of that resource at the same time. For example, all of the properties of
a given user are created when the user is added, just as if the user was added manually. If a later Puppet run
changes properties of that user resource, each individual property change is shown as a separate event.

Updated modes display without leading zeros

When the mode attribute for a file resource is updated, and numeric notation is used, leading zeros are omitted
in the New Value field on the Events page. For example, 0660 is shown as 660 and 0000 is shown as 0.

Puppet Enterprise metrics and status monitoring
You can use Puppet Enterprise (PE) metrics and status monitoring for your own performance tuning or provide the
information to Support for troubleshooting.

There puppet_metrics_collector and pe_status_check modules are bundled with PE. These modules
help you track the status of your PE installation as a whole.

Tip: The information reported by these modules is different from information presented in Infrastructure reports on
page 405 and Node run statuses on page 393, which report on the outcome of Puppet runs.

You can also use APIs or our Splunk plugin to View and manage Puppet Server metrics on page 413.

About the puppet_metrics_collector module
The puppet_metrics_collector module collects metrics from the status endpoints of Puppet Enterprise (PE)
services.

The puppet_metrics_collector module is installed with PE and is partially enabled by default.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 412

Important: If you have a version of this module, from the Forge or other sources, specified in the code, you must
remove this version before upgrading to allow the version bundled with PE to be asserted.

The following two parameters control metrics collection:

puppet_enterprise::enable_metrics_collection

A Boolean specifying whether the primary server collects metrics from PE services, such as Puppet Server and
PuppetDB .

Default: true

puppet_enterprise::enable_system_metrics_collection

A Boolean specifying whether your infrastructure nodes collect metrics from the operating system your PE
services run on. To allow the collection of system metrics, sysstat must be installed and enabled on your
operating system.

Default: false

Visit the puppet_metrics_collector Forge page to learn about this module's other classes and features, such
as retention time, collection frequency, and parameters for specific services.

You can use the puppet_operational_dashboards module to view PE metrics.

Tip: You can also use APIs or our Splunk plugin to View and manage Puppet Server metrics on page 413.

Enable or disable metrics collection
By default, the puppet_metrics_collector module is partially enabled so that your primary server collects
metrics for PE services. You can configure the metrics collection parameters in the PE console.

The metrics collection parameters accept Boolean values. Setting both parameters to false disables the module
entirely.

1. In the PE console, click Node groups and select the PE Infrastructure node group.

2. Configure the following parameters according to your requirements:

• puppet_enterprise::enable_metrics_collection: Set this parameter on the Configuration
data tab to determine whether your primary server collects metrics for PE services.

• puppet_enterprise::enable_system_metrics_collection: Set this parameter on the Classes
tab to determine whether your infrastructure nodes collect metrics from the operating system your PE services
run on.

Note: To allow the collection of system metrics, sysstat must be installed and enabled on your operating
system.

3. Commit your changes and run Puppet.

Related information
How to configure PE on page 212
After you've installed Puppet Enterprise (PE), you can optimize it by configuring and tuning settings. For example,
you might want to add your certificate to the allowlist, increase the max-threads setting for http and https
requests, or configure the number of JRuby instances.

About the pe_status_check module
The pe_status_check module can alert you when your Puppet Enterprise (PE) installation is not in an ideal state,
based on preset indicators, and describe how you can resolve or improve the detected issue.

Important: If you have previously specified a version of this module, from the Forge or other sources, in your code,
we recommend removing this version to allow the version bundled with PE to be asserted.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/puppet_metrics_collector/readme
https://forge.puppet.com/modules/puppetlabs/puppet_operational_dashboards

pe | Monitoring and reporting | 413

By default, the pe_status_check module uses the pe_status_check fact to compare your installation to a
predetermined ideal state. This fact collects information about your PE infrastructure components. You can optionally
enable the agent_status_check fact to collect information about agent nodes that are not infrastructure nodes.
To enable this fact, classify pe_status_check::agent_status_enable to your nodes.

The pe_status_check module produces reports based on the information collected by the pe_status_check
fact (and the agent_status_check fact, if it is enabled). The module recommends remedial actions you can take
to either resolve a deficiency or improve your installation's tuning.

To get reports from the module, you can:

• Run the pe_status_check::infra_summary and pe_status_check::agent_summary plans.
These are setup requirements and various parameters and commands you can use for running the plans.

• Use a Puppet Query Language (PQL) query.

To enable notifications in reports, you must declare the pe_status_check class.

These sections of the module's Forge page explain how to interpret the module's reports and the information that the
facts collect:

• Fact: pe_status_check
• Fact: agent_status_check

View and manage Puppet Server metrics
Puppet Server tracks performance and status metrics you can use to monitor server health and performance over time.

You can retrieve, track, and visualize Puppet Server metrics with:

• The Puppet Report Viewer app for Splunk. You'll need the splunk_hec and pe_event_forwarding modules along
with the add-on. For information about this option, refer to these blog posts:

• PE Metrics in Splunk: Puppet Report Viewer 3.1
• Introducing Puppet and Splunk integrations to improve reporting speed and scale

• The puppet_operational_dashboards module (which you can use along with the puppet_metrics_collector module
module that is already bundled with PE).

• The Metrics API on page 423 and Status API on page 429 endpoints.
• Customizable, networked Graphite and Grafana instances. While the grafanadash and puppet-graphite

modules are not Puppet-supported modules (they are provided for testing and demonstration purposes only), you
can learn about these options in Get started with Graphite on page 413 and Available Graphite metrics on page
419.

• Get started with Graphite on page 413
Graphite is a third-party monitoring application that stores real-time metrics and provides customizable ways to view
them. Puppet Enterprise (PE) can export many metrics to Graphite. After enabling Graphite support, Puppet Server
exports a set of metrics by default that is designed to be immediately useful to Puppet administrators.
• Available Graphite metrics on page 419
These HTTP and Puppet profiler metrics are available from the Puppet Server and can be added to your metrics
reporting.

Get started with Graphite
Graphite is a third-party monitoring application that stores real-time metrics and provides customizable ways to view
them. Puppet Enterprise (PE) can export many metrics to Graphite. After enabling Graphite support, Puppet Server
exports a set of metrics by default that is designed to be immediately useful to Puppet administrators.

Restriction: Graphite setups are deeply customizable and can report many different Puppet Server metrics on
demand; however, this requires considerable configuration and additional server resources. Furthermore, the
grafanadash and puppet-graphite modules are not Puppet-supported.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/pe_status_check#setup-requirements-1
https://forge.puppet.com/modules/puppetlabs/pe_status_check#running-the-plans
https://forge.puppet.com/modules/puppetlabs/pe_status_check#using-a-puppet-query-to-report-status
https://forge.puppet.com/modules/puppetlabs/pe_status_check#class-declaration-pe_status_check-optional
https://forge.puppet.com/modules/puppetlabs/pe_status_check#fact-pe_status_check
https://forge.puppet.com/modules/puppetlabs/pe_status_check#fact-agent_status_check
https://splunkbase.splunk.com/app/4413/
https://forge.puppet.com/modules/puppetlabs/splunk_hec
https://forge.puppet.com/modules/puppetlabs/pe_event_forwarding
https://puppet.com/blog/pe-metrics-in-splunk-puppet-report-viewer-3-1/
https://puppet.com/blog/introducing-puppet-and-splunk-integrations-improve-reporting-speed-and-scale/
https://forge.puppet.com/modules/puppetlabs/puppet_operational_dashboards
https://graphiteapp.org/
https://graphiteapp.org/

pe | Monitoring and reporting | 414

We recommend using another method to View and manage Puppet Server metrics on page 413, such as the
puppet_operational_dashboards module, our Splunk plugin, or the Metrics API.

To use Graphite with PE, you must:

• Install and configure a Graphite server.
• Enable Puppet Server's Graphite support on page 415.
• (Optional) Use the Grafana dashboard extension for Graphite to visualize metrics. To see a demonstration of this

setup, Use the grafanadash module on page 414.

Use the grafanadash module
Grafana provides a web-based, customizable, Graphite-compatible dashboard. The grafanadash module installs
and configures a basic Graphite test instance with the Grafana extension. When installed on a Puppet agent, the
purpose of this module is to demonstrate how Graphite and Grafana can consume and display Puppet Server metrics.

CAUTION: The grafanadash module is not a Puppet-supported module. It is for testing and demonstration
purposes only, is considered insecure, and is tested against CentOS 7 only. Install this module only on a
dedicated agent. Do not install the grafanadash module on your primary server. This module makes the
following security policy changes that are inappropriate for a primary server.

• SELinux can cause issues with Graphite and Grafana, so the module temporarily disables SELinux. If you
reboot the machine after using the grafanadash module to install Graphite, you must disable SELinux
again and restart the Apache service to use Graphite and Grafana.

• The module disables the iptables firewall and enables cross-origin resource sharing on Apache, which are
potential security risks.

For the above reasons, we recommend using another method to View and manage Puppet Server metrics on
page 413, such as the puppet_operational_dashboards module or the Metrics API.

Install the grafanadash module
Install the grafanadash module on a dedicated *nix agent. The module's grafanadash::dev class installs and
configures a Graphite server, the Grafana extension, and a default dashboard.

1. Install a dedicated *nix PE agent to serve as the Graphite server. For instructions, refer to Installing agents on
page 131.

2. As root on the agent node, run: sudo puppet module install puppetlabs-grafanadash

3. As root on the agent node, run: sudo puppet apply -e 'include grafanadash::dev'

Run Grafana
Grafana runs as a web-based dashboard, and the grafanadash module configures it to use port 10000 by default.
To view Puppet Server metrics in Grafana, you must configure a metrics dashboard.

Grafana does not display Puppet metrics displayed by default. You must create a metrics dashboard or edit and import
a JSON-based dashboard, such as our sample metrics dashboard JSON file.

Tip: You can also use the puppet_operational_dashboards module to visualize Puppet Server metrics.

1. Open a web browser on a computer that can reach your grafanadash agent node and navigate to http://
<AGENT_HOSTNAME>:10000.

You'll see a test screen indicating whether Grafana can successfully connect to your Graphite server.

If Grafana is configured to use a hostname that your current computer can't resolve, click View details and go to
the Requests tab to determine the hostname Grafana is trying to use. Then add the IP address and hostname to the
hosts file.

• On *nix and macOS agents, the file is located at: /etc/hosts
• On Windows agents, the file is located at: C:\Windows\system32\drivers\etc\hosts

2. Download the sample metrics dashboard JSON file, save the file as sample_metrics_dashboard.json,
and open it in a text editor on the same computer you're using to access Grafana.

© 2024 Puppet, Inc., a Perforce company

https://graphite.readthedocs.io/en/latest/install.html
https://grafana.com/
https://grafana.com/
https://forge.puppet.com/modules/puppetlabs/grafanadash
5d4e222e33bda31245c188040246b83c750eaa0d.json
https://forge.puppet.com/modules/puppetlabs/puppet_operational_dashboards
5d4e222e33bda31245c188040246b83c750eaa0d.json

pe | Monitoring and reporting | 415

3. Throughout the file, replace primary.example.com with the hostname of your primary server.

Important: The hostname value must also be used as the metrics_server_id value when you Enable
Puppet Server's Graphite support on page 415.

4. Save the file.

5. In the Grafana UI, click Search (Folder icon) > Import > Browse, then select your
sample_metrics_dashboard.json file.

This loads a dashboard with nine graphs that display various metrics exported from the Puppet Server to the Graphite
server. However, these graphs remain empty until you Enable Puppet Server's Graphite support on page 415. For
information about the aspects of the sample dashboard, refer to Sample Grafana dashboard graphs on page 415.

Enable Puppet Server's Graphite support
Use the PE Master node group in the Puppet Enterprise (PE) console to configure Puppet Server's metrics output
settings.

1. In the PE console, go to Node groups > PE Infrastructure > PE Master.

2. On the Classes tab, locate the puppet_enterprise::profile::master class, and add these parameters:

a) Set metrics_graphite_enabled to true (the default is false).
b) Set metrics_server_id to the primary server hostname.
c) Set metrics_graphite_host to the hostname of the agent node where you're running Graphite and

Grafana.
d) Set metrics_graphite_update_interval_seconds to an integer representing a number of

seconds. This is the frequency at which Graphite updates, and the default value is 60 seconds.

3. Verify that these parameters are set to their default values, unless your Graphite server uses a non-standard port:

a) Confirm metrics_jmx_enabled is set to true.
b) Confirm metrics_graphite_port is set to 2003 or the Graphite port on your Graphite server.
c) Confirm profiler_enabled is set to true.

4. Commit changes.

Sample Grafana dashboard graphs
In the Run Grafana on page 414 steps, you used a JSON file to set up a sample Grafana dashboard. You can
customize this dashboard by clicking the title of any graph and clicking Edit.

Graph name Description

Active requests This graph serves as a "health check" for the Puppet
Server. It shows a flat line that represents the number of
CPUs you have in your system, a metric that indicates
the total number of HTTP requests actively being
processed by the server at any moment in time, and a
rolling average of the number of active requests.

If the number of requests being processed exceeds the
number of CPUs for any significant length of time, your
server might be receiving more requests than it can
efficiently process.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 416

Graph name Description

Request durations This graph breaks down the average response times for
different types of requests made by Puppet agents. This
indicates how expensive catalog and report requests are
compared to the other types of requests. It also provides
a way to see changes in catalog compilation times when
you modify your Puppet code.

A sharp upward curve for all request types indicates an
overloaded server. Expect these to trend downward after
the server load is reduced.

Request ratios This graph shows how many requests of each type that
Puppet Server has handled. Under normal circumstances,
you'll see about the same number of catalog, node,
or report requests, because these all happen once per
agent run. The number of file and file metadata requests
correlate to how many remote file resources are in the
agents' catalogs.

External HTTP Communications This graph tracks the amount of time it takes Puppet
Server to send data and requests for common operations
to, and receive responses from, external HTTP services,
such as PuppetDB.

File Sync This graph tracks how long Puppet Server spends on File
Sync operations, for both its storage and client services.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 417

Graph name Description

JRubies This graph tracks how many JRubies are in use, how
many are free, the mean number of free JRubies, and the
mean number of requested JRubies.

If the number of free JRubies is often less than one, or
the mean number of free JRubies is less than one, Puppet
Server is requesting and consuming more JRubies than
are available. This overload reduces Puppet Server's
performance. While this might simply be a symptom
of an under-resourced server, it can also be caused by
poorly optimized Puppet code or bottlenecks in the
server's communications with PuppetDB if it is in use.

If catalog compilation times have increased but
PuppetDB performance remains the same, examine
your Puppet code for potentially unoptimized code.
If PuppetDB communication times have increased,
tune PuppetDB for better performance or allocate more
resources to it.

If neither catalog compilation nor PuppetDB
communication times are degraded, the Puppet Server
process might be under-resourced on your server. If
you have available CPU time and memory, increase the
JRuby max active instances on page 207 to allow it
to allocate more JRubies. Otherwise, consider adding
additional compilers to distribute the catalog compilation
load.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 418

Graph name Description

JRuby Timers This graph tracks these JRuby pool metrics:

• Borrow time: The mean amount of time that Puppet
Server uses (or "borrows") each JRuby from the pool.

• Wait time: The total amount of time that Puppet
Server waits for a free JRuby instance.

• Lock held time: The amount of time that Puppet
Server holds a lock on the pool, during which
JRubies cannot be borrowed. This occurs while
Puppet Server synchronizes code for File Sync.

• Lock wait time: The amount of time that Puppet
Server waits to acquire a lock on the pool.

These metrics help identify sources of potential JRuby
allocation bottlenecks.

Memory Usage This graph tracks how much heap and non-heap memory
that Puppet Server uses.

Compilation This graph breaks catalog compilation down into various
phases to show how expensive each phase is on the
primary server.

Example Grafana dashboard excerpt

The following example shows only the targets parameter of a dashboard. It demonstrates:

• The full names of Puppet's exported Graphite metrics
• A way to add targets directly to an exported Grafana dashboard's JSON content

This example assumes the Puppet Server instance has a domain of primary.example.com.

"panels": [
 {
 "span": 4,
 "editable": true,
 "type": "graphite",

...

 "targets": [
 {
 "target": "alias(puppetlabs.primary.example.com.num-
cpus,'num cpus')"
 },
 {
 "target": "alias(puppetlabs.primary.example.com.http.active-
requests.count,'active requests')"
 },

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 419

 {
 "target": "alias(puppetlabs.primary.example.com.http.active-
histo.mean,'average')"
 }
],
 "aliasColors": {},
 "aliasYAxis": {},
 "title": "Active Requests"
 }
]

Refer to the complete Grafana dashboard JSON sample file for a complete, detailed example of how a Grafana
dashboard accesses these exported Graphite metrics.

Available Graphite metrics
These HTTP and Puppet profiler metrics are available from the Puppet Server and can be added to your metrics
reporting.

Graphite metrics properties

Each metric is prefixed with puppetlabs.<PRIMARY_HOSTNAME>. For example, the Grafana dashboard file
refers to the num-cpus metric as puppetlabs.<PRIMARY_HOSTNAME>.num-cpus.

Additionally, metrics might be suffixed by fields, such as count or mean, that return more specific data points. For
example, the puppetlabs.<PRIMARY_HOSTNAME>.compiler.mean metric returns only the mean length of
time it takes Puppet Server to compile a catalog.

To organize this reference, we've separated the metrics into three groups:

• Statistical metrics: Metrics that have all eight of these statistical analysis fields, in addition to the top-level
metric:

• max: Its maximum measured value.
• min: Its minimum measured value.
• mean: Its mean, or average, value.
• stddev: Its standard deviation from the mean.
• count: An incremental counter.
• p50: The value of its 50th percentile, or median.
• p75: The value of its 75th percentile.
• p95: The value of its 95th percentile.

• Counters only: Metrics that only count a value, or only have a count field.
• Other: Metrics that have unique sets of available fields.

Restriction: Puppet Server can export many metrics – so many that past versions of Puppet Enterprise could
overwhelm Grafana servers. As of Puppet Enterprise 2016.4, Puppet Server exports only a subset of its available
metrics by default. This set is designed to report the most relevant Puppet Server metrics for administrators
monitoring its performance and stability. The default exported metrics are listed below. To export additional metrics,
you can Modify exported metrics on page 423.

Statistical metrics

Compiler metrics:

© 2024 Puppet, Inc., a Perforce company

5d4e222e33bda31245c188040246b83c750eaa0d.json

pe | Monitoring and reporting | 420

• puppetlabs.<PRIMARY_HOSTNAME>.compiler: The time spent compiling catalogs. This metric
represents the sum of the compiler.compile, static_compile, find_facts, and find_node fields.

• puppetlabs.<PRIMARY_HOSTNAME>.compiler.compile: The total time spent compiling dynamic
(non-static) catalogs. To measure specific nodes and environments, see Modify exported metrics on page
423.

• puppetlabs.<PRIMARY_HOSTNAME>.compiler.find_facts: The time spent parsing facts.
• puppetlabs.<PRIMARY_HOSTNAME>.compiler.find_node: The time spent retrieving node data.

If the Node Classifier (or another ENC) is configured, this includes the time spent communicating with it.
• puppetlabs.<PRIMARY_HOSTNAME>.compiler.static_compile: The time spent compiling

static catalogs.
• puppetlabs.<PRIMARY_HOSTNAME>.compiler.static_compile_inlining: The time spent

inlining metadata for static catalogs.
• puppetlabs.<PRIMARY_HOSTNAME>.compiler.static_compile_postprocessing: The

time spent post-processing static catalogs.

File sync metrics:

• puppetlabs.<PRIMARY_HOSTNAME>.file-sync-client.clone-timer: The time spent by file
sync clients on compilers initially cloning repositories on the primary server.

• puppetlabs.<PRIMARY_HOSTNAME>.file-sync-client.fetch-timer: The time spent by file
sync clients on compilers fetching repository updates from the primary server.

• puppetlabs.<PRIMARY_HOSTNAME>.file-sync-client.sync-clean-check-timer: The time
spent by file sync clients on compilers checking whether the repositories are clean.

• puppetlabs.<PRIMARY_HOSTNAME>.file-sync-client.sync-timer: The time spent by file sync
clients on compilers synchronizing code from the private datadir to the live codedir.

• puppetlabs.<PRIMARY_HOSTNAME>.file-sync-storage.commit-add-rm-timer

• puppetlabs.<PRIMARY_HOSTNAME>.file-sync-storage.commit-timer: The time spent
committing code on the primary server into the file sync repository.

Function metrics:

• puppetlabs.<PRIMARY_HOSTNAME>.functions: The amount of time during catalog compilation
spent in function calls. The functions metric can also report any of the statistical metrics fields for a single
function by specifying the function name as a field. For example, to report the mean time spent in a function
call during catalog compilation, use puppetlabs.<PRIMARY_HOSTNAME>.functions.<FUNCTION-
NAME>.mean.

HTTP metrics:

• puppetlabs.<PRIMARY_HOSTNAME>.http.active-histo: A histogram of active HTTP requests over
time.

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-catalog-/*/-requests: The time
Puppet Server has spent handling catalog requests, including time spent waiting for an available JRuby instance.

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-environment-/*/-requests: The
time Puppet Server has spent handling environment requests, including time spent waiting for an available JRuby
instance.

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-environment_classes-/*/-
requests: The time spent handling requests to the environment_classes API endpoint, which the Node
Classifier uses to refresh classes.

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-environments-requests: The time
spent handling requests to the environments API endpoint requests made by the Orchestrator.

• The following metrics measure the time spent handling file-related API endpoints:

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-file_bucket_file-/*/-requests

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-file_content-/*/-requests

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-file_metadata-/*/-requests

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-file_metadatas-/*/-requests

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 421

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-node-/*/-requests: The time spent
handling node requests, which are sent to the Node Classifier. A bottleneck here might indicate an issue with the
Node Classifier or PuppetDB.

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-report-/*/-requests: The time spent
handling report requests. A bottleneck here might indicate an issue with PuppetDB.

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-static_file_content-/*/-
requests: The time spent handling requests to the static_file_content API endpoint used by Direct
Puppet with file sync.

JRuby metrics: Puppet Server uses an embedded JRuby interpreter to execute Ruby code. JRuby spawns parallel
instances known as JRubies to execute Ruby code, which occurs during most Puppet Server activities. See Tuning
JRuby on Puppet Server for details on adjusting JRuby settings.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.borrow-timer: The time spent with a borrowed JRuby.
• puppetlabs.<PRIMARY_HOSTNAME>.jruby.free-jrubies-histo: A histogram of free JRubies

over time. This metric's average value must be greater than 1; if it isn't, more JRubies or another compiler might
be needed to keep up with requests.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.lock-held-timer: The time spent holding the JRuby
lock.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.lock-wait-timer: The time spent waiting to acquire
the JRuby lock.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.requested-jrubies-histo: A histogram of
requested JRubies over time. This increases as the number of free JRubies, or the free-jrubies-histo
metric, decreases, which can suggest that the server's capacity is being depleted.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.wait-timer: The time spent waiting to borrow a JRuby.

PuppetDB metrics: The following metrics measure the time that Puppet Server spends sending or receiving data from
PuppetDB.

• puppetlabs.<PRIMARY_HOSTNAME>.puppetdb.catalog.save

• puppetlabs.<PRIMARY_HOSTNAME>.puppetdb.command.submit

• puppetlabs.<PRIMARY_HOSTNAME>.puppetdb.facts.find

• puppetlabs.<PRIMARY_HOSTNAME>.puppetdb.facts.search

• puppetlabs.<PRIMARY_HOSTNAME>.puppetdb.report.process

• puppetlabs.<PRIMARY_HOSTNAME>.puppetdb.resource.search

Counters only

HTTP metrics:

• puppetlabs.<PRIMARY_HOSTNAME>.http.active-requests: The number of active HTTP requests.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 422

• The following counter metrics report the percentage of each HTTP API endpoint's share of total handled HTTP
requests.

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-catalog-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-environment-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-environment_classes-/*/-
percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-environments-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-file_bucket_file-/*/-
percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-file_content-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-file_metadata-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-file_metadatas-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-node-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-report-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-resource_type-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-resource_types-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-static_file_content-/*/-
percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.puppet-v3-status-/*/-percentage

• puppetlabs.<PRIMARY_HOSTNAME>.http.total-requests: The total requests handled by Puppet
Server.

JRuby metrics:

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.borrow-count: The number of successfully borrowed
JRubies.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.borrow-retry-count: The number of attempts to
borrow a JRuby that must be retried.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.borrow-timeout-count: The number of attempts to
borrow a JRuby that resulted in a timeout.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.request-count: The number of requested JRubies.
• puppetlabs.<PRIMARY_HOSTNAME>.jruby.return-count: The number of JRubies successfully

returned to the pool.
• puppetlabs.<PRIMARY_HOSTNAME>.jruby.num-free-jrubies: The number of free JRuby

instances. If this number is often 0, more requests are coming in than the server has available JRuby instances. To
alleviate this, increase the number of JRuby instances on the Server or add additional compilers.

• puppetlabs.<PRIMARY_HOSTNAME>.jruby.num-jrubies: The total number of JRuby instances on
the server, governed by the max-active-instances setting. See Tuning JRuby on Puppet Server for details.

Other metrics

These metrics measure raw resource availability and capacity.

• puppetlabs.<PRIMARY_HOSTNAME>.num-cpus: The number of available CPUs on the server.
• puppetlabs.<PRIMARY_HOSTNAME>.uptime: The Puppet Server process's uptime.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 423

• Total, heap, and non-heap memory that's committed (committed), initialized (init), and used (used), and the
maximum amount of memory that can be used (max).

• puppetlabs.<PRIMARY_HOSTNAME>.memory.total.committed

• puppetlabs.<PRIMARY_HOSTNAME>.memory.total.init

• puppetlabs.<PRIMARY_HOSTNAME>.memory.total.used

• puppetlabs.<PRIMARY_HOSTNAME>.memory.total.max

• puppetlabs.<PRIMARY_HOSTNAME>.memory.heap.committed

• puppetlabs.<PRIMARY_HOSTNAME>.memory.heap.init

• puppetlabs.<PRIMARY_HOSTNAME>.memory.heap.used

• puppetlabs.<PRIMARY_HOSTNAME>.memory.heap.max

• puppetlabs.<PRIMARY_HOSTNAME>.memory.non-heap.committed

• puppetlabs.<PRIMARY_HOSTNAME>.memory.non-heap.init

• puppetlabs.<PRIMARY_HOSTNAME>.memory.non-heap.used

• puppetlabs.<PRIMARY_HOSTNAME>.memory.non-heap.max

Modify exported metrics
In addition to the default metrics, you can also export metrics measuring specific environments and nodes managed
by Puppet Server.

The puppet_enterprise::profile::master::metrics_puppetserver_metrics_allowed
parameter takes an array of metrics as strings. To export additional metrics, add them to this array.

Optional metrics include:

• compiler.compile.<ENVIRONMENT> and compiler.compile.<ENVIRONMENT>.<NODE-NAME>,
and all statistical fields suffixed to these, such as compiler.compile.<ENVIRONMENT>.mean.

• compiler.compile.evaluate_resources.<RESOURCE>, which represents time spent evaluating a
specific resource during catalog compilation.

Omit the puppetlabs.<MASTER-HOSTNAME> prefix and field suffixes (such as .count or .mean) from
metrics. Instead, suffix the environment or node name as a field to the metric. For example:

• To track the compilation time for the production environment, add compiler.compile.production to
the metrics-allowed list.

• To track only the my.node.localdomain node in the production environment, add
compiler.compile.production.my.node.localdomain to the metrics-allowed list.

Metrics API
Use the metrics API to query Java Management Extension (JMX) metrics related to Puppet Server and the
orchestrator service.

Tip: You can use the GET /status/v1/services/<SERVICE NAME> on page 435 endpoint to get a summary of
metrics. Form your request as: /status/v1/services/orchestrator-service?level=debug

There are many metrics available. For example, the "depoy-queue.length" metric reports how many nodes
are waiting in queue to execute a deployment due to the global-concurrent-compiles setting, and the
"task-queue.length" metric reports how many nodes are waiting in queue to execute a task due to the
task_concurrency setting. The "jobs-created" metric expresses how many jobs were created in the
current instance, and the "puppet-run-time" metric describes a trailing five-minute average of how long it takes
a Puppet run to complete (only for Puppet runs triggered by the orchestrator).

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 424

• Metrics API v2 on page 424
The /metrics/v2/ endpoints use the Jolokia library for Java Management Extension (JMX) metrics to query
Orchestrator service metrics.
• Metrics API v1 on page 427
Puppet Enterprise (PE) includes an optional web endpoint for Java Management Extension (JMX) metrics managed
beans (MBeans).

Related information
API index on page 30
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Metrics API v2
The /metrics/v2/ endpoints use the Jolokia library for Java Management Extension (JMX) metrics to query
Orchestrator service metrics.

Jolokia is an extensive, open-source metrics library. We've described how to use the metrics according to the default
Puppet Enterprise (PE) configuration; however, you can find more features described in the Jolokia documentation.

For security reasons, by default, we only enable the read-access Jolokia interface, which includes the read, list,
version, and search operations. You can Configure Jolokia on page 424 if you want to change the security
access policy.

Configure Jolokia
You can customize your Jolokia security access policy and metrics.conf settings. You can also use these steps to
disable the /metrics/v2/ endpoints.

1. To change the security access policy:

a) Create a jolokia-access.xml file at the following location:

/etc/puppetlabs/orchestration-services/jolokia-access.xml

b) Populate the file contents according to your desired Jolokia access policy (as described in the security chapter
of the Jolokia documentation), and uncomment the following parameter:

metrics.metrics-webservice.jolokia.servlet-init-params.policyLocation

c) Save the file and restart the Puppet Server service.

2. For additional configuration options, refer to the metrics.metrics-webservice.jolokia.servlet-
init-params table in the metrics.conf file located at:

/etc/puppetlabs/orchestration-services/conf.d/metrics.conf

Jolokia's Servlet init parameters documentation explains the various options available in this table.

Tip: To disable the /metrics/v2/ endpoints, open the metrics.conf file and set the
metrics.metrics-webservice.jolokia.enabled parameter to false.

Forming metrics API requests
The metrics API accepts well-formed HTTPS requests.

Orchestrator API requests must include a URI path following the pattern:

https://<DNS>:<PORT>/metrics/v2/<OPERATION>

The variable path components derive from:

• DNS: Your PE console host's DNS name. You can use localhost, manually enter the DNS name, or use a
puppet command (as explained in Using example commands on page 25).

© 2024 Puppet, Inc., a Perforce company

https://jolokia.org/
https://jolokia.org/documentation.html
https://jolokia.org/reference/html/security.html
https://jolokia.org/reference/html/security.html
https://jolokia.org/reference/html/agents.html#agent-war-init-params

pe | Monitoring and reporting | 425

• PORT: The PuppetDB service port.
• OPERATION: One or more sections specifying the operation for the request, such as list or read. Some

operations require, or allow, additional modifiers such as queries, attributes, and MBean names.

For example, you could use these paths to call the GET /metrics/v2/<OPERATION> on page 426 endpoint with
the list operation:

https://$(puppet config print server):8081/metrics/v2/list
https://puppet.example.dns:8081/metrics/v2/list

To form a complete curl command, you need to provide appropriate curl arguments, and authorization (in the form of
a Puppet certificate), the content type, and/or additional parameters specific to the endpoint you are calling.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Metrics API wildcards and filtering

The /metrics/v2/ endpoints support globbing (wildcard selection) and response filtering. You can also combine
these features in the same request.

For example, this request uses GET /metrics/v2/<OPERATION> on page 426 with wildcards and filtering to get
only collection counts and times from garbage collection data:

curl "http://puppet.example.dns:8081/metrics/v2/read/
java.lang:name=*,type=GarbageCollector/CollectionCount,CollectionTime"

The response is:

{
 "request": {
 "mbean": "java.lang:name=*,type=GarbageCollector",
 "attribute": [
 "CollectionCount",
 "CollectionTime"
],
 "type": "read"
 },
 "value": {
 "java.lang:name=PS Scavenge,type=GarbageCollector": {
 "CollectionTime": 1314,
 "CollectionCount": 27
 },
 "java.lang:name=PS MarkSweep,type=GarbageCollector": {
 "CollectionTime": 580,
 "CollectionCount": 5
 }
 },
 "timestamp": 1497977710,
 "status": 200
}

Refer to the Jolokia protocol documentation for more information.

© 2024 Puppet, Inc., a Perforce company

https://jolokia.org/reference/html/protocol.html

pe | Monitoring and reporting | 426

GET /metrics/v2/<OPERATION>
Retrieve orchestrator service metrics data or metadata.

Request format

When Forming metrics API requests on page 424 to this endpoint, you must specify an operation. Some operations
also require you to specify a query. For example:

GET /metrics/v2/<OPERATION>/<QUERY>

As a starting point, use the list operation to get a list of all valid MBeans:

GET /metrics/v2/list

Using information returned from the list operation, you can form more complex and targeted queries. For example,
this request uses the read operation to query registered logger names:

GET /metrics/v2/read/java.until.logging:type=Logging/LoggerNames

The request format to query MBeans is:

GET /metrics/v2/read/<MBEAN_NAMES>/<ATTRIBUTES>/<INNER_PATH_FILTER>

MBean names are created by joining the first two keys in the list response's value object with a colon (which are
the domain and prop list, in Jolokia terms), such as java.until.logging:type=Logging.

Attributes are derived from the attr object, which is within the value object in the list response.

If you specify multiple MBean names or attributes, use comma separation, such as: /
java.lang:name=*,type=GarbageCollector/

The inner path filter is optional and depends on the MBeans and attributes you are querying.

You must use the read operation to query MBeans.

Tip: Requests can also use wildcards and filtering, as described in Forming metrics API requests on page 424.

For more complex queries, or queries containing special characters, use POST /metrics/v2/<OPERATION> on page
427.

Response format

A successful request returns a JSON object containing a series of objects, arrays, and/or key-value pairs describing
metrics data or metadata, based on the content of the request.

For example, the response to GET /metrics/v2/list contains metadata about MBeans you can use to create
targeted queries, such as:

{
 "request": {
 "type": "list"
 },
 "value": {
 "java.util.logging": {
 "type=Logging": {
 "op": {
 "getLoggerLevel": {
 ...
 },
 ...
 },

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 427

 "attr": {
 "LoggerNames": {
 "rw": false,
 "type": "[Ljava.lang.String;",
 "desc": "LoggerNames"
 },
 "ObjectName": {
 "rw": false,
 "type": "javax.management.ObjectName",
 "desc": "ObjectName"
 }
 },
 "desc": "Information on the management interface of the MBean"
 }
 },
 ...
 }
}

In contrast, the response to a targeted query, such as /metrics/v2/read/
java.until.logging:type=Logging/LoggerNames, contains more specific data. For example:

{
 "request": {
 "mbean": "java.util.logging:type=Logging",
 "attribute": "LoggerNames",
 "type": "read"
 },
 "value": [
 "javax.management.snmp",
 "global",
 "javax.management.notification",
 "javax.management.modelmbean",
 "javax.management.timer",
 "javax.management",
 "javax.management.mlet",
 "javax.management.mbeanserver",
 "javax.management.snmp.daemon",
 "javax.management.relation",
 "javax.management.monitor",
 "javax.management.misc",
 ""
],
 "timestamp": 1497977258,
 "status": 200
}

POST /metrics/v2/<OPERATION>
Use more complicated queries to retrieve orchestrator service metrics data or metadata.

POST /metrics/v2/ is functionally the same as GET /metrics/v2/<OPERATION> on page 426, except that
your query is appended in JSON format. This is useful when your query is complex or includes special characters.

When forming your request, the content type is application/json and the body must be a JSON object.

Metrics API v1
Puppet Enterprise (PE) includes an optional web endpoint for Java Management Extension (JMX) metrics managed
beans (MBeans).

Restriction: The metrics/v1/ endpoints are deprecated. We recommend using the Metrics API v2 on page
424 endpoints instead.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 428

If you choose to use the deprecated v1 endpoints, metrics are returned only when the request contains the
level=debug parameter. The response structure might change in future versions.

The v1 endpoints include:

• GET /metrics/v1/mbeans

• POST /metrics/v1/mbeans

• GET /metrics/v1/mbeans/<name>

Set the following parameter in Hiera to enable these endpoints:

puppet_enterprise::master::puppetserver::metrics_webservice_enabled: true

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

For information about Java, refer to the Java documentation:

• Java Management Extension (JMX)
• Managed beans (MBeans)

GET /metrics/v1/mbeans (deprecated)
Lists available MBeans.

Response keys

The response consists of a key-value pairs where the key is the name of a valid MBean and the value is a URI you can
use to request the MBean's attributes.

POST /metrics/v1/mbeans (deprecated)
Retrieves requested MBean metrics.

Request format

The request body must contain one of the following:

• A JSON object whose values are metric names
• A JSON array of metric names
• A JSON string containing a single metric's name

Use GET /metrics/v1/mbeans (deprecated) on page 428 to get a list of metric names.

Response format

The response is either a JSON object or array, depending on the request format:

• Requests supplying a JSON object return a JSON object where the values of the original object are transformed
into the Mbeans' attributes for the metric names.

• Requests supplying a JSON array return a JSON array where the items of the original array are transformed into
the Mbeans' attributes for the metric names.

• Requests supplying a JSON string return the a JSON object of the Mbean's attributes for the given metric name.

GET /metrics/v1/mbeans/<name> (deprecated)
Reports on a single MBean metric.

Request format

The request doesn't require any parameters, but the endpoint URI path must correspond to a metric returned by GET /
metrics/v1/mbeans (deprecated) on page 428.

© 2024 Puppet, Inc., a Perforce company

https://docs.oracle.com/javase/tutorial/jmx/index.html
https://docs.oracle.com/javase/tutorial/jmx/mbeans/

pe | Monitoring and reporting | 429

For example, this curl request queries data on MBean memory usage:

curl "http://localhost:8080/metrics/v1/mbeans/java.lang:type=Memory"

Response format

The response contains a JSON object mapping strings to values. The keys and values returned in the response depend
on the metric supplied in the request.

For example, a request querying MBean memory usage (such as the java.lang:type=Memory metric), might
return a response similar to the following:

{
 "ObjectPendingFinalizationCount" : 0,
 "HeapMemoryUsage" : {
 "committed" : 807403520,
 "init" : 268435456,
 "max" : 3817865216,
 "used" : 129257096
 },
 "NonHeapMemoryUsage" : {
 "committed" : 85590016,
 "init" : 24576000,
 "max" : 184549376,
 "used" : 85364904
 },
 "Verbose" : false,
 "ObjectName" : "java.lang:type=Memory"
}

Status API
You can use the status API to check the health of Puppet Enterprise (PE) components and services. It is useful for
automatically monitoring your infrastructure, removing unhealthy service instances from a load-balanced pool,
checking configuration values, or troubleshooting issues in PE.

The status API endpoints listen on several ports. You can use the endpoints to query all services on a specified port or
query an individual service on a specified port. The ports and services on each port are as follows:

Status API category Port Services

Console-services status API 4433 • RBAC
• Activity service
• Classifier

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 430

Status API category Port Services

Puppet Server status API 8140 • Code Manager
• File sync client
• File sync storage
• Puppet Server
• PCP broker (compilers)
• PCP broker v2 (compilers)

Orchestrator status API 8143 • Orchestrator
• PCP broker (primary server)
• PCP broker v2 (primary server)

PuppetDB status API 8081 PuppetDB

Important: The status API documentation uses default ports. If you changed a service's port, you might need to
change the port number in your endpoint request.

Endpoint responses can return an overall health status (healthy, error, or unknown) and detailed information,
such as database availability, the health of other required services, or connectivity to the primary server.

• Status API authentication on page 431
Token-based authentication is not required to access the status API. You can choose to authenticate requests with
certificates or you can use HTTP to access the API without authentication.
• Forming status API requests on page 431
When forming status API requests, you must specify the port corresponding to the Puppet Enterprise (PE) service you
want to inspect.
• Status API: services endpoint on page 432
The /services endpoints provide machine-consumable information about running services. They are intended for
scripting and integration with other services.
• Status API: services plaintext endpoint on page 437
The status service plaintext endpoints are intended for load balancers that don't support JSON parsing or
parameter setting. These endpoints return simple string bodies (either the service's state or a simple error message)
and a relevant status code.
• Status API: metrics endpoint on page 438
Puppet Server can track advanced metrics to give you additional insight into its performance and health.

Related information
API index on page 30

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 431

APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Status API authentication
Token-based authentication is not required to access the status API. You can choose to authenticate requests with
certificates or you can use HTTP to access the API without authentication.

Certificate authentication

You can authenticate requests with a certificate listed in RBAC's certificate allowlist, located at /etc/
puppetlabs/console-services/rbac-certificate-allowlist. The certificate allowlist is a simple,
flat file consisting of certnames that match the host, for example:

node1.example
node2.example
node3.example

If you edit the certificate allowlist, you must reload the pe-console-services service (run sudo service
pe-console-services reload) for your changes to take effect.

To use the certificate in a curl request, you must include the allowed certificate name (which must match a name
in the rbac-certificate-allowlist file) and the private key. This example shows how to use puppet
commands to include an allowed certificate in a curl request:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/status/v1/services"

curl --cert "$cert" --cacert "$cacert" --key "$key" "$uri"

For information about using puppet commands to populate curl arguments, go to Using example commands on
page 25.

Tip: You do not need to use an agent certificate for authentication. You can use puppet cert generate to
create a new certificate to use specifically with the API.

HTTP authentication

Status API endpoints can be served over HTTP, which does not require any authentication, but this is disabled by
default. To enable HTTP:

1. In the PE console, go to the PE Console node group.
2. On the puppet_enterprise::profile::console class, set

console_services_plaintext_status_enabled to true.

The default HTTP status endpoint port is 8123. To change the port:

1. In the PE console, go to the PE Console node group.
2. On the puppet_enterprise::profile::console class, set the

console_services_plaintext_status_port parameter to the relevant port number.

Forming status API requests
When forming status API requests, you must specify the port corresponding to the Puppet Enterprise (PE) service you
want to inspect.

Status API requests must include a URI path following the pattern:

https://<DNS>:<PORT>/status/v1/<ENDPOINT>

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 432

The variable path components derive from:

• DNS: Your PE console host's DNS name. You can manually enter it or use a puppet command, as explained in
Using example commands on page 25.

• PORT: The port associated with the service(s) you want to query.
• ENDPOINT: One or more sections specifying the endpoint, such as services or simple. Some endpoints

require additional sections, such as the GET /status/v1/services/<SERVICE NAME> on page 435 endpoint.

For example, to call the GET /status/v1/services on page 432 endpoint for all PE services on port 8140, you could
use:

https://$(puppet config print server):8140/status/v1/services

To call the GET /status/v1/services/<SERVICE NAME> on page 435 endpoint for the RBAC service on port
4433, you could use either of these paths:

https://puppet.status.example:4433/status/v1/services/rbac-service
https://(puppet config print server):4433/status/v1/services/rbac-service

To form a complete curl command, you need to provide appropriate curl arguments, Status API authentication on
page 431, and you might need to supply the content type and/or additional parameters specific to the endpoint you
are calling.

For information about puppet config commands and curl commands in Windows, go to Using example
commands on page 25.

Default ports

The following are the default ports for services you can query through the status API endpoints. If you changed
service's a port in your installation's configuration, you'll need to call that port instead.

Service Port

Activity service 4433

Node classifier 4433

Code Manager, file sync client, and file sync storage 8140

Orchestrator, PCP broker, and PCP broker v2 8143

PuppetDB 8081

RBAC service 4433

Puppet Server 8140

Status API: services endpoint
The /services endpoints provide machine-consumable information about running services. They are intended for
scripting and integration with other services.

GET /status/v1/services
Retrieves statuses for all Puppet Enterprise (PE) services on a specific port.

Request format

When Forming status API requests on page 431 to this endpoint, you must specify the port associated with the PE
services you want to query. The default ports and their associated services are as follows:

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 433

Port Service(s)

4433 • RBAC
• Activity Service
• Classifier

8140 • Code Manager
• File sync client
• File sync storage
• Puppet Server
• PCP broker (compilers)
• PCP broker v2 (compilers)

8143 • Orchestrator
• PCP broker (primary server)
• PCP broker v2 (primary server)

8081 PuppetDB

Important: If you changed a service's port to something other than the default port, you might need to change the
port number in your request.

This endpoint's content type is application/json; charset=utf-8, and you can append these parameters
to the URL:

• level: How thorough of a check to run. Set to critical, debug, or info. The default is info.
• timeout: Specified in seconds. The default is 30.

For example, this request uses certificate authentication and fetches info status information for PE services running
on port 4433:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"

curl --cert "$cert" --cacert "$cacert" --key "$key" \
--header "Content-Type: application/json; charset=utf-8" \
--request GET "https://puppet.status.example:4433/status/v1/services?
level=info&timeout=60"

Response format

The server uses these response codes:

• 200 if, and only if, all services report a status of running.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 434

• 503 if any service’s status is unknown or error.
• 400 if an invalid level parameter is set (not critical, debug, or info).

A successful response contains a JSON object listing details about the services. Responses use these keys:

Key Definition

service_version Package version of the JAR file containing a given
service.

service_status_version The version of the API used to report the status of the
service.

detail_level The level of detail shown. One of critical, debug,
or info.

state The current state of the service. One of running,
error, or unknown.

status An object with the service’s status details. Usually only
relevant for error and unknown states.

active_alerts An array of objects containing severity and a
message about your replication from pglogical if you
have replication enabled; otherwise, it's an empty array.

For example, a request about services on port 4433 (which includes the Activity service, the Classifier, and RBAC)
returns a response similar to the following:

{
 "activity-service": {
 "service_version": "2019.8.0.0",
 "service_status_version": 1,
 "detail_level": "info",
 "state": "running",
 "status": {
 "db_up": true,
 "db_pool": {
 "state": "ready"
 },
 "replication": {
 "mode": "none",
 "status": "none"
 }
 },
 "active_alerts": []
 },
 "classifier-service": {
 "service_version": "2019.8.0.0",
 "service_status_version": 1,
 "detail_level": "info",
 "state": "running",
 "status": {
 "db_up": true,
 "db_pool": {
 "state": "ready"
 },
 "rbac_up": true,
 "activity_up": true,
 "replication": {
 "mode": "none",
 "status": "none"
 }
 },

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 435

 "active_alerts": []
 },
 "rbac-service": {
 "service_version": "2019.8.0.0",
 "service_status_version": 1,
 "detail_level": "info",
 "state": "running",
 "status": {
 "db_up": true,
 "db_pool": {
 "state": "ready"
 },
 "activity_up": true,
 "replication": {
 "mode": "none",
 "status": "none"
 }
 },
 "active_alerts": []
 },
 "status-service": {
 "service_version": "1.1.0",
 "service_status_version": 1,
 "detail_level": "info",
 "state": "running",
 "status": {},
 "active_alerts": []
 }
}

GET /status/v1/services/<SERVICE NAME>
Retrieves the status of one Puppet Enterprise (PE) service.

Request format

When Forming status API requests on page 431 to this endpoint, your request must include a properly-formatted
service name and the corresponding port. Service names and default ports are as follows:

Service Port

activity-service 4433

broker-service 8143 (primary server)

8140 (compilers)

classifier-service 4433

code-manager-service 8140

orchestrator-service 8143

puppetdb-service 8081

rbac-service 4433

server (Puppet Server) 8140

Important: If you changed a service's port to something other than the default port, you might need to change the
port number in your request.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 436

This endpoint's content type is application/json; charset=utf-8, and you can specify these parameters
in your request:

• level: How thorough of a check to run. Set to critical, debug, or info. The default is info.
• timeout: Specified in seconds. The default is 30.

For example, this request uses certificate authentication and fetches info status information for the RBAC service:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"

curl --cert "$cert" --cacert "$cacert" --key "$key" \
--header "Content-Type: application/json; charset=utf-8" \
--request GET "https://puppet.example.com:4433/status/v1/services/rbac-
service?level=info&timeout=60"

Response format

The server uses these response codes:

• 200 if, and only if, all services report a status of running.
• 503 if any service’s status is unknown or error.
• 400 if an invalid level parameter is set (not critical, debug, or info).
• 404 if no service matching the supplied service name is found.

A successful response contains a JSON object listing details about the service using these keys:

Key Definition

service_version Package version of the JAR file containing a given
service.

service_status_version The version of the API used to report the status of the
service.

detail_level The level of detail shown. One of critical, debug,
or info.

state The current state of the service. One of running,
error, or unknown.

status An object with the service’s status details. Usually only
relevant for error and unknown states.

active_alerts An array of objects containing severity and a
message about your replication from pglogical if you
have replication enabled; otherwise, it's an empty array.

For example, this response contains information about the RBAC service:

{
 "rbac-service":
 {"service_version": "1.8.11-SNAPSHOT",
 "service_status_version": 1,
 "detail_level": "info",
 "state": "running",
 "status": {
 "activity_up": true,
 "db_up": true,
 "db_pool": { "state": "ready" },
 "replication": { "mode": "none", "status": "none" }
 },

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 437

 "active_alerts": []
 }
}

Status API: services plaintext endpoint
The status service plaintext endpoints are intended for load balancers that don't support JSON parsing or
parameter setting. These endpoints return simple string bodies (either the service's state or a simple error message)
and a relevant status code.

GET /status/v1/simple
Returns a cumulative status reflecting all services the status service knows about.

Request format

When Forming status API requests on page 431 to this endpoint, the content type for this endpoint is text/
plain; charset=utf-8.

This endpoint supports no parameters. It uses the critical status level by default.

Response format

The server uses these response codes:

• 200 if, and only if, all services report a status of running.
• 503 if any service’s status is unknown or error.

The response reflects a single, cumulative status of all services the endpoint is aware of. The endpoint uses this logic
to determine which status to report:

• running if, and only if, all services report as running.
• error if any one service reports an error.
• unknown if any one service reports as unknown and no services report an error.

Therefore, while some services may be running, the status can still be error or unknown as long as any one service
is not running. For example, if two services report as running and one service reports unknown, then the
response is 503: unknown. If one service reports as running, one service reports unknown, and one service
reports error, then the endpoint response is 503: error.

GET /status/v1/simple/<SERVICE NAME>
Returns a plaintext status for a specified service, such as the rbac-service or classifier-service.

Request format

When Forming status API requests on page 431 to this endpoint, the content type for this endpoint is text/
plain; charset=utf-8. Your request must include a properly-formatted service name, such as:

• activity-service

• classifier-service

• code-manager-service

• orchestrator-service

• puppetdb-service

• rbac-service

• server (Puppet Server)

This endpoint supports no parameters. It uses the critical status level by default.

Response format

The server can return these response codes and messages:

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 438

• 200: running if the service is running.
• 503: error if the service reported an error.
• 503: unknown if the service reported as unknown.
• 404: not found: <SERVICE_NAME> if no service matching the supplied service name is found.

Status API: metrics endpoint
Puppet Server can track advanced metrics to give you additional insight into its performance and health.

Restriction: These API endpoints are a tech preview. These metrics are returned only when the request contains the
level=debug parameter. The response structure might change in future versions.

There are three metrics endpoints:

• The services/pe-jruby-metrics endpoint returns JRuby metrics.
• The services/pe-master endpoint returns HTTP route metrics.
• The services/pe-puppet-profiler endpoint returns catalog compilation profiler metrics.

These metrics reflect data collected over the lifetime of the current Puppet Server process. Data resets when the
service is restarted. All time-related metrics report in milliseconds unless otherwise noted.

GET /status/v1/services/pe-jruby-metrics
Returns JSON-formatted information about the JRuby pools from which Puppet Server fulfills agent requests.

Request format

The HTTPS metrics endpoints are available on port 8140 of the primary server. Your request must query port 8140
and include the level=debug parameter. For example:

uri="https://$(puppet config print server):8140/status/v1/services/pe-jruby-
metrics?level=debug"

curl --insecure "$uri"

For information about puppet config commands and curl commands in Windows, go to Using example
commands on page 25.

Response format

The server uses these response codes:

• 200 if, and only if, all services report a status of running.
• 503 if any service’s status is unknown or error.

In addition to a response code, the metrics endpoints return machine-consumable (JSON-formatted) information
about PE services. These JSON responses use the same keys returned by the GET /status/v1/services on page 432
and GET /status/v1/services/<SERVICE NAME> on page 435 endpoints. The metrics endpoints also return
additional keys in the experimental section of the response.

Within the experimental section of the pe-jruby-metrics endpoint response, the metrics are divided into
two subsections: jruby-pool-lock-status and metrics.

The jruby-pool-lock-status subsection contains these keys:

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 439

Key Definition

current-state The JRuby pool lock state:

• :not-in-use (unlocked)
• :requested (waiting for lock)
• :acquired (locked)

last-change-time The date and time of the last current-state update,
formatted as an ISO 8601 combined date and time in
UTC.

The metrics subsection contains these keys:

Key Definition

average-borrow-time The average time a JRuby instance spends handling
requests. This is alculated by dividing the total duration
in milliseconds of the borrowed-instances value
by the borrow-count value.

average-free-jrubies The average number of JRuby instances not used over
the Puppet Server process’s lifetime.

average-lock-held-time The average time the JRuby pool held a lock, starting
when the value of jruby-pool-lock-status/
current-state changed to :acquired. This time
mostly represents the file sync service syncing code into
the live codedir, and it is calculated by dividing the total
length of time Puppet Server held the lock by the num-
pool-locks value.

average-lock-wait-time The average time Puppet Server spent waiting to lock
the JRuby pool, starting when the value of jruby-
pool-lock-status/current-state changed
to:requested. This time mostly represents how long
Puppet Server takes to fulfill agent requests, and it is
calculated by dividing the total length of time Puppet
Server waits for locks by the num-pool-locks value.

average-requested-jrubies The average number of requests waiting on an available
JRuby instance over the Puppet Server process’s
lifetime.

average-wait-time The average time Puppet Server spends waiting to
reserve an instance from the JRuby pool. It is calculated
by dividing the total duration, in milliseconds, of
requested-instances by the requested-
count value.

borrow-count The total number of JRuby instances that have been
used.

borrow-retry-count The total number of times a borrow attempt failed and
was retried, such as when the JRuby pool is flushed
while a borrow attempt is pending.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 440

Key Definition

borrow-timeout-count The number of requests that were not served because
they timed out while waiting for a JRuby instance.

borrowed-instances A list of JRuby instances currently in use, with each
reporting:

• duration-millis: The length of time that the
instance has been running.

• reason/request: A hash of details about the
request being served.

• request-method: The HTTP request method,
such as POST, GET, PUT, or DELETE.

• route-id: The route being served. For routing
metrics, see the HTTP metrics endpoint.

• uri: The request’s full URI.
• time: The time (in milliseconds, since the Unix

epoch) when the JRuby instance was borrowed.

num-free-jrubies The number of JRuby instances in the pool that are ready
to be used.

num-jrubies The total number of JRuby instances.

num-pool-locks The total number of times the JRuby pools have been
locked.

requested-count The number of JRuby instances borrowed, waiting, or
that have timed out.

requested-instances A list of requests waiting to be served, with each
reporting:

• duration-millis: The length of time the request
has waited.

• reason/request: A hash of details about the
waiting request.

• request-method: The HTTP request method,
such as POST, GET, PUT, or DELETE.

• route-id: The route being served. For routing
metrics, see the HTTP metrics endpoint.

• uri: The request’s full URI.
• time:The time (in milliseconds, since the Unix

epoch) when Puppet Server received the request.

return-count The total number of JRuby instances that have been
used.

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 441

Here is an example response for the pe-jruby-metrics endpoint:

"pe-jruby-metrics": {
 "detail_level": "debug",
 "service_status_version": 1,
 "service_version": "2.2.22",
 "state": "running",
 "status": {
 "experimental": {
 "jruby-pool-lock-status": {
 "current-state": ":not-in-use",
 "last-change-time": "2015-12-03T18:59:12.157Z"
 },
 "metrics": {
 "average-borrow-time": 292,
 "average-free-jrubies": 0.4716243097301104,
 "average-lock-held-time": 1451,
 "average-lock-wait-time": 0,
 "average-requested-jrubies": 0.21324752542875958,
 "average-wait-time": 156,
 "borrow-count": 639,
 "borrow-retry-count": 0,
 "borrow-timeout-count": 0,
 "borrowed-instances": [
 {
 "duration-millis": 3972,
 "reason": {
 "request": {
 "request-method": "post",
 "route-id": "puppet-v3-catalog-/*/",
 "uri": "/puppet/v3/catalog/
hostname.example.com"
 }
 },
 "time": 1448478371406
 }
],
 "num-free-jrubies": 0,
 "num-jrubies": 1,
 "num-pool-locks": 2849,
 "requested-count": 640,
 "requested-instances": [
 {
 "duration-millis": 3663,
 "reason": {
 "request": {
 "request-method": "put",
 "route-id": "puppet-v3-report-/*/",
 "uri": "/puppet/v3/report/
hostname.example.com"
 }
 },
 "time": 1448478371715
 }
],
 "return-count": 638
 }
 }
 }
}

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 442

GET /status/v1/services/pe-master
Returns JSON-formatted information about the routes that agents use to connect to the primary server.

Request format

The HTTPS metrics endpoints are available on port 8140 of the primary server. Your request must query port 8140
and include the level=debug parameter. For example:

uri="https://$(puppet config print server):8140/status/v1/services/pe-
master?level=debug"

curl --insecure "$uri"

For information about puppet config commands and curl commands in Windows, go to Using example
commands on page 25.

Response format

The server uses the following response codes:

• 200 if, and only if, all services report a status of running.
• 503 if any service’s status is unknown or error.

In addition to a response code, the metrics endpoints return machine-consumable (JSON-formatted) information
about PE services. These JSON responses use the same keys returned by the GET /status/v1/services on page 432
and GET /status/v1/services/<SERVICE NAME> on page 435 endpoints. The metrics endpoints also return
additional keys in the experimental section of the response.

Within the experimental section of the pe-master endpoint response, there is one subsection, http-
metrics, containing these keys:

Key Definition

aggregate The total time Puppet Server spent processing requests
for this route.

count The total number of requests Puppet Server processed for
this route.

mean The average time Puppet Server spent on each request
for this route, calculated by dividing the aggregate
value by the count value.

route-id The route being served. The request returns a route with
the special route-id of total, which represents the
aggregate data for all requests along all routes.

If not total, values use the puppet-v3 prefix, such
as puppet-v3-report/*/.

GET /status/v1/services/pe-puppet-profiler
Returns JSON-formatted statistics about catalog compilation. You can use this data to discover which functions or
resources are consuming the most resources or are most frequently used.

Request format

The HTTPS metrics endpoints are available on port 8140 of the primary server. Your request must query port 8140
and include the level=debug parameter. For example:

uri="https://$(puppet config print server):8140/status/v1/services/pe-
puppet-profiler?level=debug"

© 2024 Puppet, Inc., a Perforce company

pe | Monitoring and reporting | 443

curl --insecure "$uri"

For information about puppet config commands and curl commands in Windows, go to Using example
commands on page 25.

Response format

The server uses the following response codes:

• 200 if, and only if, all services report a status of running.
• 503 if any service’s status is unknown or error.

In addition to a response code, the metrics endpoints return machine-consumable (JSON-formatted) information
about PE services. These JSON responses use the same keys returned by the GET /status/v1/services on page 432
and GET /status/v1/services/<SERVICE NAME> on page 435 endpoints. The metrics endpoints also return
additional keys in the experimental section of the response.

The Puppet Server profiler is enabled by default, but if it is disabled, there are no metrics available for the pe-
puppet-profiler endpoint to return. In this case, the endpoint returns the same keys as GET /status/v1/services
on page 432 and an empty status key.

If the profiler is enabled, within the experimental section of the pe-puppet-profiler endpoint response,
the metrics are divided into two subsections:

• function-metrics: Contains statistics about functions evaluated by Puppet Server when compiling catalogs.
• resource-metrics: Contains statistics about resources declared in manifests compiled by Puppet Server.

You'll find these keys in the two subsections:

Key Definition

function or resource Each function measured in the function-metrics
section has a function key containing the function's
name.

Each resource measured in the resource-metrics
section has a resource key containing the resource's
name.

aggregate The total time spent handling the function call or
resource during catalog compilation.

count The number of times during catalog compilation that
Puppet Server has called the function or instantiated the
resource.

mean The average time spent handling the function call or
resource during catalog compilation. This is calculated
by dividing the aggregate value by the count value.

Here is an example response for the pe-puppet-profiler endpoint:

"pe-puppet-profiler": {
 {...},
 "status": {
 "experimental": {
 "function-metrics": [
 {
 "aggregate": 1628,
 "count": 407,

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 444

 "function": "include",
 "mean": 4
 },
 {...},
 "resource-metrics": [
 {
 "aggregate": 3535,
 "count": 5,
 "mean": 707,
 "resource": "Class[Puppet_enterprise::Profile::Console]"
 },
 {...},
]
 }
 }
}

Managing nodes

Common node management tasks include adding and removing nodes from your deployment, grouping and
classifying nodes, and running Puppet on nodes. You can also deploy code to nodes using an environment-based
testing workflow or the roles and profiles method.

• Adding and removing agent nodes on page 445
You can add nodes you want to manage with Puppet Enterprise (PE) and remove nodes you no longer need.
• Adding and removing agentless nodes on page 446
Using the inventory service, you can manage nodes and devices (such as network switches and firewalls) without
installing the Puppet agent on them. Node and device information is stored securely in your Puppet Enterprise (PE)
inventory.
• How nodes are counted on page 449
Your node count is the number of nodes in your inventory. A node is a single network-connected device such as a
server, desktop, or laptop. Virtual machines that have unique IP addresses are counted separately from the physical
machines where they reside.
• Running Puppet on nodes on page 450
Puppet automatically attempts to run on each of your nodes every 30 minutes. To trigger a Puppet run outside of the
default 30-minute interval, you can manually trigger a Puppet run.
• Grouping and classifying nodes on page 452
Configure nodes by assigning classes, parameters, and variables to them. This is called classification.
• Making changes to node groups on page 461
You can edit or remove node groups, remove nodes or classes from node groups, and edit or remove parameters and
variables.
• Environment-based testing on page 463
The environment-based testing workflow lets you test new code before pushing it to production.
• Preconfigured node groups on page 467
Puppet Enterprise includes preconfigured node groups that are used to manage your configuration.
• Managing agent certificates on page 471
Starting in 2023.4, PE is preconfigured to allow the certificate authority service to generate new agent certificates
ahead of certificate expiration dates. This default functionality helps prevent disruption associated with certificate
expirations. Optionally, you can customize the behavior of the certificate authority service.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 445

• Managing Windows nodes on page 472
You can use Puppet Enterprise (PE) to manage your Windows configurations, including controlling services, creating
local group and user accounts, and performing basic management tasks with modules from the Forge.
• Designing system configs (roles and profiles) on page 498
Your typical goal with Puppet is to build complete system configurations, which manage all of the software, services,
and configuration that you care about on a given system. The roles and profiles method can help keep complexity
under control and make your code more reusable, reconfigurable, and refactorable.
• Node classifier API v1 on page 525
These are the endpoints for the node classifier v1 API.
• Node classifier API v2 on page 575
These are the endpoints for the node classifier v2 API.
• Node inventory API v1 on page 578
These are the endpoints for the node inventory v1 API.

Adding and removing agent nodes
You can add nodes you want to manage with Puppet Enterprise (PE) and remove nodes you no longer need.

To add nodes:

1. Install agents on the nodes.
2. Accept the CSRs, as explained in Managing certificate signing requests on page 160.

Related information
Upgrading agents on page 197
Upgrade your agents as new versions of Puppet Enterprise (PE) become available. The puppet_agent module
helps automate upgrades, and provides the safest upgrade. Alternatively, you can use a script to upgrade individual
nodes.

Set a proxy for agent traffic on page 231
General proxy settings in an agent node's puppet.conf file are used to manage HTTP connections directly
initiated by the agent node.

Remove agent nodes
Purging a node removes it from your inventory so it is no longer managed by Puppet Enterprise (PE) and allows you
to use the node's license on another node.

Purging a node:

• Removes the node from PuppetDB.
• Deletes the primary server’s information cache for the node.
• Makes the license available for another node.
• Makes the hostname available for another node.

Restriction: Removing (purging) nodes doesn't Uninstall agents on page 173 from the nodes.

1. On the agent node, run this command to stop the agent service: service puppet stop

2. On the primary server, run this command to purge the node: puppet node purge <CERTNAME>
The node’s certificate is revoked, the certificate revocation list (CRL) is updated, and the node is removed from
PuppetDB and the console. The license is now available for another node. The node can't check in or re-register
with PuppetDB on the next Puppet run.

3. If you have compilers, run puppet agent -t on your compilers to distribute the updated CRL to them.

4. Optional: If the node you removed was pinned to any node groups, you must manually unpin it from the
individual node groups (or from all node groups) using the unpin-from-all command.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 446

Related information
Uninstall infrastructure nodes on page 172
The puppet-enterprise-uninstaller script is installed on the primary server. You must run the uninstaller
script on each infrastructure node you want to uninstall.

Uninstall agents on page 173
You can remove the puppet-agent package from nodes that you no longer want Puppet Enterprise (PE) to
manage.

Uninstaller options on page 174
You can use these command line options to change the uninstaller's behavior.

POST /v1/commands/unpin-from-all on page 555
Unpin one or more specific nodes from all node groups they’re pinned to. Unpinning has no effect on nodes that are
assigned to node groups via dynamic rules.

Adding and removing agentless nodes
Using the inventory service, you can manage nodes and devices (such as network switches and firewalls) without
installing the Puppet agent on them. Node and device information is stored securely in your Puppet Enterprise (PE)
inventory.

• Agentless nodes are nodes that don't have a Puppet agent installed on them. They can do things like run tasks and
plans, but they do not help maintain your infrastructure's desired state in the way agent nodes do.

• Devices or agentless device are devices, such as network switches or firewalls, that can't have a Puppet agent
installed on them. Connecting devices lets you manage these network device and run Puppet and task jobs on
them.

The inventory service uses SSH or WinRM remote connections to connect to agentless nodes. To connect to agentless
devices, the inventory service uses transport definitions from device transport modules you've installed.

After you add agentless node or device credentials to the inventory, authorized users can run tasks on the agentless
nodes and devices without re-entering the credentials. On the Tasks page (in the console), the agentless nodes and
devices are listed together with the nodes and devices that have an agent installed.

Add agentless nodes to the inventory
Use SSH or WinRM remote connections to add agentless nodes to your Puppet Enterprise (PE) inventory so you can
run tasks on them. Agentless nodes are nodes that can't (or don't) have a Puppet agent installed on them.

Before you begin

Add classes to the PE Master node group for each agent platform used in your environment. For example,
pe_repo::platform::el_7_x86_64.

Make sure your user account has this permission: Nodes: Add and delete connection information from inventory
service

1. In the PE console, click Nodes > Add nodes.

2. Click Connect over SSH or WinRM.

3. Select a transport method.

• SSH for *nix and macOS targets
• WinRM for Windows targets

4. Enter target host names and the credentials required to access them. If you use an SSH key, include the begin and
end tags.

5. Optional: Select additional Transport configuration options on page 447. For example, to customize the
connection port number, select Target Port from the Target options drop-down list, enter the desired port
number, and click Add.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 447

6. Click Add nodes.

After adding agentless nodes to your PE inventory, they are added to PuppetDB, and you can view them on the
Nodes page (in the console). Any nodes in your inventory can be added to the inventory node list when you set up
a job to run tasks. To review a node's connection settings or remove an agentless node from the inventory, go to the
Connections tab on the Node details page.

Transport configuration options
Descriptions of the target options for SSH and WinRM transports.

Option Transport method Definition

Target port SSH and WinRM The connection port.

For SSH, the default is 22.

For WinRM, the default is 5986,
unless ssl: false, then the
default is 5985.

Connection time-out in seconds SSH and WinRM The length of time you want Puppet
Enterprise (PE) to wait for a response
when attempting to establish a
connection.

Temporary directory SSH and WinRM The directory to use when uploading
temporary files to the target node.

Run as another user SSH After login, this is the user profile to
use for running commands.

Sudo password SSH The password to use when switching
user profiles via run-as.

Process request as tty SSH Use this if you need to enable text
terminal allocation.

Acceptable file extension WinRM A list of allowed file extensions for
scripts or tasks.

Scripts with the specified file
extensions rely on the target node's
file type associations to run. For
example, if Python is installed on the
target node, a .py script from PE
uses python.exe to run (unless
the file type association was changed
on the target node).

Tip: The extensions .ps1, .rb,
and .pp are always allowed and run
via hard-coded executables.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 448

Add devices to the inventory
By adding devices to your Puppet Enterprise (PE) inventory, you can manage network devices, such as switches and
firewalls, and run Puppet and task jobs on them, just like the agentless nodes in your infrastructure.

Before you begin

Depending on the device you want to connect, you must install the appropriate device transport module in your PE
production environment before you can add the device to your inventory. You can find device modules on the Puppet
Forge, such as the panos and cisco_ios modules.

Make sure your user account has this permission: Nodes: Add and delete connection information from inventory
service

Important: Managing more than 100 devices might cause performance issues on the primary server.

1. In the PE console, click Nodes > Add nodes.

2. Click Connect network devices.

3. Select the device type from the list of device transport modules that you have installed in your production
environment.

If no device types are available, or the relevant device type is missing, check that:

• You have installed the appropriate module for the device you want to manage.
• The module is installed correctly.
• The module is installed in your production environment.
• Your Puppet code has been deployed. If you're using Code Manager or r10k for Managing and deploying

Puppet code on page 778, you might need to trigger a code deployment.

For information about modules and installing modules, refer to the Modules overview and Installing and
managing modules from the command line in the Puppet documentation.

4. Enter the device certname and other connection details, as specified in the transport module's README on the
Forge. Mandatory fields are marked with an asterisk.

5. Click Add node.

After adding devices to your PE inventory, they are added to PuppetDB, and you can view them on the Nodes page
(in the console). Any devices in your inventory can be added to the inventory node list when you set up a job to run
tasks. To review a device's connection settings or remove a device from the inventory, go to the Connections tab on
the device's Node details page.
Related information
Managing modules with a Puppetfile on page 784
Almost all Puppet manifests are kept in modules, which are collections of Puppet code and data that have a specific
directory structure. With Puppet Enterprise (PE) code management, you only use the Puppetfile to install and manage
modules.

Remove devices and agentless nodes from the inventory
You can remove a device or agentless node from the Puppet Enterprise (PE) inventory by going to the Connections
tab on the Node details page. This can also be referred to as disconnecting the node or device.

Before you begin
Make sure your user account has this permission: Nodes: Add and delete connection information from inventory
service

1. In the Puppet Enterprise (PE) console, click Status or Nodes, find the node or device you want to remove, and
click its name to open the Node details page.

2. Switch to the Connections tab.

3. Click Remove connection. This link's name depends on the connection type, such as Remove SSH Connection,
Remove WinRM connection, and so on.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/modules/puppetlabs/panos
https://forge.puppet.com/modules/puppetlabs/cisco_ios
https://puppet.com/docs/puppet/8/modules_fundamentals.html
https://puppet.com/docs/puppet/8/modules_installing.html
https://puppet.com/docs/puppet/8/modules_installing.html
https://forge.puppet.com/

pe | Managing nodes | 449

4. Confirm that you want to remove the connection.

When you remove a node or device from the inventory, PuppetDB marks the node or device as expired after the
standard node time-to-live period (node-ttl). Then PuppetDB purges the node or device when it reaches the node-
purge time-to-live limit (node-purge-ttl). Once purged, the node or device no longer appears in the PE console,
and the node's license is available to reassign to another node.

Tip: For more information about the node-ttl and node-purge-ttl settings, refer to the PuppetDB [database]
settings in the Puppet documentation.

Related information
Node inventory API v1 on page 578
These are the endpoints for the node inventory v1 API.

How nodes are counted
Your node count is the number of nodes in your inventory. A node is a single network-connected device such as a
server, desktop, or laptop. Virtual machines that have unique IP addresses are counted separately from the physical
machines where they reside.

Note: On this page, the term node includes agent nodes, agentless nodes, nodes running in noop mode, and purged
nodes that had prior activity within the relevant calendar month.

Note: After adding or removing nodes, it might take 15 to 30 minutes for the updated node count to appear on the
Licensing page in the console or in the usage data returned by the CLI. This delay in updating usage data doesn't
impact bursting quota usage or license compliance.

Nodes included in the node count

The following nodes are included in your node count:

• Nodes with a report in PuppetDB during the calendar month.
• Nodes that have executed a Puppet run, task, or plan in the orchestrator, even if the nodes do not have a report

during the calendar month.

Nodes not included in the node count

The following nodes are not included in your node count:

• Infrastructure nodes including your primary server, and any compilers, database servers, and replicas in your
installation.

• Nodes that are tracked in the inventory service but are not used with Puppet runs, tasks, or plans.
• Nodes that have been purged and have no reports or activity within the calendar month.

Using the bursting quota

To support occasional spikes in node usage, you have a bursting quota. This means that on up to 4 days each calendar
month you can exceed your licensed node count up to your bursting limit, which is double the number of your
licensed nodes. If you exceed the bursting quota by using additional nodes on more than 4 days in a calendar month,
or you exceed the bursting limit at any time, you must purchase more nodes for your license.

When nodes are counted

PE tracks daily node counts from 12:00 midnight UTC to 12:00 midnight UTC. Therefore, if you exceeded your
licensed node count at 23:00 UTC and were still in excess of your licensed node count at 1:00 UTC, you would have
used two of the four days of your monthly bursting quota.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/configure.html#database-settings
https://puppet.com/docs/puppetdb/latest/configure.html#database-settings

pe | Managing nodes | 450

Each calendar month begins at 12.00 midnight on the first day of the month. For example, node usage for September
includes activity from 12:00 midnight UTC on 01 September until 12:00 midnight UTC on 01 October. At 12:00
midnight UTC on the first day of a new month, the bursting quota resets to four days. For example, if you exceeded
your licensed node count at 22:00 UTC on 30 September, and remained in excess of your licensed node count until
1:00 UTC on 01 October, you would have used one of the four days allowed in your September bursting quota and
one of the four days allowed in your October bursting quota.

Viewing your node count

To view your daily node count in the PE console, go to the License page and scroll to the Monthly usage section.
The License page also contains information about your subscription expiration date, and shows warnings when there
are license violations and when the license is approaching or past expiration.

To query daily node usage information on the command line, use the orchestrator API Usage endpoints on page
769.

Removing nodes

If you have unused nodes cluttering your inventory, and you are concerned about reaching your bursting limit, you
can Remove agent nodes on page 445 and Remove devices and agentless nodes from the inventory on page 448.

Related information
Purchasing and activating your Puppet Enterprise license on page 129
The Puppet Enterprise license gives you access to Security Compliance Management (formerly Puppet Comply) and
Continuous Delivery.

Running Puppet on nodes
Puppet automatically attempts to run on each of your nodes every 30 minutes. To trigger a Puppet run outside of the
default 30-minute interval, you can manually trigger a Puppet run.

In a Puppet run, the primary server and agent nodes perform these actions:

1. Each agent node sends facts to the primary server and requests a catalog.
2. The primary server compiles and returns each agent's catalog.
3. Each agent applies the catalog by checking each resource the catalog describes. If the agent finds any resources

that are not in the desired state, the agent makes the necessary changes to bring the resource into the desired state.

Note: Puppet run behavior differs slightly if static catalogs are enabled.

Related information
Static catalogs on page 249
A catalog is a document that describes the desired state for each resource that Puppet manages on a node. Puppet
Enterprise (PE) primary servers typically compile catalogs from manifests of Puppet code. A static catalog is a
specific type of Puppet catalog that includes metadata specifying the desired state of any file resources containing
source attributes pointing to puppet:/// locations on a node.

Running Puppet with the orchestrator
The Puppet orchestrator is a set of interactive tools you can use to deploy configuration changes when and how you
desire.

You can use the orchestrator to enforce change on a selection of nodes identified by their certnames, a PQL query, or
a node group.

You can use the orchestrator from the console, command line, or through the orchestrator API endpoints. The
orchestrator API is useful if you're putting together your own tools for running Puppet or if you want to enable CI
workflows across your infrastructure.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 451

Related information
Run Puppet on demand from the console on page 616
When you set up a job to run Puppet from the console, the orchestrator creates a job ID to track the job, shows you
all nodes included in the job, and runs Puppet on the targeted nodes in the appropriate order. Puppet compiles a new
catalog for each node included in the job.

Run Puppet on demand from the CLI on page 623
Use the puppet job run command to start an on-demand Puppet run to enforce changes on your agent nodes.

Orchestrator API v1 on page 694
You can use the orchestrator API to run jobs and plans on demand; schedule tasks and plans; get information about
jobs, plans, and events; track node usage; and more.

Running Puppet with SSH
To use trigger a Puppet run with SSH from an agent node, SSH into the target node and run puppet agent --
test or puppet agent -t.

Running Puppet from the console
In the console, you can run Puppet from an agent node's Node details page.

Restriction: The Run Puppet button is not available if an agent does not have an active websocket session with the
PCP broker, or if the node's connection method is SSH or WinRM (an agentless node), or if it is a device.

1. In the console, go to Nodes and click the name of the node you want to run Puppet on.
2. On the Node details page, click Run Puppet. You can configure these run options, if desired:

• No-op: The Puppet run simulates changes without actually enforcing the new catalog. Nodes with noop =
true in their puppet.conf files always run in no-op mode.

• Debug: Prints all messages generated during the run that are available for use in debugging.
• Trace: Prints stack traces on some errors.
• Evaltrace: Shows a breakdown of the time taken for each step in the run.

When the Puppet run completes, the console displays the node’s run status.

Related information
Node run statuses on page 393
The Status page displays each node's run status for the most recent Puppet run. Possible statuses depend on the
Puppet run mode.

Activity logging when running Puppet from the console
When you initiate a Puppet run from the console, the Activity service logs the run activity.

You can view activity for a single node by opening the node's Node details page and switching to the Activity tab.

Alternatively, you can use the Activity Service API to retrieve activity information.

Related information
Activity service API on page 380
The activity service records changes to role-based access control (RBAC) entities, such as users, directory groups,
and user roles. Use the activity service API to query event data.

Troubleshooting Puppet run failures
Puppet Enterprise (PE) creates a View Report link for most failed runs, which you can use to access the run's events
and logs. You might encounter these errors when a Puppet run fails.

Changes could not be applied

Usually caused by conflicting classes. Check the run log to get information.

This error can also occur when running in no-op mode.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 452

Run already in progress

Occurs when you try to trigger a Puppet run on a node, but there is already a Puppet run in progress. This could
be a scheduled run or a run started by another user.

Run request times out

Occurs if you attempt to start a Puppet run but the agent isn’t available.

Report request times out

Occurs when the run report is not successfully stored in PuppetDB after the run completes.

Invalid response, such as a 500 error

Some part of the request is invalid. If you used the command line or the orchestrator API to start the Puppet run,
check the formatting of your command or request. If you're using the console, or your command or request is
well-formed, your Puppet code might be have incorrect formatting.

In the console, the Run button is disabled and a run is not allowed.

You have permission to run Puppet on the node, but the agent is not responding.

Grouping and classifying nodes
Configure nodes by assigning classes, parameters, and variables to them. This is called classification.

To classify nodes, you must:

1. Create node groups on page 453 to contain nodes and preferences (classes, parameters, and variables) you want
to apply to nodes in the group. Make sure you understand the Best practices for classifying node groups on page
453 and the difference between Environment versus classification node groups on page 453.

2. Add nodes to groups.
3. Declare classes on page 457 and Define data used by node groups on page 458. You might need to Enable

data editing in the console on page 237.

Nodes can belong to multiple node groups, and they inherit classes, class parameters, and variables from all node
groups they belong to.

After classifying nodes, you can View nodes in a node group on page 461 and Make changes to node groups.

How node group inheritance works
Node groups are organized in a parent-child-grandchild hierarchy. When added to a group, nodes inherit classes,
parameters, variables, and rules from their immediate node group and the group's ancestors.

• Classes: If a class is declared in an ancestor node group, the class is inherently declared in all node groups
descending from that group.

• Class parameters and variables: Descendant node groups inherit class parameters and variables from ancestors
unless a different value is set in a descendant node group.

CAUTION: Because nodes can belong to multiple groups in separate hierarchies, it’s possible for two
node groups to contribute conflicting variable or class parameter values. Conflicting values cause Puppet
runs on agent nodes to fail.

• Dynamic node group rules: To belong to a group, a node must match all rules in the immediate group and the
rules in the ancestor groups. Use rule inheritance to refine group membership: Create broad rules for parent groups
(such as an OS family) and more specific rules for the child groups that refine the parent group rules (such as
specific platforms or versions). This way you can take a large, generic set of nodes and filter them into specific
child groups.

Tip: In the console, go to Node groups to see how node groups are related. The Node groups page shows a
hierarchical view of your node groups. From the command line, you can use the group-children endpoint to
review group lineage.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 453

Related information
GET /v1/group-children/<id> on page 563
Retrieve a list of node groups descending from a specific node group,

Best practices for classifying node groups
To organize node groups, start with the high-level functional groups that reflect the business requirements of your
organization, and work down to smaller segments within those groups.

For example, if a large portion of your infrastructure consists of web servers, create a node group called web
servers and add any classes that need to be applied to all web servers.

Next, identify subsets of web servers that have common characteristics but differ from other subsets. For example,
you might have production web servers and development web servers. So, create a dev web child node group under
the web servers node group. Nodes that match the dev web node group get all of the classes in the parent node
group in addition to the classes assigned to the dev web node group.

Environment versus classification node groups

Environment node groups assign environments to nodes, such as test, development, or production.

Important: A node can belong to only one environment node group. If a node is added to more than one
environment group, classification errors occur. See this classification conflict article for more information.

Each environment node group:

• Must correspond to a Git branch in a control repo you want to use for targeted code deployments. The Git branch
and environment group must have the same name.

• Must be a child of the All Environments node group (or whichever is the highest-level environment node group
in your installation). Furthermore, your environment node groups, themselves, must not have any child groups,
except one-time run exception subgroups used for canary testing.

• Must not include classes or configuration data.

Classification node groups assign classification data to nodes, including classes, parameters, and variables. A node
can belong in more than one classification group.

Each classification node group:

• Must be a child of All Nodes or another classification group.
• Must not be specified as an environment group in the group metadata.

Related information
Environment-based testing on page 463
The environment-based testing workflow lets you test new code before pushing it to production.

Create node groups
Use the console to create node groups to assign either an environment or classification.

Create environment node groups
Create custom environment node groups so you can target Puppet code deployments.

Before you begin
Each environment node group must correspond to a Git branch in a control repo you want to use for targeted code
deployments. The Git branch and environment group must have the same name. Make sure you know the names of
the corresponding Git branches for your environment node groups.

1. In the console, click Node groups, and click Add group.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/docs-archive/blob/main/supportkb/221328768.md

pe | Managing nodes | 454

2. Specify options for the new node group:

• Parent name: Select the top-level environment node group in your hierarchy, such as All environments or
Production environment (depending on your installation's configuration).

Important: Each environment mode group must be a child of the highest-level environment node group in
your installation.

• Group name: Enter a name corresponding to the Git branch in your control repo that you want to use for
targeted code deployments for this environment.

Important: The Git branch and environment group must have the same name.

• Environment: Select the environment that you want to assign to the nodes in this node group.
• Environment group: Select this option.

3. Click Add.

Add nodes to your environment node group to control which environment each node belongs to. Each node can
belong to only one environment node group.
Related information
Environment-based testing on page 463
The environment-based testing workflow lets you test new code before pushing it to production.

Create classification node groups
Classification node groups assign classification data to nodes.

1. In the console, click Node groups, and click Add group.

2. Specify options for the new node group:

• Parent name: Select the classification node group that you want to be the parent of your new classification
node group. Classification node groups inherit classes, parameters, and variables from their parent node group.
The default parent node group is the All Nodes node group.

• Group name: Enter a name that describes the classification node group's role. For example, Web Servers.
• Environment: Specify an environment to limit the classes and parameters available for selection in this node

group.

Specifying the Environment in a classification node group only filters the available classes and parameters. It
does not assign an environment to the nodes in the group (as is the case in environment node groups).

• Environment group: Do not select this option.

3. Click Add.

Dynamically or statically add nodes to the classification node group.

Add nodes to a node group
There are two ways to add nodes to a node group.

You can Statically add individual nodes to a node group or use fact-based rules to Dynamically add nodes to a node
group on page 455. With dynamic node group rules, Puppet Enterprise (PE) automatically adds and removes nodes
from your groups based on the rules you set, whereas you must manually add or remove static (pinned) nodes.

If you expect a node to belong to multiple node groups, make sure you understand How node group inheritance works
on page 452. If nodes inherit conflicting values from different groups, then Puppet runs on agent nodes fail.

Statically add nodes to a node group
You can pin individual nodes to node groups.

If you need to add a lot of nodes to a group, it is more useful to Dynamically add nodes to a node group on page
455 with logical rules that automatically add and remove nodes from your node groups. Pinning individual nodes
to groups is only recommended if the node group only has a few nodes or if you need to add some specific nodes that
weren't captured by the group's dynamic rules.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 455

Pinning a node is the same as creating a rule for certname = <EXACT_NODE_CERTNAME>, and Puppet
Enterprise (PE) processes this rule along with the group's other fact-based rules (if there are any).

Important: A pinned node remains in the node group until you manually remove it.

1. In the console, click Node groups and select the node group that you want to pin the node to.

2. On the Rules tab, enter the node's certname in the Certname field.

3. Click Pin node and commit changes.

Pinned nodes are listed under the Certname field.
Related information
How node group inheritance works on page 452
Node groups are organized in a parent-child-grandchild hierarchy. When added to a group, nodes inherit classes,
parameters, variables, and rules from their immediate node group and the group's ancestors.

Remove nodes from a node group on page 461
To remove nodes from a node group, you must either unpin the node or delete (or change) the dynamic rule that
added the node.

Dynamically add nodes to a node group
Rules are the most powerful and scalable way to include nodes in a node group. Rules use facts to identify nodes to
include in a group.

Rules are based on facts, such as operating system, BIOS version, hardware model, UUID, or time zone. In addition
to most core facts, you can also use structured and trusted facts for node group rules.

As long as a node matches the node group's rules, the node is included in the group and classified with the node
group's classification data (classes, parameters, and variables). If the node changes and no longer matches the node
group's rules, the node is no longer considered part of the group, and the node group's classification data no longer
applies to the node.

1. In the console, click Node Groups and select the node group you want to add nodes to.

2. Think about which nodes you want to add to this group and the characteristics of those nodes. Rules are based on
Facter facts, so you must determine which facts describe the nodes you want (or don't want) in this group. Then,
you can create logical rules based on those facts.

Rules can be inclusive or exclusive, and you can apply multiple rules to each node group. When you have multiple
rules, you can require nodes to match all rules or only match one of the rules.

3. On the Rules tab, create a fact-based rule, and click Add Rule.

For example, this rule specifies that nodes in the group must have a Red Hat OS:

• Fact: osfamily
• Operator: =
• Value: RedHat

Writing node group rules on page 456 explains the various Operator options and how to select core,
structured, and trusted facts.

4. If needed, add more rules, and select how to apply the rules: select to Or, select to

• Nodes must match all rules: Combine rules for more granular node selection.
• Nodes may match any rule: Add a variety of rules to select nodes with different characteristics.

Tip: If you have a few individual nodes that you aren't able to capture with rules, you can Statically add nodes to
a node group on page 454 in addition to your dynamic rules.

5. Commit changes.

Related information
How node group inheritance works on page 452

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/core_facts.html
https://puppet.com/docs/puppet/8/facter.html

pe | Managing nodes | 456

Node groups are organized in a parent-child-grandchild hierarchy. When added to a group, nodes inherit classes,
parameters, variables, and rules from their immediate node group and the group's ancestors.

Remove nodes from a node group on page 461
To remove nodes from a node group, you must either unpin the node or delete (or change) the dynamic rule that
added the node.

Writing node group rules
To create a dynamic node group rule, you must specify a Fact, Operator, and Value.

These three fields are required to Dynamically add nodes to a node group on page 455.

The Fact field specifies the fact you want to the rule to use. You can select from the dropdown list of known facts,
enter part of a string to filter the list, or use structured or trusted facts. For structured and trusted facts, select the
initial value from the dropdown list, then type the rest of the fact:

• To descend into a hash, use periods (.) to designate path segments, such as os.release.major or
trusted.certname.

• To specify an item in an array, put square brackets around the item's numerical index, such as
processors.models[0] or mountpoints./.options[0].

• To identify path segments that have periods, dashes, spaces, or UTF characters, put single or double quotes around
the segment, such as trusted.extensions."1.3.6.1.4.1.34380.1.2.1".

• To use trusted.extensions short names, append the short name after a second period, such as
trusted.extensions.pp_role.

Important: When you enter structured and trusted facts, PE doesn't provide suggestions as you type (except for the
top-level name key), nor does it verify that the facts exist. After you add a rule that uses a structured or trusted fact,
check the number of Node matches to verify that the fact is generating matches and was entered correctly.

The Operator field describes the relationship between the Fact and the Value. It defines how the rule uses the fact
(inclusively, exclusively, exactly, minimum, maximum, and so on).

The following table shows the operator symbols together with their respective meanings and the data types they can
relate to.

Operator Meaning Supported data types

= Is equal to string, numeric, Boolean

!= Is not equal to string, numeric, Boolean

~ Matches regular expression in string

!~ Does not match regular expression in string

> Is greater than numeric

>= Is greater than or equal to numeric

< Is less than numeric

<= Is less than or equal to numeric

<: Array contains string, numeric, Boolean

/: Array does not contain string, numeric, Boolean

The >, >=, <, and <= operators require facts that have numeric values, such as dates, times, or version numbers.

The ~ and !~ operators require a regular expression (regex) Value and are useful for matching highly-specific node
facts (for example, you want to find nodes with UUIDs starting with 9999*).

The <: and /: operators require facts with array values.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 457

The Value field describes the relevant Fact value. Depending on the Fact and Operator, the Value can be a string,
number, or regular expression.

Together these fields create a logical rule that PE uses to find matching nodes. If you have multiple dynamic rules for
one node group, you can choose whether Nodes must match all rules or if Nodes may match any rule to be added
to the group.

Using structured and trusted facts for node group rules
Structured facts group related facts, and trusted facts are a type of structured fact.

Structured facts group related facts in a hash or array. For example, the os structured fact contains multiple individual
facts about the operating system, such as architecture, family, and release. In the Puppet Enterprise (PE) console,
when you view a node's facts, structured facts are surrounded by curly braces.

Trusted facts are a type of structured fact where the facts are immutable and extracted from a node’s certificate.
Because these facts can’t be changed or overridden, trusted facts enhance security by verifying a node’s identity
before sending sensitive data in its catalog.

You can use structured and trusted facts in dynamic node group rules.

Restriction: If you use trusted facts to specify certificate extensions, in order for this fact to function properly
in a node group rule, you must use short names for Puppet-specific registered IDs and numeric IDs for
private extensions. Private extensions require numeric IDs whether or not you specify a short name in the
custom_trusted_oid_mapping.yaml file.

Declare classes
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Before you begin
The class that you want to apply must exist in an installed module. You can download modules from the Puppet Forge
or create your own module. For information about modules and installing modules, refer to the Modules overview and
Installing and managing modules from the command line in the Puppet documentation.

1. In the Puppet Enterprise (PE) console, click Node groups and select the node group that you want to add the class
to.

2. On the Classes tab, select the class to add.

Tip: The Add new class field suggests classes that your PE primary server knows about and that are available in
the environment defined in the node group's settings.

If classes are missing, check that:

• You have correctly installed the module containing the class you want to assign.
• The module is installed in the environment defined in the node group's settings. For information about the

Environment setting for classification node groups, refer to Create classification node groups on page 454.
• Your Puppet code has been deployed since installing the module or making changes to node groups. If you're

using Code Manager or r10k for Managing and deploying Puppet code on page 778, you might need to
trigger a code deployment.

3. Click Add class and then commit changes.

Tip: Classes don’t appear in the class list until they’re retrieved from the primary server and the environment
cache is refreshed. By default, both of these actions occur every three minutes. To override the default refresh
period and force the node classifier to retrieve the classes from the primary server immediately, click the Refresh
button.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/fact_overview.html#writing_structured_facts
https://puppet.com/docs/puppet/8/lang_facts_builtin_variables.html#trusted-facts
https://puppet.com/docs/puppet/8/ssl_attributes_extensions.html#puppet_registered_ids
https://puppet.com/docs/puppet/8/ssl_attributes_extensions.html#csr_extension_requests-recommended-oids-csr-extensions
https://puppet.com/docs/puppet/8/modules_fundamentals.html
https://puppet.com/docs/puppet/8/modules_installing.html

pe | Managing nodes | 458

Enable data editing in the console
In new Puppet Enterprise (PE) installations, you can, by default, edit configuration data in the console. If you
upgraded from an earlier PE version where you hadn't already enabled editing of configuration data, you must use
Hiera to manually enable Classifier Configuration Data.

1. On your primary server, open the hiera.yaml file located at: /etc/puppetlabs/puppet/hiera.yaml.

2. Add the following to the hiera.yaml file:

hierarchy:
- name: "Classifier Configuration Data"
 data_hash: classifier_data

Place additional hierarchy entries, such as hiera-yaml or hiera-eyaml under the same hierarchy
key, below the Classifier Configuration Data entry.

3. To allow users to edit the configuration data in the console, add the Set environment and Edit configuration
data permissions to any user groups that need to set environment parameters or modify class parameters.

4. If your environment is configured for disaster recovery or has compilers, update hiera.yaml on your replica
and compilers, respectively.

Define data used by node groups
The console offers multiple ways to specify data used in your manifests.

• Set configuration data on page 458: Specify values through automatic parameter lookup.
• Set parameters on page 214: Specify resource-style values used by a declared class.
• Set variables on page 459: Specify values to make available in Puppet code as top-scope variables.

Important: You can structure parameters and variables as JSON, but, if they can't be parsed as JSON, they're treated
as strings.

Related information
Tips for specifying parameter and variable values on page 459
Parameters and variables can be structured as JSON, but, if they can't be parsed as JSON, they're treated as strings.

Set configuration data
Configuration data set in the PE console is used for automatic parameter lookup in the same way that Hiera data is
used. Console configuration data takes precedence over Hiera data, but you can combine data from both sources to
configure nodes.

Tip: In most cases, setting configuration data in Hiera is the more scalable and consistent method, but there are some
cases where the console is preferable. Use the console to set configuration data if:

• You want to override Hiera data. Data set in the console overrides Hiera data when configured as recommended.
• You want to give someone permission to define or edit data, and they don’t have the skill set to do it in Hiera.
• You simply prefer the console user interface.

Important: If your installation includes a disaster recovery replica, make sure you enable data editing in the console
for both your primary server and replica.

1. In the console, click Node groups and select the node group that you want to add configuration data to.

2. On the Configuration data tab, specify a Class and select a Parameter to add.

You can select from existing classes and parameters in the node group's environment, or you can specify free-
form values. Classes aren’t validated, but any class you specify must be present in the node’s catalog at runtime in
order for the parameter value to be applied.

When you select a parameter, the Value field is automatically populated with the inherited or default value.

3. Optional: If necessary, change the parameter's default Value.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 459

Related information
Enable data editing in the console on page 237
In new Puppet Enterprise (PE) installations, you can, by default, edit configuration data in the console. If you
upgraded from an earlier PE version where you hadn't already enabled editing of configuration data, you must use
Hiera to manually enable Classifier Configuration Data.

Set parameters
Parameters are declared resource-style, which means you can use them to override other data; however, this override
capability can introduce class conflicts and declaration errors that cause Puppet runs to fail.

Important: You can structure parameters as JSON, but, if they can't be parsed as JSON, they're treated as strings.

1. In the console, click Node groups and select the node group you want to add a parameter to.

2. On the Classes tab, select the class you want to modify, and select the Parameter you want to add.

The Parameter list shows all parameters available for the selected class in the node group’s environment. When
you select a parameter, the Value field is automatically populated with the inherited or default value.

3. Optional: If necessary, change the parameter's default Value.

Related information
Tips for specifying parameter and variable values on page 459
Parameters and variables can be structured as JSON, but, if they can't be parsed as JSON, they're treated as strings.

Set variables
Variables you set in the console become top-scope variables available to all Puppet manifests.

Important: You can structure variables as JSON, but, if they can't be parsed as JSON, they're treated as strings.

1. In the console, click Node groups and select the node group you want to set a variable for.

2. On the Variables tab, enter the name of the variable in the Key field, and enter the value you want to assign to the
variable in the Value field.

3. Click Add variable and commit changes.

Related information
Tips for specifying parameter and variable values on page 459
Parameters and variables can be structured as JSON, but, if they can't be parsed as JSON, they're treated as strings.

Tips for specifying parameter and variable values
Parameters and variables can be structured as JSON, but, if they can't be parsed as JSON, they're treated as strings.

You can use these data types and syntax to specify parameters and variables:

• Strings (for example, "centos"): You can use variable-style syntax, which interpolates the result of referencing
a fact (for example, "I live at $ipaddress."), or expression-style syntax, which interpolates the result
of evaluating the embedded expression (for example, ${$os"release"}).

Important: Strings must be double-quoted, because single quotes aren't valid JSON.

Tip: In the console, to provide a value containing a dollar sign that is not part of variable syntax (such as
password hashes), you must use a backslash to escape each dollar sign and disable interpolation. For example,
the password hash 1nnkkFwEc$safFMXYaUVfKrDV4FLCm0/ must be escaped as \$1\$nnkkFwEc\
$safFMXYaUVfKrDV4FLCm0/.

• Booleans (for example, true or false).
• Numbers (for example, 123).
• Hashes (for example, {"a": 1}).

Important: You must use colons, not hash rockets.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 460

• Arrays (for example, ["1","2.3"]).

Variable-style syntax

Variable-style syntax uses a dollar sign ($) followed by a Puppet fact name, such as: "I live at $ipaddress"

Variable-style syntax is interpolated as the value of the fact. For example, $ipaddress resolves to the value of the
ipaddress fact.

Restriction: The $pe_node_groups endpoint variable cannot be interpolated when used as a classifier in class
variable values.

You can't use indexing in variable-style syntax because the indices are treated as part of the string literal. For
example, given the following fact: processors => {"count" => 4, "physicalcount" => 1}, if you
use variable-style syntax to specify $processors[count], the value of the processors fact is interpolated
and followed by literally [count]. After interpolation, the final value is {"count" => 4,"physicalcount"
=> 1}[count].

Restriction: Do not use the :: top-level scope indication because the console is not aware of Puppet variable scope.

Expression-style syntax

Use expression-style syntax when you need to index into a fact (such as ${$os[release]}), refer to trusted facts
(such as "My name is ${trusted[certname]}"), or delimit fact names from strings (such as "My ${os}
release").

For example, this expression-style syntax accesses an operating system's full release number: ${$os"release"}

Expression-style syntax uses theses elements in this order:

1. An initial dollar sign and curly brace: ${
2. A legal Puppet fact name preceded by an optional dollar sign.
3. Any number of index expressions. Quotation marks around indices are optional unless the index string contains

spaces or square brackets.
4. A closing curly brace: }

Indices in expression-style syntax can be used to refer to trusted facts or to access individual fields in structured facts.
Use strings in an index to access keys in a hashmap. If you want to access a particular item or character in an array or
string based on the order in which it is listed, you can use a zero-indexed integer.

These are examples of legal expression-style interpolation:

• ${os}

• ${$os}

• ${$os[release]}

• ${$os['release']}

• ${$os["release"]}

• ${$os[2]} (Being zero-indexed, this accesses the value of the third key-value pair in the os hash)
• ${$osrelease} (This accesses the value of the third key-value pair in the release hash)

In the console, an index can be only simple string literals or decimal integer literals. An index cannot include
variables or operations (such as string concatenation or integer arithmetic). These are examples of illegal expression-
style interpolation:

• ${$::os}

• {$os[$release]}

• ${$os[0xff]}

• ${$os[6/3]}

• ${$os[$family + $release]}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 461

• ${$os + $release}

Trusted facts

Trusted facts are considered to be keys of a hashmap called trusted. This means that trusted facts must be
interpolated using expression-style syntax. For example, the certname trusted fact is expressed as "My name
is ${trusted[certname]}". Any trusted facts that are themselves structured facts can have further index
expressions to access individual fields of that trusted fact.

Restriction: Regular expressions, resource references, and other keywords (such as undef) are not supported.

View nodes in a node group
You can view all nodes that currently match the rules specified for a node group.

1. In the console, click Node groups and select the node group you want to view.

2. Click Matching nodes.

The page displays the total number of nodes currently belonging to the group (referred to as matching nodes) and a
list of the matching nodes' names.

If you use rules to Dynamically add nodes to a node group on page 455, matching nodes are determined by facts
collected during the nodes' last Puppet runs, and the matching nodes list is updated when dynamic rules are added,
deleted, and edited. Because of How node group inheritance works on page 452, nodes must match the rules in
ancestor node groups, as well as the rules of the current node group, in order to be appear on the matching nodes list.

If you Statically add nodes to a node group on page 454, the pinned nodes belong to the group regardless of other
rules.

Making changes to node groups
You can edit or remove node groups, remove nodes or classes from node groups, and edit or remove parameters and
variables.

Edit or remove node groups
You can edit a node group to change the name, description, parent node group, environment, or environment group
setting. You can delete node groups that have no children.

1. In the console, click Node groups, and select a node group.

2. Click one of these links (located in the upper-right area of the Node group details page):

• Edit node group metadata: Enables edit mode so you can modify the node group's settings. Refer to Create
node groups on page 453 for information about node group settings.

• Remove node group: Deletes the node group. You must confirm the deletion. You can only delete node
groups that are not parents of other node groups.

3. Commit changes.

Remove nodes from a node group
To remove nodes from a node group, you must either unpin the node or delete (or change) the dynamic rule that
added the node.

Important: When is removed from a node group, the node is no longer classified with the classes declared in that
node group. However, resources installed by those classes are not removed from the node. For example, if a node
group has the apache class that installs the Apache package on the group's nodes, the Apache package is not
removed from the node when the node no longer belongs to the node group.

1. In the console, click Node groups, select the node group you want to remove nodes from, and go to the Rules tab.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 462

2. To remove nodes added to a group by dynamic node group rules, determine which rules are adding the nodes, and:

• Click Remove to remove a single rule. This also removes any other nodes matching this rule, if they do not
match any other rules.

• Click Remove all rules to remove all dynamic node group rules from the group. This removes all
dynamically-added nodes from the group.

• Change one or more rules so they exclude the nodes you do not want in the group. This might also add or
remove other nodes from the group, depending on how specific the rule is.

3. To remove pinned nodes, in the Certname table:

• Click Unpin to unpin an individual node.
• Click Unpin all pinned nodes to unpin all pinned nodes from the node group. This does not remove

dynamically-added nodes. If a pinned node also falls under one of the dynamic node group rules, the node
remains in the node group by virtue of the dynamic node group rule.

Tip: To unpin a node from all groups it’s pinned to, use the unpin-from-all command endpoint. This does
not remove a dynamically-added node – This command only removes manually pinned nodes.

4. Commit changes.

Related information
POST /v1/commands/unpin-from-all on page 555
Unpin one or more specific nodes from all node groups they’re pinned to. Unpinning has no effect on nodes that are
assigned to node groups via dynamic rules.

Remove classes from a node group

1. In the console, click Node groups, and select a node group.

2. On the Classes tab:

• Click Remove this class to remove an individual class.
• click Remove all classes to remove all classes from the node group.

Tip: If a class in the node group's class list is crossed out, the class has been deleted from your Puppet code. For
example, the module containing the class was uninstalled.

3. Commit changes.

Edit or remove class parameters
Change class parameters assigned to node groups.

1. In the console, click Node groups, and select a node group.

2. On the Classes tab, select an option for the class and parameter you want to modify:

• Edit: Edit the parameter. For more information, refer to Define data used by node groups on page 458.
• Remove: Remove the parameter.

3. Commit changes.

Edit or remove variables
Change variables assigned to node groups.

1. In the console, click Node groups, and select a node group.

2. On the Variables tab, select an option:

• Edit: Edit the variable. For more information, refer to Define data used by node groups on page 458.
• Remove: Remove the variable.
• Remove all variables: Remove all variables assigned to the node group.

3. Commit changes.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 463

Environment-based testing
The environment-based testing workflow lets you test new code before pushing it to production.

Setting up environment-based testing requires a specific node group hierarchy. Before setting up environment-based
testing, make sure you understand Environment versus classification node groups on page 453 and how to Create
node groups on page 453.

The basic node group hierarchy for environment-based testing is as follows:

1. All Nodes (root node group of all node groups)

a. All Environments (parent of all environment node groups)

1. Production environment node group
2. Staging environment node group
3. Test environment node group

a. Test environment one-time run exception node group (Used to Test code with canary nodes and
alternate Puppet environments on page 466)

4. Development environment

a. Development environment one-time run exception node group (Used to Test code with canary nodes
and alternate Puppet environments on page 466)

b. PE Infrastructure node group
c. Classification node groups and their children (Child groups can be used to Test and promote a parameter on

page 465 or Test and promote a class on page 466)

The following screenshot and table explain the environment-based testing node-group hierarchy components:

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 464

Call-out label Group name or category Description

1 All Nodes Root node group of all node groups.
Its direct children are the All
Environments node group, the PE
Infrastructure node group, and the
top-level classification node groups.

2 All Environments Each environment node group must
be a child of this group. The Puppet
environment assigned to this group
is the default Puppet environment
used for nodes without an assigned
or matched default environment.

Tip: If this group doesn't exist,
create it.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 465

Call-out label Group name or category Description

3 Various environment node groups,
each being direct children of All
Environments

Environment node groups specify
the Puppet environment that your
nodes belong to. Nodes can belong
to only one environment node group,
which determines the node's default
environment.

4 Optional one-time run exception
group, which is a direct child of a
specific environment node group

Used to Test code with canary
nodes and alternate Puppet
environments on page 466. This
group acts as a gatekeeper, and,
when present, permits nodes in the
parent environment node group to
temporarily use Puppet environments
other than their normal default
environment.

This is the only condition where it
is possible for an environment node
group to have a child group.

5 PE Infrastructure node group (and
its child groups)

These are built-in classification
node groups used to manage
infrastructure nodes. Don't modify
these groups except when following
official documentation or support
instructions.

6 Various classification node groups
and their children

Classification node groups apply
classes and configuration data to
nodes. Nodes can belong to multiple
classification node groups. Child
classification node groups can be
used Test and promote a parameter
on page 465 or Test and promote a
class on page 466.

Test and promote a parameter
Use an environment-based testing workflow to test and promote a parameter.

1. Create a classification node group. Set the Environment as the test environment, and set the Parent as the
equivalent production environment classification node group.

By creating a test group associated with the test environment, the node classifier validates parameters against the
test environment, rather than the production environment.

2. In your new test group, set a parameter you want to test.

Because you're setting the parameter on a child group, the test parameter overrides the value set by the parent
group.

3. If you're satisfied with the results of the test, manually edit the class parameter in the parent group to apply the
change to the production environment.

4. Delete the child group you used for testing.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 466

Test and promote a class
Use an environment-based testing workflow to test and promote a class.

1. Create a classification node group. Set the Environment as the test environment, and set the Parent as the
equivalent production environment classification node group.

By creating a test group associated with the test environment, the node classifier validates classes and parameters
against the test environment, rather than the production environment.

2. In your new test group, declare a class you want to test.

3. If you're satisfied with the results of the test, apply the change to the production environment by promoting
the code containing the new classes to production (if necessary) and declaring the class in the parent node group.

4. Delete the child group you used for testing.

Test code with canary nodes and alternate Puppet environments
You can test new code using one-time Puppet agent runs on specific canary nodes.

Before you begin
You must Create environment node groups on page 453 other than All Environments in which to test code, such
as development or test environment node groups.

To enable the canary workflow, create a one-time run exception child group under each environment node group
in which you want to test code. This group matches nodes on the fly when you run Puppet with the environment
specified.

For example, the following steps create a one-time run exception environment group as a child of the Development
environment node group. You can create a similar group for any environment you want to test.

1. In the console, click Node groups, and click Add group.

2. Create the one-time run exception environment node group with these options:

• Name: <ENVIRONMENT> one-time run exception, such as Development one-time run
exception

• Parent: Whichever environment you are testing, such as the Development environment
• Environment: Select agent-specified
• Environment group: Select this option.

3. Click Add.

4. Dynamically add nodes to a node group on page 455 by creating a rule to match nodes to this group if they
request a Puppet environment other than their default environment:

• Fact: agent_specified_environment

Tip: This fact name doesn't autocomplete. You must manually type it.

• Operator: ~
• Value: .+

This rule matches any node from the parent environment node group that requests to use a non-default
environment, through either the --environment flag on the command line or the environment setting in
puppet.conf. For other rules you might use, refer to Sample rules for one-time run exception groups on page
467.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 467

5. On any node in the parent environment node group (such as the Development environment group), run the
following code:

puppet agent -t --environment <ENVNAME>

Important: <ENVNAME> is the name of the Puppet environment that contains your test code. If you're using
Code Manager and a Git workflow, <ENVNAME> is the name of your Git development or feature branch.

During this Puppet run, the agent sets the agent_specified_environment value to <ENVNAME>. The
one-time run exception group's rule matches the node, and permits it to use the requested environment.

Sample rules for one-time run exception groups
These examples show several ways to configure rules for one-time run exception child groups. Where multiple rules
are listed, combine the rules by specifying that nodes must match all rules.

Testing scenario Fact Operator Value

Permit any node in the
parent environment
group to use any Puppet
environment

agent_specified_environment~ .+

agent_specified_environment~ .+Permit RHEL nodes in
the parent environment
group to use any Puppet
environment

facts.os.family = RedHat

agent_specified_environment~ .+Permit any nodes in
the parent environment
group to use any Puppet
environment except
production

agent_specified_environment!= production

Permit any nodes in
the parent environment
group to use any Puppet
environment that
begins with the prefix
"feature_

agent_specified_environment~ ^feature_.+

Preconfigured node groups
Puppet Enterprise includes preconfigured node groups that are used to manage your configuration.

All Nodes node group
This node group is at the top of the hierarchy tree. All other node groups stem from this node group.

Classes

No default classes. Avoid adding classes to this node group.

Matching nodes

All nodes.

Notes

You can't modify the preconfigured rule that matches all nodes.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 468

Infrastructure node groups
Infrastructure node groups are used to manage PE.

Important: Don't make changes to infrastructure node groups other than pinning new nodes for documented
functions, like creating compilers. If you want to add custom classifications to infrastructure nodes, create new child
groups and apply classification there.

PE Infrastructure node group
The PE Infrastructure node group is the parent to all other infrastructure node groups. This node group contains
data, such as the service hostnames, service ports, and database info (excluding passwords).

CAUTION:

It's important to correctly configure the puppet_enterprise class in the PE Infrastructure node group.
This class' parameters impact the behavior of all other preconfigured node groups that use classes starting
with puppet_enterprise::profile. Incorrectly configuring this class can cause a service outage.

Don't remove the PE Infrastructure node group. Removing this node group disrupts communication
between all of your infrastructure nodes.

Classes

puppet_enterprise: Sets the default parameters for all child infrastructure node groups

Matching nodes

Nodes are not pinned to this node group.

The PE Infrastructure node group is the parent to all other infrastructure node groups, such as PE Master. The
PE Infrastructure node group's only purpose is to set classifications that are inherited by all child infrastructure
node groups.

Never pin nodes directly to the PE Infrastructure node group. Instead, pin nodes to children of this group.

The following table describes the puppet_enterprise class parameters set on the PE Infrastructure node
group (and that are inherited by child infrastructure node groups).

Tip: <YOUR HOST> is your primary server's certname. To find the certname run: puppet config print
certname

Parameter Value

certificate_authority_host "<YOUR HOST>"

console_host "<YOUR HOST>"

console_port 443 or another port number.

Only change this if you changed the PE console service
port number from the default of 443.

database_host "<YOUR HOST>"

database_port 5432 or another port number.

Only change this if you changed the PostgreSQL
database port from the default of 5432.

database_ssl true if you're using PE-installed PostgreSQL.

false if you're using your own PostgreSQL.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 469

Parameter Value

pcp_broker_host "<YOUR HOST>"

puppet_master_host "<YOUR HOST>"

puppetdb_database_name "pe-puppetdb"

puppetdb_database_user "pe-puppetdb"

puppetdb_host ["<YOUR HOST>"]

puppetdb_port [8081] or another port number.

Only change this if you changed the PuppetDB port
number from the default of 8081. For example, if The
PuppetDB default port conflicts with another service on
page 883.

Related information
Database configuration parameters on page 114
These parameters and values are supplied for Puppet Enterprise (PE) databases.

PE Certificate Authority node group
This node group is used to manage the certificate authority (CA).

Classes

puppet_enterprise::profile::certificate_authority — manages the certificate authority on
the primary server

Matching nodes

On a new install, the primary server is pinned to this node group.

Notes

Don't add additional nodes to this node group. To avoid issues, don't set the client_allowlist parameter of
the puppet_enterprise::profile::certificate_authority class in this node group. Instead, to
grant certificates access to the CA API without listing individual certificate names, use the "pp_cli_auth":
"true" certificate extension. For instructions, see Puppet-specific registered IDs.

PE Master node group
This node group is used to manage the primary server.

Classes

• puppet_enterprise::profile::master — manages the primary server service

Matching nodes

On a new install, the primary server is pinned to this node group.

PE Compiler node group
This node group is a subset of the PE Master node group used to manage compilers running the PuppetDB service.

Classes

• puppet_enterprise::profile::master — manages the primary server service
• puppet_enterprise::profile::puppetdb — manages the PuppetDB service

Matching nodes

Compilers running the PuppetDB service are automatically added to this node group.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/puppet/8/ssl_attributes_extensions.html#puppet_registered_ids

pe | Managing nodes | 470

Notes

Don't add additional nodes to this node group.

PE Orchestrator node group
This node group is used to manage the PE orchestration services configuration, which includes things like task
concurrency limits, the PCP broker timeout, and how many JRubies can run in the orchestrator at one time.

Classes

puppet_enterprise::profile::orchestrator — manages PE orchestration services

Matching nodes

On a new install, the primary server is pinned to this node group.

Notes

Don't add additional nodes to this node group.

PE PuppetDB node group
This node group is used to manage nodes running the PuppetDB service. If the node is also serving as a compiler, it's
instead classified in the PE Compiler node group.

Classes

puppet_enterprise::profile::puppetdb — manages the PuppetDB service

Matching nodes

PuppetDB nodes that aren't functioning as compilers are pinned to this node group.

Notes

Don't add additional nodes to this node group.

PE Console node group
This node group is used to manage the console.

Classes

• puppet_enterprise::profile::console — manages the console, node classifier, and RBAC
• puppet_enterprise::license — manages the PE license file for the status indicator

Matching nodes

On a new install, the console server node is pinned to this node group.

Notes

Don't add additional nodes to this node group.

PE Agent node group
This node group is used to manage the configuration of agents.

Classes

puppet_enterprise::profile::agent — manages your agent configuration

Matching nodes

All managed nodes are pinned to this node group by default.

PE Infrastructure Agent node group
This node group is a subset of the PE Agent node group used to manage infrastructure-specific overrides.

Classes

puppet_enterprise::profile::agent — manages your agent configuration

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 471

Matching nodes

All nodes used to run your Puppet infrastructure and managed by the PE installer are pinned to this node group
by default, including the primary server, PuppetDB, console, and compilers.

Notes

You might want to manually pin to this group any additional nodes used to run your infrastructure, such as
compiler load balancer nodes. Pinning a compiler load balancer node to this group allows it to receive its catalog
from the primary server, rather than the compiler, which helps ensure availability.

PE Database node group
This node group is used to manage the PostgreSQL service.

Classes

• puppet_enterprise::profile::database — manages the PE-PostgreSQL service

Matching nodes

The node specified as puppet_enterprise::database_host is pinned to this group. By default, the
database host is the PuppetDB server node.

Notes

Don't add additional nodes to this node group.

PE Patch Management node group
This is a parent node group for nodes under patch management. Create child node groups based on your needs.

Classes

pe_patch — enables patching on nodes.

Matching nodes

There are no nodes pinned to this group. PE Patch Management is a parent group for node groups under patch
management. You can create node groups with unique configurations based on your patching needs.

Notes

Don't add additional nodes to this node group, only add node groups.

Related information
Create a node group for nodes under patch management on page 588
Create a node group for nodes you want to patch in Puppet Enterprise (PE) and add nodes to it. For example, create
a node group for testing Windows and *nix patches prior to rolling out patches to other node groups. The PE Patch
Management parent node group has the pe_patch class assigned to it and is in the console by default.

Environment node groups
Environment node groups are used only to set environments. They cannot contain any classification.

Preconfigured environment node groups differ depending on the version of PE you're on and you can customize
environment groups as needed for your ecosystem. If you upgrade from an older version of PE, your environment
node groups stay the same as they were in the older version.

Managing agent certificates
Starting in 2023.4, PE is preconfigured to allow the certificate authority service to generate new agent certificates
ahead of certificate expiration dates. This default functionality helps prevent disruption associated with certificate
expirations. Optionally, you can customize the behavior of the certificate authority service.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 472

certificate_authority service parameters
These parameters customize the behavior of the PE certificate authority service in relation to agent certificates.

You can modify the following profile class parameters either in Hiera or in the Configuration data tab for the PE
Certificate Authority infrastructure node group in the PE console.

puppet_enterprise::profile::certificate_authority::allow_auto_renewal

A Boolean specifying whether to allow automatic renewal of agent certificates.

Default: true

CAUTION: Certificate auto-renewal prevents disruption associated with agent certificate expirations. If
you disable the certificate auto-renewal feature, you must manually regenerate agent certificates to avoid
system failures when certificates expire.

puppet_enterprise::profile::certificate_authority::allow_puppetlabs_certificate_authentication

A Boolean specifying whether to allow authorization of agent certificate requests using the using the
”pp_cli_auth”: “true” certificate extension when RBAC tokens are not available. Token-based
authentication is always used where RBAC tokens are available.

When the value is set to false, authorization of agent certificate requests is only permitted with RBAC token-
based authentication.

Default: true

puppet_enterprise::profile::certificate_authority::auto_renewal_cert_ttl

A string representing the validity period of automatically generated agent certificates, when an agent is capable of
renewing certificates and the auto-renewal feature is turned on.

The value is a duration formatted as a string consisting of a number and a suffix representing a unit of time: s
(seconds), m (minutes), h (hours), d (days), or y (years).

Default: 90d

puppet_enterprise::profile::certificate_authority::ca_ttl

A string representing the default validity period of agent certificates when the auto-renewal feature is turned off.

The value is formatted as a string consisting of a number and a suffix representing a unit of time: s (seconds), m
(minutes), h (hours), d (days), or y (years).

Default: 5y

puppet_enterprise::profile::certificate_authority::client_allowlist

An array of additional agent cert names that can access the certificate_status API endpoint. This list is
additional to the base PE certificate list.

Managing Windows nodes
You can use Puppet Enterprise (PE) to manage your Windows configurations, including controlling services, creating
local group and user accounts, and performing basic management tasks with modules from the Forge.

Make sure you understand how to run Commands with elevated privileges on page 27.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Related information
Using example commands on page 25
These guidelines can help you understand and customize the example commands you'll find in the Puppet Enterprise
(PE) docs.

Install Windows agents on page 146

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 473

There are many ways you can install agents on Windows nodes, including PowerShell scripts, the Puppet Enterprise
(PE) console, the MSI installer, and the msiexec command.

Setting agent versions on page 201
Usually, you want your agent nodes to run the same agent version as the primary server; however, if absolutely
necessary, agent nodes can run a different, but compatible, version.

Basic tasks and concepts in Windows
This section is meant to help familiarize you with several common tasks used in Puppet Enterprise (PE) with
Windows agents, and explain the concepts and reasons behind performing them.

You'll create a simple manifest file and use it to perform some common actions.

Practice tasks
You'll encounter these tasks as part of other tasks throughout the Puppet Enterprise (PE) documentation. We've
provided additional explanation here for your reference.
Write a simple manifest
Puppet manifest files are lists of resources that have a unique title and a set of named attributes that describe the
desired state.

Before you begin
You need a text editor, such as Visual Studio Code (VSCode), to create manifest files. Puppet has a VSCode
extension that supports syntax highlighting of the Puppet language. Editors like Notepad++ or Notepad don't
highlight Puppet syntax, but you can use them to create manifests.

Manifest files are written in Puppet code, a domain specific language (DSL), and define the desired state of system
resources, such as file, users, and packages. Puppet compiles these text-based manifests into catalogs, and uses those
catalogs to apply configuration changes.

1. Create a file named file.pp and save it in c:\myfiles\

2. With your text editor of choice, add the following code to the file:

file { 'c:\\Temp\\foo.txt':
 ensure => present,
 content => 'This is some text in my file'
}

Note the following details in this file resource example:

• Puppet uses a basic syntax of type { title: }, where type is the resource type. In this case, the
resource type is file.

• The vvalue before the : is the resource title. In this example, the title is C:\\Temp\\foo.txt. The file
resource uses the title to determine where to create the file on disk. Resource titles must always be unique
within a given manifest.

• The ensure parameter is set to present to make sure the file exists on disk and create the file if it doesn't
already exist. For file type resources, you can also use the value absent, which removes the file from disk
if it exists.

• The content parameter is set to This is some text in my file, which writes that value to the
file.

Launch the Puppet command prompt
A lot of common interactions with Puppet are done via the command line.

To open the command line interface, enter Command Prompt Puppet in your Start Menu, and click Start
Command Prompt with Puppet.

Note these details about the Puppet command prompt:

© 2024 Puppet, Inc., a Perforce company

https://puppet-vscode.github.io/docs/getting-started/

pe | Managing nodes | 474

• Several important batch files live in the current working directory, which is at C:\Program Files\Puppet
Labs\Puppet\bin. The most important of these batch files is puppet.bat. Puppet is a Ruby based
application, and puppet.bat is a wrapper around executing Puppet code through ruby.exe.

• Running the command prompt with Puppet rather than just the default Windows command prompt ensures that all
of the Puppet tooling is in PATH, even if you change to a different directory.

Validate your manifest with puppet parser validate
You can validate that a manifest's syntax is correct by using the puppet parser validate command.

1. Open the Puppet command prompt and check your syntax by running: puppet parser validate c:
\myfiles\file.pp

If the manifest has no syntax errors, the tool outputs nothing.

2. To preview the error output, edit your sample manifest file to remove the : after the resource title, and run
puppet parser validate c:\myfiles\file.pp again to return the error response:

Error: Could not parse for environment production: Syntax error at
 'ensure' at c:/myfiles/file.pp:2:3

Simulate a Puppet run with --noop
Puppet has a switch that you can use to test if manifests make your intended changes. This is referred to as non-
enforcement mode or no-op mode.

To simulate changes, run puppet apply c:\myfiles\file.pp --noop in the command prompt and
observe the result:

C:\Program Files\Puppet Labs\Puppet\bin>puppet apply c:\myfiles\file.pp --
noop
Notice: Compiled catalog for win-User.localdomain in environment production
 in 0.45 seconds
Notice: /Stage[main]/MainFile[C:\Temp\foo.txt]/ensure: current value absent,
 should be present (noop)
Notice: Class[Main]: Would have triggered 'refresh' from 1 events
Notice: Stage[main]: Would have triggered 'refresh' from 1 events
Notice: Applied catalog in 0.03 seconds

Puppet shows you the changes it would make, but does not actually make the changes. In the above example, it would
create a new file at C:\Temp\foo.txt, but it hasn't, because you used --noop.
Enforce the desired state with puppet apply
If you are satisfied with the outcome of a no-op run, you can start enforcing the changes with the puppet apply
command.

Run puppet apply with the desired manifest file, such as: puppet apply c:\myfiles\file.pp

To see more details about what this command did, you can specify additional options, such as --trace, --debug,
or --verbose, which can help you diagnose problematic code. If puppet apply fails, Puppet outputs a full
stack trace.

Puppet enforces the resource state you've described in file.pp, in this case guaranteeing that a file (c:\Temp
\foo.txt) is present and has the contents This is some text in my file.

Understanding idempotency
A key feature of Puppet is its idempotency: The ability to repeatedly apply a manifest to guarantee a desired resource
state on a system, with the same results every time.

If a given resource is already in the desired state, Puppet performs no actions. If a given resource is not in the desired
state, Puppet takes whatever action is necessary to put the resource into the desired state. Idempotency enables Puppet
to simulate resource changes without performing them, and lets you set up configuration management one time,
fixing configuration drift without recreating resources from scratch each time Puppet runs.

To demonstrate how Puppet can be applied repeatedly to get the same results:

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 475

1. Change the manifest at c:\myfiles\file.pp to the following:

file { 'C:\\Temp\\foo.txt':
 ensure => present,
 content => 'I have changed my file content.'
}

2. Apply the manifest by running: puppet apply c:\myfiles\file.pp
3. Open c:\Temp\foo.txt and notice that Puppet changed the file's contents.

Applying the manifest again (with puppet apply c:\myfiles\file.pp) results in no changes to the system,
because the file already exists in the desired state, thereby demonstrating that Puppet behaves idempotently.

Many of the samples in the Puppet documentation assume that you have this basic understanding of creating and
editing manifest files, and applying them with puppet apply.

Additional command line tools
Once you understand how to write manifests, validate them, and use puppet apply to enforce your changes,
you're ready to use commands such as puppet agent, puppet resource, and puppet module install.

puppet agent

Like puppet apply, the puppet agent command line tool applies configuration changes to a system.
However, puppet agent retrieves compiled catalogs from a Puppet Server, and applies them to the local system.
Puppet is installed as a Windows service, and by default tries to contact the primary server every 30 minutes by
running puppet agent to retrieve new catalogs and apply them locally.

puppet resource

You can run puppet resource to query the state of a particular type of resource on the system. For example, to
list all of the users on a system, run the command puppet resource user.

The computer used for this example has three local user accounts: Administrator, Guest, and vagrant. Note that the
output is the same format as a manifest, and you can copy and paste it directly into a manifest.

puppet module install

Puppet includes many core resource types, plus you can extend Puppet by installing modules. Modules contain
additional resource definitions and the code necessary to modify a system to create, read, modify, or delete those

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 476

resources. The Puppet Forge contains modules developed by Puppet and community members available for anyone to
use.

Puppet synchronizes modules from a primary server to agent nodes during puppet agent runs. Alternatively, you
can use the standalone Puppet module tool, included when you install Puppet, to manage, view, and test modules.

Run puppet module list to show the list of modules installed on the system.

To install modules, the Puppet module tool uses the syntax puppet module install NAMESPACE/
MODULENAME. The NAMESPACE is registered to a module, and MODULE refers to the specific module name. A
very common module to install on Windows is registry, under the puppetlabs namespace. So, to install the
registry module, run puppet module install puppetlabs/registry.

Manage Windows services
You can use Puppet to manage Windows services, specifically, to start, stop, enable, disable, list, query, and
configure services. This way, you can ensure that certain services are always running or are disabled as necessary.

You write Puppet code to manage services in the manifest. When you apply the manifest, the changes you make to
the service are applied.

Note: In addition to using manifests to apply configuration changes, you can query system state using the puppet
resource command, which emits code as well as applying changes.

Ensure a Windows service is running
There are often services that you always want running in your infrastructure.

To have Puppet ensure that a service is running, use the following code:

service { '<service name>':
 ensure => 'running'
 }

Example

For example, the following manifest code ensures the Windows Time service is running:

service { 'w32time':
 ensure => 'running'
 }

Stop a Windows service
Some services can impair performance, or might need to be stopped for regular maintenance.

To disable a service, use the code:

service { '<service name>':
 ensure => 'stopped',
 enable => 'false'
 }

Example

For example, this disables the disk defragmentation service, which can negatively impact service performance.

 service { 'defragsvc':
 ensure => 'stopped',
 enable => 'false'
 }

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 477

Schedule a recurring operation with Windows Task Scheduler
Regularly scheduled operations, or tasks, are often necessary on Windows to perform routine system maintenance.

Note: If you need to run an ad-hoc task in the PE console or on the command line, see Running tasks in PE on page
628.

If you need to sync files from another system on the network, perform backups to another disk, or execute log or
index maintenance on SQL Server, you can use Puppet to schedule and perform regular tasks. The following shows
how to regularly delete files.

To delete all files recursively from C:\Windows\Temp at 8 AM each day, create a resource called
scheduled_task with these attributes:

scheduled_task { 'Purge global temp files':
 ensure => present,
 enabled => true,
 command => 'c:\\windows\\system32\\cmd.exe',
 arguments => '/c "del c:\\windows\\temp*.* /F /S /Q"',
 trigger => {
 schedule => daily,
 start_time => '08:00',
 }
}

After you set up Puppet to manage this task, the Task Scheduler includes the task you specified:

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 478

Example

In addition to creating a trivial daily task at a specified time, the scheduled task resource supports a number of other
more advanced scheduling capabilities, including more fine-tuned scheduling. For example, to change the above task
to instead perform a disk clean-up every 2 hours, modify the trigger definition:

scheduled_task { 'Purge global temp files every 2 hours':
 ensure => present,
 enabled => true,
 command => 'c:\\windows\\system32\\cmd.exe',
 arguments => '/c "del c:\\windows\\temp*.* /F /S /Q"',
 trigger => [{
 day_of_week => ['mon', 'tues', 'wed', 'thurs', 'fri'],
 every => '1',
 minutes_interval => '120',
 minutes_duration => '1440',
 schedule => 'weekly',
 start_time => '07:30'
 }],
 user => 'system',
}

You can see the corresponding definition reflected in the Task Scheduler GUI:

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 479

Manage Windows users and groups
Puppet can be used to create local group and user accounts. Local user accounts are often desirable for isolating
applications requiring unique permissions.

Manage administrator accounts
It is often necessary to standardize the local Windows Administrator password across an entire Windows deployment.

To manage administrator accounts with Puppet, create a user resource with 'Administrator' as the resource title
like so:

user { 'Administrator':
 ensure => present,
 password => '<PASSWORD>'
}

Note: Securing the password used in the manifest is beyond the scope of this introductory example, but it’s common
to use Hiera, a key/value lookup tool for configuration, with eyaml to solve this problem. Not only does this solution
provide secure storage for the password value, but it also provides parameterization to support reuse, opening the door
to easy password rotation policies across an entire network of Windows machines.

Configure an app to use a different account
You might not always want to use the default user for an application, you can use Puppet to create users for other
applications, like ASP.NET.

To configure ASP.NET apps to use accounts other than the default Network Service, create a user and exec
resource:

user { 'aspnet_banking_app':
 ensure => present,
 managehome => true,
 comment => 'ASP.NET Service account for Banking application',
 password => 'banking_app_password',
 groups => ['IIS_IUSRS', 'Users'],
 auth_membership => 'minimum',
 notify => Exec['regiis_aspnet_banking_app']
}

exec { 'regiis_aspnet_banking_app':
 path => 'c:\\windows\\Microsoft.NET\\Framework\\v4.0.30319',
 command => 'aspnet_regiis.exe -ga aspnet_banking_app',
 refreshonly => true
}

In this example, the user is created in the appropriate groups, and the ASP.NET IIS registration command is run after
the user is created to ensure file permissions are correct.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 480

In the user resource, there are a few important details to note:

• managehome is set to create the user's home directory on disk.
• auth_membership is set to minimum, meaning that Puppet makes sure the aspnet_banking_app user is

a part of the IIS_IUSRS and Users group, but doesn't remove the user from any other groups it might be a part
of.

• notify is set on the user, and refreshonly is set on the exec. This tells Puppet to run
aspnet_regiis.exe only when the aspnet_banking_app is created or changed.

Manage local groups
Local user accounts are often desirable for isolating applications requiring unique permissions. It can also be useful to
manipulate existing local groups.

To add domain users or groups not present in the Domain Administrators group to the local Administrators group, use
this code:

group { 'Administrators':
 ensure => 'present',
 members => ['DOMAIN\\User'],
 auth_membership => false
}

In this case, auth_membership is set to false to ensure that DOMAIN\User is present in the Administrators
group, but that other accounts that might be present in Administrators are not removed.

Note that the groups attribute of user and the members attribute of group might both accept SID values, like
the well-known SID for Administrators, S-1-5-32-544.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 481

Executing PowerShell code
Some Windows maintenance tasks require the use of Windows Management Instrumentation (WMI), and PowerShell
is the most useful way to access WMI methods. Puppet has a special module that can be used to execute arbitrary
PowerShell code.

A common Windows maintenance tasks is to disable Windows drive indexing, because it can negatively impact disk
performance on servers.

To disable drive indexing:

$drive = 'C:'

exec { 'disable-c-indexing':
 provider => powershell,
 command => "\$wmi_volume = Get-WmiObject -Class Win32_Volume -Filter
 'DriveLetter=\"${drive}\"'; if (\$wmi_volume.IndexingEnabled -ne \$True)
 { return }; \$wmi_volume | Set-WmiInstance -Arguments @{IndexingEnabled = \
$False}",
 unless => "if ((Get-WmiObject -Class Win32_Volume -Filter
 'DriveLetter=\"${drive}\"').IndexingEnabled) { exit 1 }",
}

You can see the results in your object editor window:

Using the Windows built-in WBEMTest tool, running this manifest sets IndexingEnabled to FALSE, which is
the desired behavior.

This exec sets a few important attributes:

• The provider is configured to use PowerShell (which relies on the module).

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 482

• The command contains inline PowerShell, and as such, must be escaped with PowerShell variables preceded with
$ must be escaped as \$.

• The unless attribute is set to ensure that Puppet behaves idempotently, a key aspect of using Puppet to manage
resources. If the resource is already in the desired state, Puppet does not modify the resource state.

Using templates to better manage Puppet code
While inline PowerShell is usable as an exec resource in your manifest, such code can be difficult to read and
maintain, especially when it comes to handling escaping rules.

For executing multi-line scripts, use Puppet templates instead. The following example shows how you can use a
template to organize the code for disabling Windows drive indexing.

$drive = 'C:'

exec { 'disable-c-indexing':
 command => template('Disable-Indexing.ps1.erb'),
 provider => powershell,
 unless => "if ((Get-WmiObject -Class Win32_Volume -Filter 'DriveLetter=
\"${drive}\"').IndexingEnabled) { exit 1 }",
}

The PowerShell code for Disable-Indexing.ps1.erb becomes:

function Disable-Indexing($Drive)
{
 $drive = Get-WmiObject -Class Win32_Volume -Filter "DriveLetter='$Letter'"
 if ($drive.IndexingEnabled -ne $True) { return }
 $drive | Set-WmiInstance -Arguments @{IndexingEnabled=$False} | Out-Null
}

Disable-Indexing -Drive '<%= @driveLetter %>'

Using Windows modules
You can use modules from the Forge to perform basic management tasks on Windows nodes, such as managing
access control lists and registry keys, and installing and creating your own packages.

Manage permissions with the acl module
The puppetlabs-acl module helps you manage access control lists (ACLs), which provide a way to interact
with permissions for the Windows file system. This module enables you to set basic permissions up to very advanced
permissions using SIDs (Security Identifiers) with an access mask, inheritance, and propagation strategies. First, start
with querying some existing permissions.
View file permissions with ACL
ACL is a custom type and provider, so you can use puppet resource to look at existing file and folder
permissions.

For some types, you can use the command puppet resource <TYPE NAME> to get all instances of that type.
However, there could be thousands of ACLs on a Windows system, so it's best to specify the folder you want to
review the types in. Here, check c:\Users to see what permissions it contains.

In the command prompt, enter puppet resource acl c:\Users

acl { 'c:\Users':
 inherit_parent_permissions => 'false',
 permissions => [
 {identity => 'SYSTEM', rights=> ['full']},
 {identity => 'Administrators', rights => ['full']},
 {identity => 'Users', rights => ['read', 'execute'], affects =>
 'self_only'},

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 483

 {identity => 'Users', rights => ['read', 'execute'], affects =>
 'children_only'},
 {identity => 'Everyone', rights => ['read', 'execute'], affects =>
 'self_only'},
 {identity => 'Everyone', rights => ['read', 'execute'], affects =>
 'children_only'}
],
}

As you can see, this particular folder does not inherit permissions from its parent folder; instead, it sets its own
permissions and determines how child files and folders inherit the permissions set here.

• {'identity' => 'SYSTEM', 'rights'=> ['full']} states that the “SYSTEM” user has full rights
to this folder, and by default all children and grandchildren files and folders (as these are the same defaults when
creating permissions in Windows).

• {'identity' => 'Users', 'rights' => ['read', 'execute'], 'affects' =>
'self_only'} gives read and execute permissions to Users but only on the current directory.

• {'identity' => 'Everyone', 'rights' => ['read', 'execute'], 'affects' =>
'children_only'} gives read and execute permissions to everyone, but only on subfolders and files.

Note: You might see what appears to be the same permission for a user/group twice (both "Users" and "Everyone"
above), where one affects only the folder itself and the other is about children only. They are in fact different
permissions.

Create a Puppet managed permission

1. Run this code to create your first Puppet managed permission. Then, save it as perms.pp

file{'c:/tempperms':
 ensure => directory,
}

By default, the acl creates an implicit relationship to any
file resources it finds that match the location.
acl {'c:/tempperms':
 permissions => [
 {identity => 'Administrators', rights => ['full']},
 {identity => 'Users', rights => ['read','execute']}
],
}

2. To validate your manifest, in the command prompt, run puppet parser validate c:\<FILE PATH>
\perms.pp. If the parser returns nothing, it means validation passed.

3. To apply the manifest, type puppet apply c:\<FILE PATH>\perms.pp

Your output should look similar to:

Notice: Compiled catalog for win2012r2x64 in environment production in
 0.12 seconds
Notice: /Stage[main]/Main/File[c:/tempperms]/ensure: created
Notice: /Stage[main]/Main/Acl[c:/tempperms]/permissions: permissions
 changed [
] to [
 { identity => 'BUILTIN\Administrators', rights => ["full"] },
 { identity => 'BUILTIN\Users', rights => ["read", "execute"] }
]
Notice: Applied catalog in 0.05 seconds

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 484

4. Review the permissions in your Windows UI. In Windows Explorer, right-click tempperms and click Properties.
Then, click the Security tab. It should appear similar to the image below.

5. Optional: It might appear that you have more permissions than you were hoping for here. This is because
by default Windows inherits parent permissions. In this case, you might not want to do that. Adjust the acl
resource to not inherit parent permissions by changing the perms.pp file to look like the below by adding
inherit_parent_permissions => false.

acl {'c:/tempperms':
 inherit_parent_permissions => false,
 permissions => [
 {identity => 'Administrators', rights => ['full']},
 {identity => 'Users', rights => ['read','execute']}
],
}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 485

6. Save the file, and return the command prompt to run puppet parser validate c:\<FILE PATH>
\perms.pp again.

7. When it validates, run puppet apply c:\<FILE PATH>\perms.pp

You should get output similar to the following:

C:\>puppet apply c:\puppet_code\perms.pp
Notice: Compiled catalog for win2012r2x64 in environment production in
 0.08 seconds
Notice: /Stage[main]/Main/Acl[c:/tempperms]/inherit_parent_permissions:
 inherit_
parent_permissions changed 'true' to 'false'
Notice: Applied catalog in 0.02 seconds

8. To check the permissions again, enter icacls c:\tempperms in the command prompt. The command,
icacls, is specifically for displaying and modifying ACLs. The output should be similar to the following:

C:\>icacls c:\tempperms
c:\tempperms BUILTIN\Administrators:(OI)(CI)(F)
 BUILTIN\Users:(OI)(CI)(RX)
 NT AUTHORITY\SYSTEM:(OI)(CI)(F)
 BUILTIN\Users:(CI)(AD)
 CREATOR OWNER:(OI)(CI)(IO)(F)
Successfully processed 1 files; Failed processing 0 files

The output shows each permission, followed by a list of specific rights in parentheses. This output shows there are
more permissions than you specified in perms.pp. Puppet manages permissions next to unmanaged or existing
permissions. In the case of removing inheritance, by default Windows copies those existing inherited permissions
(or Access Control Entries, ACEs) over to the existing ACL so you have some more permissions that you might
not want.

9. Remove the extra permissions, so that only the permissions you’ve specified are on the folder. To do this, in your
perms.pp set purge => true as follows:

acl {'c:/tempperms':
 inherit_parent_permissions => false,
 purge => true,
 permissions => [
 {identity => 'Administrators', rights => ['full']},
 {identity => 'Users', rights => ['read','execute']}
],
}

10. Run the parser command as you have before. If it still returns no errors, then you can apply the change.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 486

11. To apply the change, run puppet apply c:\<FILE PATH>\perms.pp. The output should be similar to
below:

C:\>puppet apply c:\puppet_code\perms.pp
Notice: Compiled catalog for win2012r2x64 in environment production in
 0.08 seco
nds
Notice: /Stage[main]/Main/Acl[c:/tempperms]/permissions: permissions
 changed [
{ identity => 'BUILTIN\Administrators', rights => ["full"] },
{ identity => 'BUILTIN\Users', rights => ["read", "execute"] },
{ identity => 'NT AUTHORITY\SYSTEM', rights => ["full"] },
{ identity => 'BUILTIN\Users', rights => ["mask_specific"], mask => '4',
 child_types => 'containers' },
{ identity => 'CREATOR OWNER', rights => ["full"], affects =>
 'children_only' }
] to [
{ identity => 'BUILTIN\Administrators', rights => ["full"] },
{ identity => 'BUILTIN\Users', rights => ["read", "execute"] }
]
Notice: Applied catalog in 0.05 seconds

Puppet outputs a notice as it is removing each of the permissions.

12. Take a look at the output of icacls again with icacls c:\tempperms

c:\>icacls c:\tempperms
c:\tempperms BUILTIN\Administrators:(OI)(CI)(F)
 BUILTIN\Users:(OI)(CI)(RX)
Successfully processed 1 files; Failed processing 0 files

Now the permissions have been set up for this directory. You can get into more advanced permission scenarios if you
read the usage scenarios on this module’s Forge page.

Create managed registry keys with registry module
You might eventually need to use the registry to access and set highly available settings, among other things. The
puppetlabs-registry module, which is also a Puppet Supported Module enables you to set both registry keys
and values.
View registry keys and values with puppet resource
puppetlabs-registry is a custom type and provider, so you can use puppet resource to examine existing
registry settings.

This command is somewhat limited, like the acl module, in that it is restricted to only what is specified.

Keys are like file paths (directories), and values are like files that can have data and be of different types.

1. To examine a registry key, open a command prompt and run:

puppet resource registry_key 'HKLM\Software\Microsoft\Windows'

registry_key { 'HKLM\Software\Microsoft\Windows\':
 ensure => 'present',
}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 487

2. To examine a registry value, run:

puppet resource registry_value 'HKLM\SYSTEM\CurrentControlSet\Services
\BITS\DisplayName'

registry_value { 'HKLM\SYSTEM\CurrentControlSet\Services\BITS
\DisplayName':
 ensure => 'present',
 data => ['Background Intelligent Transfer Service'],
 type => 'string',
}

Create managed keys
Learn how to make managed registry keys, and see Puppet correct configuration drift when you try and alter them in
Registry Editor.

1. Create your first Puppet managed registry keys and values:

registry_key { 'HKLM\Software\zTemporaryPuppet':
 ensure => present,
}

By default the registry creates an implicit relationship to any file
resources it finds that match the location.
registry_value {'HKLM\Software\zTemporaryPuppet\StringValue':
 ensure => 'present',
 data => 'This is a custom value.',
 type => 'string',
}

#forcing a 32-bit registry view; watch where this is created:
registry_key { '32:HKLM\Software\zTemporaryPuppet':
 ensure => present,
}

registry_value {'32:HKLM\Software\zTemporaryPuppet\StringValue':
 ensure => 'present',
 data => 'This is a custom 32-bit value.',
 type => 'expand',
}

2. Save the file as registry.pp.

3. Validate the manifest. In the command prompt, run puppet parser validate c:\<FILE PATH>
\registry.pp

If the parser returns nothing, it means validation passed.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 488

4. Now, apply the manifest by running puppet apply c:\<FILE PATH>\registry.pp in the command
prompt. Your output should look similar to below.

Notice: Compiled catalog for win2012r2x64 in environment production in
 0.11 seco
nds
Notice: /Stage[main]/Main/Registry_key[HKLM\Software\zTemporaryPuppet]/
ensure: c
reated
Notice: /Stage[main]/Main/Registry_value[HKLM\Software\zTemporaryPuppet
\StringVa
lue]/ensure: created
Notice: /Stage[main]/Main/Registry_key[32:HKLM\Software\zTemporaryPuppet]/
ensure
: created
Notice: /Stage[main]/Main/Registry_value[32:HKLM\Software\zTemporaryPuppet
\Strin
gValue]/ensure: created
Notice: Applied catalog in 0.03 seconds

5. Next, inspect the registry and see what you have. Press Start + R, then type regedit and press Enter. Once the
Registry Editor opens, find your keys under HKEY_LOCAL_MACHINE.

Note that the 32-bit keys were created under the 32-bit section of Wow6432Node for Software.

6. Apply the manifest again by running puppet apply c:\<FILE PATH>\registry.pp

Notice: Compiled catalog for win2012r2x64 in environment production in
 0.11 seconds
Notice: Applied catalog in 0.02 seconds

Nothing changed, so there is no work for Puppet to do.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 489

7. In Registry Editor, change the data. Select HKLM\Software\zTemporaryPuppet and in the right box, double-
click StringValue. Edit the value data, and click OK.

This time, changes have been made, so running puppet apply c:\path\to\registry.pp results in a
different output.

Notice: Compiled catalog for win2012r2x64 in environment production
in 0.11 seconds
Notice: /Stage[main]/Main/Registry_value[HKLM\Software\zTemporaryPuppet
\StringValue]/data:
data changed 'This is a custom value. Edited' to 'This is a custom value.'
Notice: Applied catalog in 0.03 seconds

Puppet automatically corrects the configuration drift.

8. Next, clean up and remove the keys and values. Make your registry.pp file look like the below:

registry_key { 'HKLM\Software\zTemporaryPuppet':
 ensure => absent,
}

#forcing a 32 bit registry view, watch where this is created
registry_key { '32:HKLM\Software\zTemporaryPuppet':
 ensure => absent,
}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 490

9. Validate it with puppet parser validate c:\path\to\registry.pp and apply it again with puppet
apply c:\path\to\registry.pp

Notice: Compiled catalog for win2012r2x64 in environment production in
 0.06 seconds
Notice: /Stage[main]/Main/Registry_key[HKLM\Software\zTemporaryPuppet]/
ensure: removed
Notice: /Stage[main]/Main/Registry_key[32:HKLM\Software\zTemporaryPuppet]/
ensure
: removed
Notice: Applied catalog in 0.02 seconds

Refresh the view in your Registry Editor. The values are gone.

Example

Here’s a real world example that disables error reporting:

class puppetconf::disable_error_reporting {
 registry_value { 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows
 Error Reporting\ForceQueue':
 type => dword,
 data => '1',
 }

 registry_value { 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows
 Error Reporting\DontShowUI':
 type => dword,
 data => '1',
 }

 registry_value { 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows
 Error Reporting\DontSendAdditionalData':
 type => dword,
 data => '1',
 }

 registry_key { 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows Error
 Reporting\Consent':
 ensure => present,
 }

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 491

 registry_value { 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows
 Error Reporting\Consent\DefaultConsent':
 type => dword,
 data => '2',
 }
}

Create, install, and repackage packages with the chocolatey module
Chocolatey is a package manager for Windows that is similar in design and execution to package managers on
non-Windows systems. The chocolatey module is a Puppet Approved Module, so it's not eligible for Puppet
Enterprise support services. The module has the capability to intall and configure Chocolatey itself, and then manage
software on Windows with Chocolatey packages.
View existing packages
Chocolatey has a custom provider for the package resource type, so you can use puppet resource to view
existing packages.

In the command prompt, run puppet resource package --param provider | more

The additional provider parameter in this command outputs all types of installed packages that are detected by
multiple providers.

Install Chocolatey
These steps are to install Chocolatey (choco.exe) itself. You use the chocolatey module to ensure Chocolatey is
installed.

1. Create a new manifest in the chocolatey module called chocolatey.pp with the following contents:

include chocolatey

2. Validate the manifest by running: puppet parser validate c:\<FILE PATH>\chocolatey.pp in
the command prompt. If the parser returns nothing, it means validation passed.

3. Apply the manifest by running: puppet apply c:\<FILE PATH>\chocolatey.pp

Make sure the output is similar to the following:

Notice: Compiled catalog for win2012r2x64 in environment production in
 0.58 seconds
Notice: /Stage[main]/Chocolatey::Install/Windows_env[chocolatey_PATH_env]/
ensure
: created
Notice: /Stage[main]/Chocolatey::Install/
Windows_env[chocolatey_ChocolateyInstal
l_env]/ensure: created
Notice: /Stage[main]/Chocolatey::Install/
Exec[install_chocolatey_official]/retur
ns: executed successfully
Notice: /Stage[main]/Chocolatey::Install/
Exec[install_chocolatey_official]: Trig
gered 'refresh' from 2 events
Notice: Finished catalog run in 13.22 seconds

In a production scenario, you’ll likely have a Chocolatey.nupkg file located somewhere internally. In these
cases, you can use the internal nupkg to install Chocolatey, such as:

class {'chocolatey':
 chocolatey_download_url => 'https://internalurl/to/chocolatey.nupkg',
 use_7zip => false,
 log_output => true,
}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 492

Install a package with chocolatey
Normally, when installing packages you copy them locally first, make any required changes to bring everything
they download to an internal location, repackage the package with the edits, and build your own packages to host on
your internal package repository (feed). For this exercise, however, you directly install a portable Notepad++ from
Chocolatey's community feed. The Notepad++ CommandLine package is portable and shouldn't greatly affect an
existing system.

1. Update the manifest chocolatey.pp with the following contents:

package {'notepadplusplus.commandline':
 ensure => installed,
 provider => chocolatey,
}

2. Validate the manifest by running puppet parser validate c:\<FILE PATH>\chocolatey.pp in
the command prompt. If the parser returns nothing, it means validation passed.

3. Now, apply the manifest with puppet apply c:\<FILE PATH>\chocolatey.pp. Your output should
look similar to below.

Notice: Compiled catalog for win2012r2x64 in environment production in
 0.75 seconds
Notice: /Stage[main]/Main/Package[notepadplusplus.commandline]/ensure:
 created
Notice: Applied catalog in 15.51 seconds

If you want to use this package for a production scenario, you need an internal custom feed. This is simple to set
up with the chocolatey_server module. You could also use Sonatype Nexus, Artifactory, or a CIFS share if
you want to host packages with a non-Windows option, or you can use anything on Windows that exposes a NuGet
OData feed (Nuget is the packaging infrastructure that Chocolatey uses). See the How To Host Feed page of the
chocolatey wiki for more in-depth information. You could also store packages on your primary server and use a
file resource to verify they are in a specific local directory prior to ensuring the packages.

Example

The following example ensures that Chocolatey, the Chocolatey Simple Server (an internal Chocolatey package
repository), and some packages are installed. It requires the additional chocolatey/chocolatey_server module.

In c:\<FILE PATH>\packages you must have packages for Chocolatey, Chocolatey.Server, RoundhousE,
Launchy, and Git, as well as any of their dependencies for this to work.

case $operatingsystem {
 'windows': {
 Package {
 provider => chocolatey,
 source => 'C:\packages',
 }
 }
}

include chocolatey
class {'chocolatey':
 chocolatey_download_url => 'file:///C:/packages/
chocolatey.0.9.9.11.nupkg',
 use_7zip => false,
 log_output => true,
}

This contains the bits to install the custom server.
include chocolatey_server
class {'chocolatey_server':
 server_package_source => 'C:/packages',
}

© 2024 Puppet, Inc., a Perforce company

https://github.com/chocolatey/choco/wiki/How-To-Host-Feed
https://github.com/chocolatey/choco/wiki/How-To-Host-Feed
https://forge.puppetlabs.com/chocolatey/chocolatey_server
https://chocolatey.org/packages/chocolatey
https://chocolatey.org/packages/chocolatey.server
https://chocolatey.org/packages/roundhouse
https://chocolatey.org/packages/launchy
https://chocolatey.org/packages/git

pe | Managing nodes | 493

package {'roundhouse':
 ensure => '0.8.5.0',
}

package {'launchy':
 ensure => installed,
 install_options => ['-override', '-installArgs','"', '/VERYSILENT','/
NORESTART','"'],
}

package {'git':
 ensure => latest,
}

Copy an existing package and make it internal (repackaging packages)
To make the existing package local, use these steps.

Chocolatey's community feed has quite a few packages, but they are geared towards community and use the internet
for downloading from official distribution sites. However, they are attractive as they have everything necessary
to install a piece of software on your machine. Through the repackaging process, by which you take a community
package and bring all of the bits internal or embed them into the package, you can completely internalize a package
to host on an internal Chocolatey/NuGet repository. This gives you complete control over a package and removes the
aforementioned production trust and control issues.

1. Download the Notepad++ package from Chocolatey's community feed by going to the package page and clicking
the download link.

2. Rename the downloaded file to end with .zip and unpack the file as a regular archive.

3. Delete the _rels and package folders and the [Content_Types].xml file. These are created during choco
pack and should not be included, because they're regenerated (and their existence leads to issues).

notepadplusplus.commandline.6.8.7.nupkg
####_rels # DELETE
####package # DELETE
####services
####tools
[Content_Types].xml # DELETE
notepadplusplus.commandline.nuspec

4. Open tools\chocolateyInstall.ps1.

Install-ChocolateyZipPackage 'notepadplusplus.commandline' 'https://
notepad-plus-plus.org/repository/6.x/6.8.7/npp.6.8.7.bin.zip' "$(Split-
Path -parent $MyInvocation.MyCommand.Definition)"

5. Download the zip file and place it in the tools folder of the package.

6. Next, edit chocolateyInstall.ps1 to point to this embedded file instead of reaching out to the internet
(if the size of the file is over 50MB, you might want to put it on a file share somewhere internally for better
performance).

$toolsDir = "$(Split-Path -parent $MyInvocation.MyCommand.Definition)"
Install-ChocolateyZipPackage 'notepadplusplus.commandline' "$toolsDir
\npp.6.8.7.bin.zip" "$toolsDir"

The double quotes allow for string interpolation (meaning variables get interpreted instead of taken literally).

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 494

7. Next, open the *.nuspec file to view its contents and make any necessary changes.

<?xml version="1.0"?>
<package xmlns="http://schemas.microsoft.com/packaging/2010/07/
nuspec.xsd">
 <metadata>
 <id>notepadplusplus.commandline</id>
 <version>6.8.7</version>
 <title>Notepad++ (Portable, CommandLine)</title>
 <authors>Don Ho</authors>
 <owners>Rob Reynolds</owners>
 <projectUrl>https://notepad-plus-plus.org/</projectUrl>
 <iconUrl>https://cdn.rawgit.com/ferventcoder/chocolatey-
packages/02c21bebe5abb495a56747cbb9b4b5415c933fc0/icons/
notepadplusplus.png</iconUrl>
 <requireLicenseAcceptance>false</requireLicenseAcceptance>
 <description>Notepad++ is a ... </description>
 <summary>Notepad++ is a free (as in "free speech" and also as in "free
 beer") source code editor and Notepad replacement that supports several
 languages. </summary>
 <tags>notepad notepadplusplus notepad-plus-plus</tags>
 </metadata>
</package>

Some organizations change the version field to denote that this is an edited internal package, for example
changing 6.8.7 to 6.8.7.20151202. For now, this is not necessary.

8. Now you can navigate via the command prompt to the folder with the .nuspec file (from a Windows machine
unless you’ve installed Mono and built choco.exe from source) and use choco pack. You can also be more
specific and run choco pack <FILE PATH>\notepadplusplus.commandline.nuspec. The output
should be similar to below.

Attempting to build package from 'notepadplusplus.commandline.nuspec'.
Successfully created package 'notepadplusplus.commandline.6.8.7.nupkg'

Normally you test on a system to ensure that the package you just built is good prior to pushing the package (just
the *.nupkg) to your internal repository. This can be done by using choco.exe on a test system to install
(choco install notepadplusplus.commandline -source %cd% - change %cd% to $pwd in
PowerShell.exe) and uninstall (choco uninstall notepadplusplus.commandline). Another method
of testing is to run the manifest pointed to a local source folder, which is what you are going to do.

9. Create c:\packages and copy the resulting package file
(notepadplusplus.commandline.6.8.7.nupkg) into it.

This won’t actually install on this system since you just installed the same version from Chocolatey’s community
feed. So you need to remove the existing package first. To remove it, edit your chocolatey.pp to set the
package to absent.

package {'notepadplusplus.commandline':
 ensure => absent,
 provider => chocolatey,
}

10. Validate the manifest with puppet parser validate path\to\chocolatey.pp. Apply the manifest
to ensure the change puppet apply c:\path\to\chocolatey.pp.

You can validate that the package has been removed by checking for it in the package install location or by using
choco list -lo.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 495

11. Update the manifest (chocolatey.pp) to use the custom package.

package {'notepadplusplus.commandline':
 ensure => latest,
 provider => chocolatey,
 source => 'c:\packages',
}

12. Validate the manifest with the parser and then apply it again. You can see Puppet creating the new install in the
output.

Notice: Compiled catalog for win2012r2x64 in environment production in
 0.79 seconds
Notice: /Stage[main]/Main/Package[notepadplusplus.commandline]/ensure:
 created
Notice: Applied catalog in 14.78 seconds

13. In an earlier step, you added a *.zip file to the package, so that you can inspect it and be
sure the custom package was installed. Navigate to C:\ProgramData\chocolatey\lib
\notepadplusplus.commandline\tools (if you have a default install location for Chocolatey) and see
if you can find the *.zip file.

You can also validate the chocolateyInstall.ps1 by opening and viewing it to see that it is the custom file
you changed.

Create a package with chocolatey
Creating your own packages is, for some system administrators, surprisingly simple compared to other packaging
standards.

Ensure you have at least Chocolatey CLI (choco.exe) version 0.9.9.11 or newer for this next part.

1. From the command prompt, enter choco new -h to see a help menu of what the available options are.

2. Next, use choco new vagrant to create a package named 'vagrant'. The output should be similar to the
following:

Creating a new package specification at C:\temppackages\vagrant
 Generating template to a file
 at 'C:\temppackages\vagrant\vagrant.nuspec'
 Generating template to a file
 at 'C:\temppackages\vagrant\tools\chocolateyinstall.ps1'
 Generating template to a file
 at 'C:\temppackages\vagrant\tools\chocolateyuninstall.ps1'
 Generating template to a file
 at 'C:\temppackages\vagrant\tools\ReadMe.md'
 Successfully generated vagrant package specification files
 at 'C:\temppackages\vagrant'

It comes with some files already templated for you to fill out (you can also create your own custom templates for
later use).

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 496

3. Open vagrant.nuspec, and edit it to look like this:

<?xml version="1.0" encoding="utf-8"?>
<package xmlns="http://schemas.microsoft.com/packaging/2015/06/
nuspec.xsd">
 <metadata>
 <id>vagrant</id>
 <title>Vagrant (Install)</title>
 <version>1.8.4</version>
 <authors>HashiCorp</authors>
 <owners>my company</owners>
 <description>Vagrant - Development environments made easy.</
description>
 </metadata>
 <files>
 <file src="tools**" target="tools" />
 </files>
</package>

Unless you are sharing with the world, you don’t need most of what is in the nuspec template file, so only required
items are included above. Match the version of the package in this nuspec file to the version of the underlying
software as closely as possible. In this example, Vagrant 1.8.4 is being packaged.

4. Open chocolateyInstall.ps1 and edit it to look like the following:

$ErrorActionPreference = 'Stop';

$packageName= 'vagrant'
$toolsDir = "$(Split-Path -parent $MyInvocation.MyCommand.Definition)"
$fileLocation = Join-Path $toolsDir 'vagrant_1.8.4.msi'

$packageArgs = @{
 packageName = $packageName
 fileType = 'msi'
 file = $fileLocation

 silentArgs = "/qn /norestart"
 validExitCodes= @(0, 3010, 1641)
}

Install-ChocolateyInstallPackage @packageArgs

Note: The above is Install-ChocolateyINSTALLPackage, not to be confused with Install-ChocolateyPackage.
The names are very close to each other, however the latter also downloads software from a URI (URL, ftp, file)
which is not necessary for this example.

5. Delete the ReadMe.md and chocolateyUninstall.ps1 files. Download Vagrant and move it to the tools
folder of the package.

Note: Normally if a package is over 100MB, it is recommended to move the software installer/archive to a share
drive and point to it instead. For this example, just bundle it as is.

6. Now pack it up by using choco pack. Copy the new vagrant.1.8.4.nupkg file to c:\packages.

7. Open the manifest, and add the new package you just created. Your chocolatey.pp file should look like the
below.

package {'vagrant':
 ensure => installed,
 provider => chocolatey,
 source => 'c:\packages',
}

© 2024 Puppet, Inc., a Perforce company

https://github.com/chocolatey/choco/wiki/HelpersInstallChocolateyInstallPackage
https://github.com/chocolatey/choco/wiki/HelpersInstallChocolateyPackage
https://www.vagrantup.com/downloads.html

pe | Managing nodes | 497

8. Save the file and make sure to validate with the Puppet parser.

9. Use puppet apply <FILE PATH>\chocolatey.pp to run the manifest.

10. Open Control Panel, Programs and Features and take a look.

Vagrant is installed!

Uninstall packages with Chocolatey
In addition to installing and creating packages, Chocolatey can also help you uninstall them.

To verify that the choco autoUninstaller feature is turned on, use choco feature to list the features and
their current state. If you're using include chocolatey or class chocolatey to ensure Chocolatey is
installed, the configuration is applied automatically (unless you have explicitly disabled it). Starting in Chocolatey
version 0.9.10, it is enabled by default.

1. If you see autoUninstaller - [Disabled], you need to enable it. To do this, in the command prompt,
run choco feature enable -n autoUninstaller You should see a similar success message:

You should see a similar success message:

Enabled autoUninstaller

2. To remove Vagrant, edit your chocolatey.pp manifest to ensure => absent. Then save and validate the
file.

package {'vagrant':
 ensure => absent,
 provider => chocolatey,
 source => 'c:\packages',
}

3. Next, run puppet apply <FILE PATH>\chocolatey.pp to apply the manifest.

Notice: Compiled catalog for win2012r2x64 in environment production in
 0.75 seconds
Notice: /Stage[main]/Main/Package[vagrant]/ensure: removed
Notice: Applied catalog in 40.85 seconds

You can look in the Control Panel, Programs and Features to see that it’s no longer installed!

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 498

Designing system configs (roles and profiles)
Your typical goal with Puppet is to build complete system configurations, which manage all of the software, services,
and configuration that you care about on a given system. The roles and profiles method can help keep complexity
under control and make your code more reusable, reconfigurable, and refactorable.

• The roles and profiles method on page 498
The roles and profiles method is the most reliable way to build reusable, configurable, and refactorable system
configurations.
• Roles and profiles example on page 502
This example demonstrates a complete roles and profiles workflow. Use it to understand the roles and profiles method
as a whole. Additional examples show how to design advanced configurations by refactoring this example code to a
higher level of complexity.
• Designing advanced profiles on page 505
In this advanced example, we iteratively refactor our basic roles and profiles example to handle real-world concerns.
The final result is — with only minor differences — the Jenkins profile we use in production here at Puppet.
• Designing convenient roles on page 522
There are several approaches to building roles, and you must decide which ones are most convenient for you and your
team.

The roles and profiles method
The roles and profiles method is the most reliable way to build reusable, configurable, and refactorable system
configurations.

It's not a straightforward recipe: you must think hard about the nature of your infrastructure and your team. It's
also not a final state: expect to refine your configurations over time. Instead, it's an approach to designing your
infrastructure's interface — sealing away incidental complexity, surfacing the significant complexity, and making
sure your data behaves predictably.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 499

Building configurations without roles and profiles

Without roles and profiles, people typically build system configurations in their node classifier or main manifest,
using Hiera to handle tricky inheritance problems. A standard approach is to create a group of similar nodes and
assign classes to it, then create child groups with extra classes for nodes that have additional needs. Another common
pattern is to put everything in Hiera, using a very large hierarchy that reflects every variation in the infrastructure.

If this works for you, then it works! You might not need roles and profiles. But most people find direct building gets
difficult to understand and maintain over time.

Configuring roles and profiles
Roles and profiles are two extra layers of indirection between your node classifier and your component modules.

The roles and profiles method separates your code into three levels:

• Component modules — Normal modules that manage one particular technology, for example puppetlabs/apache.
• Profiles — Wrapper classes that use multiple component modules to configure a layered technology stack.
• Roles — Wrapper classes that use multiple profiles to build a complete system configuration.

These extra layers of indirection might seem like they add complexity, but they give you a space to build practical,
business-specific interfaces to the configuration you care most about. A better interface makes hierarchical data easier
to use, makes system configurations easier to read, and makes refactoring easier.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 500

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 501

In short, from top to bottom:

• Your node classifier assigns one role class to a group of nodes. The role manages a whole system configuration,
so no other classes are needed. The node classifier does not configure the role in any way.

• That role class declares some profile classes with include, and does nothing else. For example:

 class role::jenkins::primaryserver {
 include profile::base
 include profile::server
 include profile::jenkins::primaryserver
 }

• Each profile configures a layered technology stack, using multiple component modules and the built-in resource
types. (In the diagram, profile::jenkins::primaryserver uses puppet/jenkins, puppetlabs/apt, a
home-built backup module, and some package and file resources.)

• Profiles can take configuration data from the console, Hiera, or Puppet lookup. (In the diagram, three different
hierarchy levels contribute data.)

• Classes from component modules are always declared via a profile, and never assigned directly to a node.

• If a component class has parameters, you specify them in the profile; never use Hiera or Puppet lookup to
override component class params.

Rules for profile classes
There are rules for writing profile classes.

• Make sure you can safely include any profile multiple times — don't use resource-like declarations on them.
• Profiles can include other profiles.
• Profiles own all the class parameters for their component classes. If the profile omits one, that means you

definitely want the default value; the component class shouldn't use a value from Hiera data. If you need to set a
class parameter that was omitted previously, refactor the profile.

• There are three ways a profile can get the information it needs to configure component classes:

• If your business always uses the same value for a given parameter, hardcode it.
• If you can't hardcode it, try to compute it based on information you already have.
• Finally, if you can't compute it, look it up in your data. To reduce lookups, identify cases where multiple

parameters can be derived from the answer to a single question.

This is a game of trade-offs. Hardcoded parameters are the easiest to read, and also the least flexible. Putting
values in your Hiera data is very flexible, but can be very difficult to read: you might have to look through a lot of
files (or run a lot of lookup commands) to see what the profile is actually doing. Using conditional logic to derive
a value is a middle-ground. Aim for the most readable option you can get away with.

Rules for role classes
There are rules for writing role classes.

• The only thing roles should do is declare profile classes with include. Don't declare any component classes or
normal resources in a role.

Optionally, roles can use conditional logic to decide which profiles to use.
• Roles should not have any class parameters of their own.
• Roles should not set class parameters for any profiles. (Those are all handled by data lookup.)
• The name of a role should be based on your business's conversational name for the type of node it manages.

This means that if you regularly call a machine a "Jenkins primary server," it makes sense to write a role named
role::jenkins::primaryserver. But if you call it a "web server," you shouldn't use a name like
role::nginx — go with something like role::web instead.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 502

Methods for data lookup
Profiles usually require some amount of configuration, and they must use data lookup to get it.

This profile uses the automatic class parameter lookup to request data.

Example Hiera data
profile::jenkins::jenkins_port: 8000
profile::jenkins::java_dist: jre
profile::jenkins::java_version: '8'

Example manifest
class profile::jenkins (
 Integer $jenkins_port,
 String $java_dist,
 String $java_version
) {
...

This profile omits the parameters and uses the lookup function:

class profile::jenkins {
 $jenkins_port = lookup('profile::jenkins::jenkins_port', {value_type =>
 String, default_value => '9091'})
 $java_dist = lookup('profile::jenkins::java_dist', {value_type =>
 String, default_value => 'jdk'})
 $java_version = lookup('profile::jenkins::java_version', {value_type =>
 String, default_value => 'latest'})
 # ...

In general, class parameters are preferable to lookups. They integrate better with tools like Puppet strings, and
they're a reliable and well-known place to look for configuration. But using lookup is a fine approach if you aren't
comfortable with automatic parameter lookup. Some people prefer the full lookup key to be written in the profile, so
they can globally grep for it.

Roles and profiles example
This example demonstrates a complete roles and profiles workflow. Use it to understand the roles and profiles method
as a whole. Additional examples show how to design advanced configurations by refactoring this example code to a
higher level of complexity.

Configure Jenkins controller servers with roles and profiles
Jenkins is a continuous integration (CI) application that runs on the JVM. The Jenkins controller server provides a
web front-end, and also runs CI tasks at scheduled times or in reaction to events.

In this example, we manage the configuration of Jenkins controller servers.

Set up your prerequisites
If you're new to using roles and profiles, do some additional setup before writing any new code.

1. Create two modules: one named role, and one named profile.

If you deploy your code with Code Manager or r10k, put these two modules in your control repository instead of
declaring them in your Puppetfile, because Code Manager and r10k reserve the modules directory for their own
use.

a. Make a new directory in the repo named site.
b. Edit the environment.conf file to add site to the modulepath. (For example: modulepath =

site:modules:$basemodulepath).
c. Put the role and profile modules in the site directory.

2. Make sure Hiera or Puppet lookup is set up and working, with a hierarchy that works well for you.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 503

Choose component modules
For our example, we want to manage Jenkins itself using the puppet/jenkins module.

Jenkins requires Java, and the puppet/jenkins module can manage it automatically. But we want finer control
over Java, so we're going to disable that. So, we need a Java module, and puppetlabs/java is a good choice.

That's enough to start with. We can refactor and expand when we have those working.

To learn more about these modules, see puppet/jenkins and puppetlabs/java.

Write a profile
From a Puppet perspective, a profile is just a normal class stored in the profile module.

Make a new class called profile::jenkins::controller, located at .../profile/manifests/
jenkins/controller.pp, and fill it with Puppet code.

/etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller.pp
class profile::jenkins::controller (
 String $jenkins_port = '9091',
 String $java_dist = 'jdk',
 String $java_version = 'latest',
) {

 class { 'jenkins':
 configure_firewall => true,
 install_java => false,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

 class { 'java':
 distribution => $java_dist,
 version => $java_version,
 before => Class['jenkins'],
 }
}

This is pretty simple, but is already benefiting us: our interface for configuring Jenkins has gone from 30 or so
parameters on the Jenkins class (and many more on the Java class) down to three. Notice that we’ve hardcoded the
configure_firewall and install_java parameters, and have reused the value of $jenkins_port in
three places.

Related information
Rules for profile classes on page 501
There are rules for writing profile classes.

Methods for data lookup on page 502
Profiles usually require some amount of configuration, and they must use data lookup to get it.

Set data for the profile

Let’s assume the following:

• We use some custom facts:

• group: The group this node belongs to. (This is usually either a department of our business, or a large-scale
function shared by many nodes.)

• stage: The deployment stage of this node (dev, test, or prod).

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppet/jenkins
https://forge.puppet.com/puppetlabs/java?_ga=2.126344074.623882382.1502209414-2028041969.1502209414

pe | Managing nodes | 504

• We have a five-layer hierarchy:

• console_data for data defined in the console.
• nodes/%{trusted.certname} for per-node overrides.
• groups/%{facts.group}/%{facts.stage} for setting stage-specific data within a group.
• groups/%{facts.group} for setting group-specific data.
• common for global fallback data.

• We have a few one-off Jenkins controllers, but most of them belong to the ci group.
• Our quality engineering department wants controllers in the ci group to use the Oracle JDK, but one-off

machines can just use the platform’s default Java.
• QE also wants their prod controllers to listen on port 80.

Set appropriate values in the data, using either Hiera or configuration data in the console.

/etc/puppetlabs/code/environments/production/data/nodes/ci-
controller01.example.com.yaml
 # --Nothing. We don't need any per-node values right now.

 # /etc/puppetlabs/code/environments/production/data/groups/ci/prod.yaml
 profile::jenkins::controller::jenkins_port: '80'

 # /etc/puppetlabs/code/environments/production/data/groups/ci.yaml
 profile::jenkins::controller::java_dist: 'oracle-jdk8'
 profile::jenkins::controller::java_version: '8u92'

 # /etc/puppetlabs/code/environments/production/data/common.yaml
 # --Nothing. Just use the default parameter values.

Write a role
To write roles, we consider the machines we’ll be managing and decide what else they need in addition to that Jenkins
profile.

Our Jenkins controllers don’t serve any other purpose. But we have some profiles (code not shown) that we expect
every machine in our fleet to have:

• profile::base must be assigned to every machine, including workstations. It manages basic policies, and
uses some conditional logic to include OS-specific profiles as needed.

• profile::server must be assigned to every machine that provides a service over the network. It makes sure
ops can log into the machine, and configures things like timekeeping, firewalls, logging, and monitoring.

So a role to manage one of our Jenkins controllers should include those classes as well.

class role::jenkins::controller {
 include profile::base
 include profile::server
 include profile::jenkins::controller
}

Related information
Rules for role classes on page 501
There are rules for writing role classes.

Assign the role to nodes
Finally, we assign role::jenkins::controller to every node that acts as a Jenkins controller.

Puppet has several ways to assign classes to nodes, so use whichever tool you feel best fits your team. Your main
choices are:

• The console node classifier, which lets you group nodes based on their facts and assign classes to those groups.
• The main manifest which can use node statements or conditional logic to assign classes.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 505

• Hiera or Puppet lookup — Use the lookup function to do a unique array merge on a special classes key, and
pass the resulting array to the include function.

/etc/puppetlabs/code/environments/production/manifests/site.pp
lookup('classes', {merge => unique}).include

To learn more about how to assign custom facts to individual nodes, visit https://puppet.com/docs/puppet/8/
fact_overview.html.

Designing advanced profiles
In this advanced example, we iteratively refactor our basic roles and profiles example to handle real-world concerns.
The final result is — with only minor differences — the Jenkins profile we use in production here at Puppet.

Along the way, we explain our choices and point out some of the common trade-offs you encounter as you design
your own profiles.

Here's the basic Jenkins profile we're starting with:

/etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller.pp
class profile::jenkins::controller (
 String $jenkins_port = '9091',
 String $java_dist = 'jdk',
 String $java_version = 'latest',
) {

 class { 'jenkins':
 configure_firewall => true,
 install_java => false,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

 class { 'java':
 distribution => $java_dist,
 version => $java_version,
 before => Class['jenkins'],
 }
}

Related information
Rules for profile classes on page 501
There are rules for writing profile classes.

First refactor: Split out Java
We want to manage Jenkins controllers and Jenkins agent nodes. We won't cover agent profiles in detail, but the first
issue we encountered is that they also need Java.

We could copy and paste the Java class declaration; it's small, so keeping multiple copies up-to-date might not be too
burdensome. But instead, we decided to break Java out into a separate profile. This way we can manage it one time,
then include the Java profile in both the agent and controller profiles.

Note: This is a common trade-off. Keeping a chunk of code in only one place (often called the DRY — "don't
repeat yourself" — principle) makes it more maintainable and less vulnerable to rot. But it has a cost: your individual
profile classes become less readable, and you must view more files to see what a profile actually does. To reduce that
readability cost, try to break code out in units that make inherent sense. In this case, the Java profile's job is simple

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/fact_overview.html
https://puppet.com/docs/puppet/8/fact_overview.html

pe | Managing nodes | 506

enough to guess by its name — your colleagues don't have to read its code to know that it manages Java 8. Comments
can also help.

First, decide how configurable Java needs to be on Jenkins machines. After looking at our past usage, we realized that
we use only two options: either we install Oracle's Java 8 distribution, or we default to OpenJDK 7, which the Jenkins
module manages. This means we can:

• Make our new Java profile really simple: hardcode Java 8 and take no configuration.
• Replace the two Java parameters from profile::jenkins::controller with one Boolean parameter

(whether to let Jenkins handle Java).

Note: This is rule 4 in action. We reduce our profile's configuration surface by combining multiple questions into
one.

Here's the new parameter list:

class profile::jenkins::controller (
 String $jenkins_port = '9091',
 Boolean $install_jenkins_java = true,
) { # ...

And here's how we choose which Java to use:

 class { 'jenkins':
 configure_firewall => true,
 install_java => $install_jenkins_java, # <--- here
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

 # When not using the jenkins module's java version, install java8.
 unless $install_jenkins_java { include profile::jenkins::usage::java8 }

And our new Java profile:

::jenkins::usage::java8
Sets up java8 for Jenkins on Debian
#
class profile::jenkins::usage::java8 {
 motd::register { 'Java usage profile (profile::jenkins::usage::java8)': }

 # OpenJDK 7 is already managed by the Jenkins module.
 # ::jenkins::install_java or ::jenkins::agent::install_java should be
 false to use this profile
 # this can be set through the class parameter $install_jenkins_java
 case $::osfamily {
 'debian': {
 class { 'java':
 distribution => 'oracle-jdk8',
 version => '8u92',
 }

 package { 'tzdata-java':
 ensure => latest,
 }
 }
 default: {

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 507

 notify { "profile::jenkins::usage::java8 cannot set up JDK on
 ${::osfamily}": }

Diff of first refactor

@@ -1,13 +1,12 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller.pp
 class profile::jenkins::controller (
- String $jenkins_port = '9091',
- String $java_dist = 'jdk',
- String $java_version = 'latest',
+ String $jenkins_port = '9091',
+ Boolean $install_jenkins_java = true,
) {

 class { 'jenkins':
 configure_firewall => true,
- install_java => false,
+ install_java => $install_jenkins_java,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
@@ -15,9 +14,6 @@ class profile::jenkins::controller (
 },
 }

- class { 'java':
- distribution => $java_dist,
- version => $java_version,
- before => Class['jenkins'],
- }
+ # When not using the jenkins module's java version, install java8.
+ unless $install_jenkins_java { include profile::jenkins::usage::java8 }
 }

Second refactor: Manage the heap
At Puppet, we manage the Java heap size for the Jenkins app. Production servers didn't have enough memory for
heavy use.

The Jenkins module has a jenkins::sysconfig defined type for managing system properties, so let's use it:

 # Manage the heap size on the controller, in MB.
 if($::memorysize_mb =~ Number and $::memorysize_mb > 8192)
 {
 # anything over 8GB we should keep max 4GB for OS and others
 $heap = sprintf('%.0f', $::memorysize_mb - 4096)
 } else {
 # This is calculated as 50% of the total memory.
 $heap = sprintf('%.0f', $::memorysize_mb * 0.5)
 }
 # Set java params, like heap min and max sizes. See
 # https://wiki.jenkins-ci.org/display/JENKINS/Features+controlled+by
+system+properties
 jenkins::sysconfig { 'JAVA_ARGS':
 value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
 }

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 508

Note: Rule 4 again — we couldn't hardcode this, because we have some smaller Jenkins controllers that can't spare
the extra memory. But because our production controllers are always on more powerful machines, we can calculate
the heap based on the machine's memory size, which we can access as a fact. This lets us avoid extra configuration.

Diff of second refactor

@@ -16,4 +16,20 @@ class profile::jenkins::controller (

 # When not using the jenkins module's java version, install java8.
 unless $install_jenkins_java { include profile::jenkins::usage::java8 }
+
+ # Manage the heap size on the controller, in MB.
+ if($::memorysize_mb =~ Number and $::memorysize_mb > 8192)
+ {
+ # anything over 8GB we should keep max 4GB for OS and others
+ $heap = sprintf('%.0f', $::memorysize_mb - 4096)
+ } else {
+ # This is calculated as 50% of the total memory.
+ $heap = sprintf('%.0f', $::memorysize_mb * 0.5)
+ }
+ # Set java params, like heap min and max sizes. See
+ # https://wiki.jenkins-ci.org/display/JENKINS/Features+controlled+by
+system+properties
+ jenkins::sysconfig { 'JAVA_ARGS':
+ value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
+ }
+
 }

Third refactor: Pin the version
We dislike surprise upgrades, so we pin Jenkins to a specific version. We do this with a direct package URL instead
of by adding Jenkins to our internal package repositories. Your organization might choose to do it differently.

First, we add a parameter to control upgrades. Now we can set a new value in .../data/groups/ci/
dev.yaml while leaving .../data/groups/ci.yaml alone — our dev machines get the new Jenkins version
first, and we can ensure everything works as expected before upgrading our prod machines.

class profile::jenkins::controller (
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-ci.org/
debian-stable/binary/jenkins_1.642.2_all.deb',
 # ...
) { # ...

Then, we set the necessary parameters in the Jenkins class:

 class { 'jenkins':
 lts => true, # <-- here
 repo => true, # <-- here
 direct_download => $direct_download, # <-- here
 version => 'latest', # <-- here
 service_enable => true,
 service_ensure => running,
 configure_firewall => true,
 install_java => $install_jenkins_java,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 509

 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

This was a good time to explicitly manage the Jenkins service, so we did that as well.

Diff of third refactor

@@ -1,10 +1,17 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller.pp
 class profile::jenkins::controller (
- String $jenkins_port = '9091',
- Boolean $install_jenkins_java = true,
+ String $jenkins_port = '9091',
+ Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-
ci.org/debian-stable/binary/jenkins_1.642.2_all.deb',
+ Boolean $install_jenkins_java = true,
) {

 class { 'jenkins':
+ lts => true,
+ repo => true,
+ direct_download => $direct_download,
+ version => 'latest',
+ service_enable => true,
+ service_ensure => running,
 configure_firewall => true,
 install_java => $install_jenkins_java,
 port => $jenkins_port,

Fourth refactor: Manually manage the user account
We manage a lot of user accounts in our infrastructure, so we handle them in a unified way. The
profile::server class pulls in virtual::users, which has a lot of virtual resources we can selectively
realize depending on who needs to log into a given machine.

Note: This has a cost — it's action at a distance, and you need to read more files to see which users are enabled for
a given profile. But we decided the benefit was worth it: because all user accounts are written in one or two files, it's
easy to see all the users that might exist, and ensure that they're managed consistently.

We're accepting difficulty in one place (where we can comfortably handle it) to banish difficulty in another place
(where we worry it would get out of hand). Making this choice required that we know our colleagues and their
comfort zones, and that we know the limitations of our existing code base and supporting services.

So, for this example, we change the Jenkins profile to work the same way; we manage the jenkins user alongside
the rest of our user accounts. While we're doing that, we also manage a few directories that can be problematic
depending on how Jenkins is packaged.

Some values we need are used by Jenkins agents as well as controllers, so we're going to store them in a params
class, which is a class that sets shared variables and manages no resources. This is a heavyweight solution, so wait
until it provides real value before using it. In our case, we had a lot of OS-specific agent profiles (not shown in these
examples), and they made a params class worthwhile.

Note: Just as before, "don't repeat yourself" is in tension with "keep it readable." Find the balance that works for you.

 # We rely on virtual resources that are ultimately declared by
 profile::server.
 include profile::server

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 510

 # Some default values that vary by OS:
 include profile::jenkins::params
 $jenkins_owner = $profile::jenkins::params::jenkins_owner
 $jenkins_group = $profile::jenkins::params::jenkins_group
 $controller_config_dir =
 $profile::jenkins::params::controller_config_dir

 file { '/var/run/jenkins': ensure => 'directory' }

 # Because our account::user class manages the '${controller_config_dir}'
 directory
 # as the 'jenkins' user's homedir (as it should), we need to manage
 # `${controller_config_dir}/plugins` here to prevent the upstream
 # rtyler-jenkins module from trying to manage the homedir as the config
 # dir. For more info, see the upstream module's `manifests/plugin.pp`
 # manifest.
 file { "${controller_config_dir}/plugins":
 ensure => directory,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0755',
 require => [Group[$jenkins_group], User[$jenkins_owner]],
 }

 Account::User <| tag == 'jenkins' |>

 class { 'jenkins':
 lts => true,
 repo => true,
 direct_download => $direct_download,
 version => 'latest',
 service_enable => true,
 service_ensure => running,
 configure_firewall => true,
 install_java => $install_jenkins_java,
 manage_user => false, # <-- here
 manage_group => false, # <-- here
 manage_datadirs => false, # <-- here
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },
 'JENKINS_PORT' => { 'value' => $jenkins_port },
 },
 }

Three things to notice in the code above:

• We manage users with a homegrown account::user defined type, which declares a user resource plus a few
other things.

• We use an Account::User resource collector to realize the Jenkins user. This relies on profile::server
being declared.

• We set the Jenkins class's manage_user, manage_group, and manage_datadirs parameters to false.
• We're now explicitly managing the plugins directory and the run directory.

Diff of fourth refactor

@@ -5,6 +5,33 @@ class profile::jenkins::controller (
 Boolean $install_jenkins_java = true,
) {

+ # We rely on virtual resources that are ultimately declared by
 profile::server.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 511

+ include profile::server
+
+ # Some default values that vary by OS:
+ include profile::jenkins::params
+ $jenkins_owner = $profile::jenkins::params::jenkins_owner
+ $jenkins_group = $profile::jenkins::params::jenkins_group
+ $controller_config_dir =
 $profile::jenkins::params::controller_config_dir
+
+ file { '/var/run/jenkins': ensure => 'directory' }
+
+ # Because our account::user class manages the '${controller_config_dir}'
 directory
+ # as the 'jenkins' user's homedir (as it should), we need to manage
+ # `${controller_config_dir}/plugins` here to prevent the upstream
+ # rtyler-jenkins module from trying to manage the homedir as the config
+ # dir. For more info, see the upstream module's `manifests/plugin.pp`
+ # manifest.
+ file { "${controller_config_dir}/plugins":
+ ensure => directory,
+ owner => $jenkins_owner,
+ group => $jenkins_group,
+ mode => '0755',
+ require => [Group[$jenkins_group], User[$jenkins_owner]],
+ }
+
+ Account::User <| tag == 'jenkins' |>
+
 class { 'jenkins':
 lts => true,
 repo => true,
@@ -14,6 +41,9 @@ class profile::jenkins::controller (
 service_ensure => running,
 configure_firewall => true,
 install_java => $install_jenkins_java,
+ manage_user => false,
+ manage_group => false,
+ manage_datadirs => false,
 port => $jenkins_port,
 config_hash => {
 'HTTP_PORT' => { 'value' => $jenkins_port },

Fifth refactor: Manage more dependencies
Jenkins always needs Git installed (because we use Git for source control at Puppet), and it needs SSH keys to access
private Git repos and run commands on Jenkins agent nodes. We also have a standard list of Jenkins plugins we use,
so we manage those too.

Managing Git is pretty easy:

 package { 'git':
 ensure => present,
 }

SSH keys are less easy, because they are sensitive content. We can't check them into version control with the rest of
our Puppet code, so we put them in a custom mount point on one specific Puppet server.

Because this server is different from our normal Puppet servers, we made a rule about accessing it: you must look
up the hostname from data instead of hardcoding it. This lets us change it in only one place if the secure server ever
moves.

 $secure_server = lookup('puppetlabs::ssl::secure_server')

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 512

 file { "${controller_config_dir}/.ssh":
 ensure => directory,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0700',
 }

 file { "${controller_config_dir}/.ssh/id_rsa":
 ensure => file,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0600',
 source => "puppet://${secure_server}/secure/delivery/id_rsa-jenkins",
 }

 file { "${controller_config_dir}/.ssh/id_rsa.pub":
 ensure => file,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0640',
 source => "puppet://${secure_server}/secure/delivery/id_rsa-
jenkins.pub",
 }

Plugins are also a bit tricky, because we have a few Jenkins controllers where we want to manually configure plugins.
So we put the base list in a separate profile, and use a parameter to control whether we use it.

class profile::jenkins::controller (
 Boolean $manage_plugins = false,
 # ...
) {
 # ...
 if $manage_plugins {
 include profile::jenkins::controller::plugins
 }

In the plugins profile, we can use the jenkins::plugin resource type provided by the Jenkins module.

/etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller/plugins.pp
class profile::jenkins::controller::plugins {
 jenkins::plugin { 'audit2db': }
 jenkins::plugin { 'credentials': }
 jenkins::plugin { 'jquery': }
 jenkins::plugin { 'job-import-plugin': }
 jenkins::plugin { 'ldap': }
 jenkins::plugin { 'mailer': }
 jenkins::plugin { 'metadata': }
 # ... and so on.
}

Diff of fifth refactor

@@ -1,6 +1,7 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller.pp
 class profile::jenkins::controller (
 String $jenkins_port = '9091',
+ Boolean $manage_plugins = false,
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-
ci.org/debian-stable/binary/jenkins_1.642.2_all.deb',

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 513

 Boolean $install_jenkins_java = true,
) {
@@ -14,6 +15,20 @@ class profile::jenkins::controller (
 $jenkins_group = $profile::jenkins::params::jenkins_group
 $controller_config_dir =
 $profile::jenkins::params::controller_config_dir

+ if $manage_plugins {
+ # About 40 jenkins::plugin resources:
+ include profile::jenkins::controller::plugins
+ }
+
+ # Sensitive info (like SSH keys) isn't checked into version control like
 the
+ # rest of our modules; instead, it's served from a custom mount point on
 a
+ # designated server.
+ $secure_server = lookup('puppetlabs::ssl::secure_server')
+
+ package { 'git':
+ ensure => present,
+ }
+
 file { '/var/run/jenkins': ensure => 'directory' }

 # Because our account::user class manages the '${controller_config_dir}'
 directory
@@ -69,4 +84,29 @@ class profile::jenkins::controller (
 value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
 }

+ # Deploy the SSH keys that Jenkins needs to manage its agent machines and
+ # access Git repos.
+ file { "${controller_config_dir}/.ssh":
+ ensure => directory,
+ owner => $jenkins_owner,
+ group => $jenkins_group,
+ mode => '0700',
+ }
+
+ file { "${controller_config_dir}/.ssh/id_rsa":
+ ensure => file,
+ owner => $jenkins_owner,
+ group => $jenkins_group,
+ mode => '0600',
+ source => "puppet://${secure_server}/secure/delivery/id_rsa-jenkins",
+ }
+
+ file { "${controller_config_dir}/.ssh/id_rsa.pub":
+ ensure => file,
+ owner => $jenkins_owner,
+ group => $jenkins_group,
+ mode => '0640',
+ source => "puppet://${secure_server}/secure/delivery/id_rsa-
jenkins.pub",
+ }
+
 }

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 514

Sixth refactor: Manage logging and backups
Backing up is usually a good idea.

We can use our homegrown backup module, which provides a backup::job resource type
(profile::server takes care of its prerequisites). But we should make backups optional, so people don't
accidentally post junk to our backup server if they're setting up an ephemeral Jenkins instance to test something.

class profile::jenkins::controller (
 Boolean $backups_enabled = false,
 # ...
) {
 # ...
 if $backups_enabled {
 backup::job { "jenkins-data-${::hostname}":
 files => $controller_config_dir,
 }
 }
}

Also, our teams gave us some conflicting requests for Jenkins logs:

• Some people want it to use syslog, like most other services.
• Others want a distinct log file so syslog doesn't get spammed, and they want the file to rotate more quickly than it

does by default.

That implies a new parameter. We can make one called $jenkins_logs_to_syslog and default it to undef. If
you set it to a standard syslog facility (like daemon.info), Jenkins logs there instead of its own file.

We use jenkins::sysconfig and our homegrown logrotate::job to do the work:

class profile::jenkins::controller (
 Optional[String[1]] $jenkins_logs_to_syslog = undef,
 # ...
) {
 # ...
 if $jenkins_logs_to_syslog {
 jenkins::sysconfig { 'JENKINS_LOG':
 value => "$jenkins_logs_to_syslog",
 }
 }
 # ...
 logrotate::job { 'jenkins':
 log => '/var/log/jenkins/jenkins.log',
 options => [
 'daily',
 'copytruncate',
 'missingok',
 'rotate 7',
 'compress',
 'delaycompress',
 'notifempty'
],
 }
}

Diff of sixth refactor

@@ -1,8 +1,10 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller.pp
 class profile::jenkins::controller (
 String $jenkins_port = '9091',

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 515

+ Boolean $backups_enabled = false,
 Boolean $manage_plugins = false,
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-
ci.org/debian-stable/binary/jenkins_1.642.2_all.deb',
+ Optional[String[1]] $jenkins_logs_to_syslog = undef,
 Boolean $install_jenkins_java = true,
) {

@@ -84,6 +86,15 @@ class profile::jenkins::controller (
 value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
 }

+ # Forward jenkins controller logs to syslog.
+ # When set to facility.level the jenkins_log uses that value instead of a
+ # separate log file, for example daemon.info
+ if $jenkins_logs_to_syslog {
+ jenkins::sysconfig { 'JENKINS_LOG':
+ value => "$jenkins_logs_to_syslog",
+ }
+ }
+
 # Deploy the SSH keys that Jenkins needs to manage its agent machines and
 # access Git repos.
 file { "${controller_config_dir}/.ssh":
@@ -109,4 +120,29 @@ class profile::jenkins::controller (
 source => "puppet://${secure_server}/secure/delivery/id_rsa-
jenkins.pub",
 }

+ # Back up Jenkins' data.
+ if $backups_enabled {
+ backup::job { "jenkins-data-${::hostname}":
+ files => $controller_config_dir,
+ }
+ }
+
+ # (QENG-1829) Logrotate rules:
+ # Jenkins' default logrotate config retains too much data: by default, it
+ # rotates jenkins.log weekly and retains the last 52 weeks of logs.
+ # Considering we almost never look at the logs, let's rotate them daily
+ # and discard after 7 days to reduce disk usage.
+ logrotate::job { 'jenkins':
+ log => '/var/log/jenkins/jenkins.log',
+ options => [
+ 'daily',
+ 'copytruncate',
+ 'missingok',
+ 'rotate 7',
+ 'compress',
+ 'delaycompress',
+ 'notifempty'
+],
+ }
+
 }

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 516

Seventh refactor: Use a reverse proxy for HTTPS
We want the Jenkins web interface to use HTTPS, which we can accomplish with an Nginx reverse proxy. We also
want to standardize the ports: the Jenkins app always binds to its default port, and the proxy always serves over 443
for HTTPS and 80 for HTTP.

If we want to keep vanilla HTTP available, we can provide an $ssl parameter. If set to false (the default), you can
access Jenkins via both HTTP and HTTPS. We can also add a $site_alias parameter, so the proxy can listen on
a hostname other than the node's main FQDN.

class profile::jenkins::controller (
 Boolean $ssl = false,
 Optional[String[1]] $site_alias = undef,
 # IMPORTANT: notice that $jenkins_port is removed.
 # ...

Set configure_firewall => false in the Jenkins class:

 class { 'jenkins':
 lts => true,
 repo => true,
 direct_download => $direct_download,
 version => 'latest',
 service_enable => true,
 service_ensure => running,
 configure_firewall => false, # <-- here
 install_java => $install_jenkins_java,
 manage_user => false,
 manage_group => false,
 manage_datadirs => false,
 # IMPORTANT: notice that port and config_hash are removed.
 }

We need to deploy SSL certificates where Nginx can reach them. Because we serve a lot of things over HTTPS, we
already had a profile for that:

 # Deploy the SSL certificate/chain/key for sites on this domain.
 include profile::ssl::delivery_wildcard

This is also a good time to add some info for the message of the day, handled by puppetlabs/motd:

 motd::register { 'Jenkins CI controller (profile::jenkins::controller)': }

 if $site_alias {
 motd::register { 'jenkins-site-alias':
 content => @("END"),
 profile::jenkins::controller::proxy

 Jenkins site alias: ${site_alias}
 |-END
 order => 25,
 }
 }

The bulk of the work is handled by a new profile called profile::jenkins::controller::proxy. We're
omitting the code for brevity; in summary, what it does is:

• Include profile::nginx.
• Use resource types from the jfryman/nginx to set up a vhost, and to force a redirect to HTTPS if we haven't

enabled vanilla HTTP.
• Set up logstash forwarding for access and error logs.
• Include profile::fw::https to manage firewall rules, if necessary.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 517

Then, we declare that profile in our main profile:

 class { 'profile::jenkins::controller::proxy':
 site_alias => $site_alias,
 require_ssl => $ssl,
 }

Important:

We are now breaking rule 1, the most important rule of the roles and profiles method. Why?

Because profile::jenkins::controller::proxy is a "private" profile that belongs solely to
profile::jenkins::controller. It will never be declared by any role or any other profile.

This is the only exception to rule 1: if you're separating out code for the sole purpose of readability --- that is, if you
could paste the private profile's contents into the main profile for the exact same effect --- you can use a resource-like
declaration on the private profile. This lets you consolidate your data lookups and make the private profile's inputs
more visible, while keeping the main profile a little cleaner. If you do this, you must make sure to document that the
private profile is private.

If there is any chance that this code might be reused by another profile, obey rule 1.

Diff of seventh refactor

@@ -1,8 +1,9 @@
 # /etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller.pp
 class profile::jenkins::controller (
- String $jenkins_port = '9091',
 Boolean $backups_enabled = false,
 Boolean $manage_plugins = false,
+ Boolean $ssl = false,
+ Optional[String[1]] $site_alias = undef,
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-
ci.org/debian-stable/binary/jenkins_1.642.2_all.deb',
 Optional[String[1]] $jenkins_logs_to_syslog = undef,
 Boolean $install_jenkins_java = true,
@@ -11,6 +12,9 @@ class profile::jenkins::controller (
 # We rely on virtual resources that are ultimately declared by
 profile::server.
 include profile::server

+ # Deploy the SSL certificate/chain/key for sites on this domain.
+ include profile::ssl::delivery_wildcard
+
 # Some default values that vary by OS:
 include profile::jenkins::params
 $jenkins_owner = $profile::jenkins::params::jenkins_owner
@@ -22,6 +26,31 @@ class profile::jenkins::controller (
 include profile::jenkins::controller::plugins
 }

+ motd::register { 'Jenkins CI controller
 (profile::jenkins::controller)': }
+
+ # This adds the site_alias to the message of the day for convenience when
+ # logging into a server via FQDN. Because of the way motd::register
 works, we
+ # need a sort of funny formatting to put it at the end (order => 25) and
 to
+ # list a class so there isn't a random "--" at the end of the message.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 518

+ if $site_alias {
+ motd::register { 'jenkins-site-alias':
+ content => @("END"),
+ profile::jenkins::controller::proxy
+
+ Jenkins site alias: ${site_alias}
+ |-END
+ order => 25,
+ }
+ }
+
+ # This is a "private" profile that sets up an Nginx proxy -- it's only
 ever
+ # declared in this class, and it would work identically pasted inline.
+ # But because it's long, this class reads more cleanly with it separated
 out.
+ class { 'profile::jenkins::controller::proxy':
+ site_alias => $site_alias,
+ require_ssl => $ssl,
+ }
+
 # Sensitive info (like SSH keys) isn't checked into version control like
 the
 # rest of our modules; instead, it's served from a custom mount point on
 a
 # designated server.
@@ -56,16 +85,11 @@ class profile::jenkins::controller (
 version => 'latest',
 service_enable => true,
 service_ensure => running,
- configure_firewall => true,
+ configure_firewall => false,
 install_java => $install_jenkins_java,
 manage_user => false,
 manage_group => false,
 manage_datadirs => false,
- port => $jenkins_port,
- config_hash => {
- 'HTTP_PORT' => { 'value' => $jenkins_port },
- 'JENKINS_PORT' => { 'value' => $jenkins_port },
- },
 }

 # When not using the jenkins module's java version, install java8.

The final profile code
After all of this refactoring (and a few more minor adjustments), here’s the final code for
profile::jenkins::controller.

/etc/puppetlabs/code/environments/production/site/profile/manifests/
jenkins/controller.pp
Class: profile::jenkins::controller
#
Install a Jenkins controller that meets Puppet's internal needs.
#
class profile::jenkins::controller (
 Boolean $backups_enabled = false,
 Boolean $manage_plugins = false,
 Boolean $ssl = false,
 Optional[String[1]] $site_alias = undef,
 Variant[String[1], Boolean] $direct_download = 'http://pkg.jenkins-ci.org/
debian-stable/binary/jenkins_1.642.2_all.deb',

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 519

 Optional[String[1]] $jenkins_logs_to_syslog = undef,
 Boolean $install_jenkins_java = true,
) {

 # We rely on virtual resources that are ultimately declared by
 profile::server.
 include profile::server

 # Deploy the SSL certificate/chain/key for sites on this domain.
 include profile::ssl::delivery_wildcard

 # Some default values that vary by OS:
 include profile::jenkins::params
 $jenkins_owner = $profile::jenkins::params::jenkins_owner
 $jenkins_group = $profile::jenkins::params::jenkins_group
 $controller_config_dir =
 $profile::jenkins::params::controller_config_dir

 if $manage_plugins {
 # About 40 jenkins::plugin resources:
 include profile::jenkins::controller::plugins
 }

 motd::register { 'Jenkins CI controller (profile::jenkins::controller)': }

 # This adds the site_alias to the message of the day for convenience when
 # logging into a server via FQDN. Because of the way motd::register works,
 we
 # need a sort of funny formatting to put it at the end (order => 25) and
 to
 # list a class so there isn't a random "--" at the end of the message.
 if $site_alias {
 motd::register { 'jenkins-site-alias':
 content => @("END"),
 profile::jenkins::controller::proxy

 Jenkins site alias: ${site_alias}
 |-END
 order => 25,
 }
 }

 # This is a "private" profile that sets up an Nginx proxy -- it's only
 ever
 # declared in this class, and it would work identically pasted inline.
 # But because it's long, this class reads more cleanly with it separated
 out.
 class { 'profile::jenkins::controller::proxy':
 site_alias => $site_alias,
 require_ssl => $ssl,
 }

 # Sensitive info (like SSH keys) isn't checked into version control like
 the
 # rest of our modules; instead, it's served from a custom mount point on a
 # designated server.
 $secure_server = lookup('puppetlabs::ssl::secure_server')

 # Dependencies:
 # - Pull in apt if we're on Debian.
 # - Pull in the 'git' package, used by Jenkins for Git polling.
 # - Manage the 'run' directory (fix for busted Jenkins packaging).
 if $::osfamily == 'Debian' { include apt }

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 520

 package { 'git':
 ensure => present,
 }

 file { '/var/run/jenkins': ensure => 'directory' }

 # Because our account::user class manages the '${controller_config_dir}'
 directory
 # as the 'jenkins' user's homedir (as it should), we need to manage
 # `${controller_config_dir}/plugins` here to prevent the upstream
 # rtyler-jenkins module from trying to manage the homedir as the config
 # dir. For more info, see the upstream module's `manifests/plugin.pp`
 # manifest.
 file { "${controller_config_dir}/plugins":
 ensure => directory,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0755',
 require => [Group[$jenkins_group], User[$jenkins_owner]],
 }

 Account::User <| tag == 'jenkins' |>

 class { 'jenkins':
 lts => true,
 repo => true,
 direct_download => $direct_download,
 version => 'latest',
 service_enable => true,
 service_ensure => running,
 configure_firewall => false,
 install_java => $install_jenkins_java,
 manage_user => false,
 manage_group => false,
 manage_datadirs => false,
 }

 # When not using the jenkins module's java version, install java8.
 unless $install_jenkins_java { include profile::jenkins::usage::java8 }

 # Manage the heap size on the controller, in MB.
 if($::memorysize_mb =~ Number and $::memorysize_mb > 8192)
 {
 # anything over 8GB we should keep max 4GB for OS and others
 $heap = sprintf('%.0f', $::memorysize_mb - 4096)
 } else {
 # This is calculated as 50% of the total memory.
 $heap = sprintf('%.0f', $::memorysize_mb * 0.5)
 }
 # Set java params, like heap min and max sizes. See
 # https://wiki.jenkins-ci.org/display/JENKINS/Features+controlled+by
+system+properties
 jenkins::sysconfig { 'JAVA_ARGS':
 value => "-Xms${heap}m -Xmx${heap}m -Djava.awt.headless=true
 -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -
Dhudson.model.DirectoryBrowserSupport.CSP=\\\"default-src 'self'; img-src
 'self'; style-src 'self';\\\"",
 }

 # Forward jenkins controller logs to syslog.
 # When set to facility.level the jenkins_log uses that value instead of a
 # separate log file, for example daemon.info
 if $jenkins_logs_to_syslog {
 jenkins::sysconfig { 'JENKINS_LOG':

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 521

 value => "$jenkins_logs_to_syslog",
 }
 }

 # Deploy the SSH keys that Jenkins needs to manage its agent machines and
 # access Git repos.
 file { "${controller_config_dir}/.ssh":
 ensure => directory,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0700',
 }

 file { "${controller_config_dir}/.ssh/id_rsa":
 ensure => file,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0600',
 source => "puppet://${secure_server}/secure/delivery/id_rsa-jenkins",
 }

 file { "${controller_config_dir}/.ssh/id_rsa.pub":
 ensure => file,
 owner => $jenkins_owner,
 group => $jenkins_group,
 mode => '0640',
 source => "puppet://${secure_server}/secure/delivery/id_rsa-
jenkins.pub",
 }

 # Back up Jenkins' data.
 if $backups_enabled {
 backup::job { "jenkins-data-${::hostname}":
 files => $controller_config_dir,
 }
 }

 # (QENG-1829) Logrotate rules:
 # Jenkins' default logrotate config retains too much data: by default, it
 # rotates jenkins.log weekly and retains the last 52 weeks of logs.
 # Considering we almost never look at the logs, let's rotate them daily
 # and discard after 7 days to reduce disk usage.
 logrotate::job { 'jenkins':
 log => '/var/log/jenkins/jenkins.log',
 options => [
 'daily',
 'copytruncate',
 'missingok',
 'rotate 7',
 'compress',
 'delaycompress',
 'notifempty'
],
 }

}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 522

Designing convenient roles
There are several approaches to building roles, and you must decide which ones are most convenient for you and your
team.

High-quality roles strike a balance between readability and maintainability. For most people, the benefit of seeing the
entire role in a single file outweighs the maintenance cost of repetition. Later, if you find the repetition burdensome,
you can change your approach to reduce it. This might involve combining several similar roles into a more complex
role, creating sub-roles that other roles can include, or pushing more complexity into your profiles.

So, begin with granular roles and deviate from them only in small, carefully considered steps.

Here's the basic Jenkins role we're starting with:

class role::jenkins::controller {
 include profile::base
 include profile::server
 include profile::jenkins::controller
}

Related information
Rules for role classes on page 501
There are rules for writing role classes.

First approach: Granular roles
The simplest approach is to make one role per type of node, period. For example, the Puppet Release Engineering
(RE) team manages some additional resources on their Jenkins controllers.

With granular roles, we'd have at least two Jenkins controller roles. A basic one:

class role::jenkins::controller {
 include profile::base
 include profile::server
 include profile::jenkins::controller
}

...and an RE-specific one:

class role::jenkins::controller::release {
 include profile::base
 include profile::server
 include profile::jenkins::controller
 include profile::jenkins::controller::release
}

The benefits of this setup are:

• Readability — By looking at a single class, you can immediately see which profiles make up each type of node.
• Simplicity — Each role is just a linear list of profiles.

Some drawbacks are:

• Role bloat — If you have a lot of only-slightly-different nodes, you quickly have a large number of roles.
• Repetition — The two roles above are almost identical, with one difference. If they're two separate roles, it's

harder to see how they're related to each other, and updating them can be more annoying.

Second approach: Conditional logic
Alternatively, you can use conditional logic to handle differences between closely-related kinds of nodes.

class role::jenkins::controller::release {
 include profile::base
 include profile::server

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 523

 include profile::jenkins::controller

 if $facts['group'] == 'release' {
 include profile::jenkins::controller::release
 }
}

The benefits of this approach are:

• You have fewer roles, and they're easy to maintain.

The drawbacks are:

• Reduced readability...maybe. Conditional logic isn't usually hard to read, especially in a simple case like this, but
you might feel tempted to add a bunch of new custom facts to accommodate complex roles. This can make roles
much harder to read, because a reader must also know what those facts mean.

In short, be careful of turning your node classification system inside-out. You might have a better time if you
separate the roles and assign them with your node classifier.

Third approach: Nested roles
Another way of reducing repetition is to let roles include other roles.

class role::jenkins::controller {
 # Parent role:
 include role::server
 # Unique classes:
 include profile::jenkins::controller
}

class role::jenkins::controller::release {
 # Parent role:
 include role::jenkins::controller
 # Unique classes:
 include profile::jenkins::controller::release
}

In this example, we reduce boilerplate by having role::jenkins::controller include role::server.
When role::jenkins::controller::release includes role::jenkins::controller, it
automatically gets role::server as well. With this approach, any given role only needs to:

• Include the "parent" role that it most resembles.
• Include the small handful of classes that differentiate it from its parent.

The benefits of this approach are:

• You have fewer roles, and they're easy to maintain.
• Increased visibility in your node classifier.

The drawbacks are:

• Reduced readability: You have to open more files to see the real content of a role. This isn't much of a problem if
you go only one level deep, but it can get cumbersome around three or four.

Fourth approach: Multiple roles per node
In general, we recommend that you assign only one role to a node. In an infrastructure where nodes usually provide
one primary service, that's the best way to work.

However, if your nodes tend to provide more than one primary service, it can make sense to assign multiple roles.

For example, say you have a large application that is usually composed of an application server, a database server,
and a web server. To enable lighter-weight testing during development, you've decided to provide an "all-in-one"
node type to your developers. You could do this by creating a new role::our_application::monolithic
class, which includes all of the profiles that compose the three normal roles, but you might find it simpler to use your

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 524

node classifier to assign all three roles (role::our_application::app, role::our_application::db,
and role::our_application::web) to those all-in-one machines.

The benefit of this approach are:

• You have fewer roles, and they're easy to maintain.

The drawbacks are:

• There's no actual "role" that describes your multi-purpose nodes; instead, the source of truth for what's on them
is spread out between your roles and your node classifier, and you must cross-reference to understand their
configurations. This reduces readability.

• The normal and all-in-one versions of a complex application are likely to have other subtle differences you need
to account for, which might mean making your "normal" roles more complex. It's possible that making a separate
role for this kind of node would reduce your overall complexity, even though it increases the number of roles and
adds repetition.

Fifth approach: Super profiles
Because profiles can already include other profiles, you can decide to enforce an additional rule at your business: all
profiles must include any other profiles needed to manage a complete node that provides that service.

For example, our profile::jenkins::controller class could include both profile::server
and profile::base, and you could manage a Jenkins controller server by directly assigning
profile::jenkins::controller in your node classifier. In other words, a "main" profile would do all the
work that a role usually does, and the roles layer would no longer be necessary.

The benefits of this approach are:

• The chain of dependencies for a complex service can be more clear this way.
• Depending on how you conceptualize code, this can be easier in a lot of ways!

The drawbacks are:

• Loss of flexibility. This reduces the number of ways in which your roles can be combined, and reduces your
ability to use alternate implementations of dependencies for nodes with different requirements.

• Reduced readability, on a much grander scale. Like with nested roles, you lose the advantage of a clean,
straightforward list of what a node consists of. Unlike nested roles, you also lose the clear division between "top-
level" complete system configurations (roles) and "mid-level" groupings of technologies (profiles). Not every
profile makes sense as an entire system, so you some way to keep track of which profiles are the top-level ones.

Some people really find continuous hierarchies easier to reason about than sharply divided layers. If everyone in
your organization is on the same page about this, a "profiles and profiles" approach might make sense. But we
strongly caution you against it unless you're very sure; for most people, a true roles and profiles approach works
better. Try the well-traveled path first.

Sixth approach: Building roles in the node classifier
Instead of building roles with the Puppet language and then assigning them to nodes with your node classifier, you
might find your classifier flexible enough to build roles directly.

For example, you might create a "Jenkins controllers" group in the console and assign it the profile::base,
profile::server, and profile::jenkins::controller classes, doing much the same job as our basic
role::jenkins::controller class.

Important:

If you're doing this, make sure you don't set parameters for profiles in the classifier. Continue to use Hiera / Puppet
lookup to configure profiles.

This is because profiles are allowed to include other profiles, which interacts badly with the resource-like behavior
that node classifiers use to set class parameters.

The benefits of this approach are:

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 525

• Your node classifier becomes much more powerful, and can be a central point of collaboration for managing
nodes.

• Increased readability: A node's page in the console displays the full content of its role, without having to cross-
reference with manifests in your role module.

The drawbacks are:

• Loss of flexibility. The Puppet language's conditional logic is often more flexible and convenient than most node
classifiers, including the console.

• Your roles are no longer in the same code repository as your profiles, and it's more difficult to make them follow
the same code promotion processes.

Node classifier API v1
These are the endpoints for the node classifier v1 API.

Tip: In addition to these endpoints, you can use the status API to check the health of the node classifier service.

• Forming node classifier API requests on page 526
Requests to the node classifier API must be well-formed HTTP(S) requests.
• Groups endpoints on page 528
The groups endpoints create, read, update, and delete groups.
• Classes endpoint on page 544
Use the classes endpoint to retrieve a list of all classes.
• Classification endpoints on page 545
The classification endpoints accepts a node name and a set of facts, and then return information about how the
specified node is classified. The output can help you test your node group classification rules.
• Commands endpoint on page 555
Use the commands endpoint to unpin specified nodes from all node groups they’re pinned to.
• Environments endpoints on page 557
Use the environments endpoints to retrieve the node classifier's environment data. The responses tell you which
environments are available, whether a named environment exists, and which classes exist in a certain environment.
• Nodes check-in history endpoints on page 560
Use the nodes endpoints to retrieve records about nodes that have checked into the node classifier.
• Group children endpoint on page 563
Use the group-children endpoint to retrieve a list of node groups descending from a specific node group.
• Rules endpoint on page 567
Use the rules endpoint to translate a node group rule condition into PuppetDB query syntax.
• Import hierarchy endpoint on page 567
Use the import hierarchy endpoint to delete all existing node groups from the node classifier service and
replace them with the node groups defined in the body of the request.
• Last class update endpoint on page 570
Use the last-class-update endpoint to retrieve the time that classes were last updated from the primary server.
• Update classes endpoint on page 570
Use the update-classes endpoint to trigger the node classifier to get updated class and environment definitions
from the primary server.
• Validation endpoint on page 571
Use the validation endpoint to validate groups in the node classifier.
• Node classifier API errors on page 574
Learn about node classifier API error responses.

Related information
API index on page 30

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 526

APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Forming node classifier API requests
Requests to the node classifier API must be well-formed HTTP(S) requests.

By default, the node classifier service listens on port 4433 and all endpoints are relative to the /classifier-
api/ path. For example, the full URL for the /v1/groups endpoint on localhost would be https://
localhost:4433/classifier-api/v1/groups.

If needed, you can change the port the classifier API listens on.

Node classifier API requests must include a URI path following the pattern:

https://<DNS>:4433/classifier-api/<VERSION>/<ENDPOINT>

The variable path components derive from:

• DNS: Your PE console host's DNS name. You can use localhost, manually enter the DNS name, or use a
puppet command (as explained in Using example commands on page 25).

• VERSION: Either v1 or v2. Refer to Node classifier API v2 on page 575 for v2 endpoints.
• ENDPOINT: One or more sections specifying the endpoint, such as groups or classes. Some endpoints

require additional sections, such as the GET /v1/environments/<environment>/classes on page 558 endpoint.

For example, you could use any of these paths to call the GET /v1/classes on page 544 endpoint:

https://$(puppet config print server):4433/classifier-api/v1/classes
https://localhost:4433/classifier-api/v1/classes
https://puppet.example.dns:4433/classifier-api/v1/classes

To form a complete curl command, you need to provide appropriate curl arguments, authentication, and you might
need to supply the content type and/or additional parameters specific to the endpoint you are calling.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Rule condition grammar

You can use rules to dynamically classify nodes into groups. When forming requests to endpoints that support rule
definition, you must use proper rule condition grammar, such as:

 condition : [{bool} {condition}+] | ["not" {condition}] |
 {operation}
 bool : "and" | "or"
 operation : [{operator} {fact-path} {value}]
 operator : "=" | "~" | ">" | ">=" | "<" | "<=" | "<:"
 fact-path : {field-name} | [{path-type} {field-name} {path-
component}+]
 path-type : "trusted" | "fact"
path-component : field-name | number
 field-name : string

For the regex operator "~", the value is interpreted as a Java regular expression. You must use literal backslashes to
escape regex characters in order to match those characters in the fact value.

For the numeric comparison operators (">", ">=", "<", and "<="), the fact value (which is always a string)
is coerced to a number (either integral or floating-point). If the value can't be coerced to a number, the numeric
operation evaluates to false.

For the array contains operator "<:", the fact value must be an array.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 527

For the fact-path, the rule can be either a string representing a top level field (such as name, representing the
node name) or a list of strings and indices that represent looking up a field in a nested data structure. When passing a
list of strings or indices, the first and second entries in the list must be strings and subsequent entries can be indices.

Regular facts start with "fact" (for example, ["fact", "architecture"]) and trusted facts start with
"trusted" (for example, ["trusted", "certname"]).

Related information
Configure the console on page 232
After installing Puppet Enterprise (PE), you can change product settings to customize the PE console's behavior. You
can configure many of these settings directly in the console.

Node classifier API authentication
You must authenticate node classifier API requests. You can do this using RBAC authentication tokens or with the
list of allowed RBAC certificates.

Authenticating with tokens

You can make requests to the node classifier API using RBAC authentication tokens.

For instructions on generating, configuring, revoking, and deleting authentication tokens in PE, go to Token-based
authentication on page 308.

This example uses a token generated with puppet-access login to call the GET /v1/groups on page 528
endpoint:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/classifier-api/v1/groups"

curl --insecure --header "$auth_header" "$uri"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

The example above uses the X-Authentication header to supply the token information. In some cases, such as with
GitHub webhooks, you might need to supply the token in a token parameter. For example:

uri="https://$(puppet config print server):4433/classifier-api/v1/groups?
token=$(puppet-access show)"

curl --insecure "$uri"

CAUTION: Supplying the token as a token parameter is not as secure as using the X-Authentication method.

Authenticating with an allowed certificate

You can also authenticate requests using a certificate listed in RBAC's certificate allowlist. The RBAC allowlist
is located at /etc/puppetlabs/console-services/rbac-certificate-allowlist. If you edit
this file, you must reload the pe-console-services service for your changes to take effect by running: sudo
service pe-console-services reload

To attach the certificate to a curl request, you must have the allowed certificate name and the private key to run the
script. The certname in the request must match a certname in the allowlist file at /etc/puppetlabs/console-
services/rbac-certificate-allowlist. For example:

type_header='Content-Type: application/json'
cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/classifier-api/v1/groups"

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 528

curl --header "$type_header" --cert "$cert" --cacert "$cacert" --key "$key"
 GET "$uri"

You do not need to use an agent certificate for authentication. You can use puppet cert generate to create a
new certificate specifically for use with the API.

Related information
Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

Using pagination parameters
If your installation has a large number of groups, classes, nodes, node check-ins, or environments, then node classifier
API GET requests might return an excessively large results.

To limit the number of items returned, you can append the limit and offset parameters to your request URI
paths:

• limit: Set the maximum number of items allowed to be returned in the response. The value must be a non-
negative integer.

• offset: Specify the number of items to skip from the beginning of the possible results. The value must be a
zero-indexed, non-negative integer. The response begins returning results from the point specified, for example if
offset=10, the response skips the first 10 results and starts the response with the 11th record.

For example, if you specify an offset of 20 with a limit of 10 (as shown in the example below) the first 20 records
are skipped, and the response returns records 21 through 30:

type_header='Content-Type: application/json'
cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/classifier-api/v1/groups?
limit=10&offset=20"

curl --header "$type_header" --cert "$cert" --cacert "$cacert" --key $key
 "$uri"

Supplying non-integer values for these parameters returns a 400 Bad request response.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Groups endpoints
The groups endpoints create, read, update, and delete groups.

Each group belongs to an environment, applies classes (which can have class parameters) to nodes within the group,
and match nodes based on the group's rules. Because groups are central to the classification process, there is a lot you
can do with this endpoint.

GET /v1/groups
Retrieves a list of all node groups in the node classifier.

Request format

When Forming node classifier API requests on page 526 to this endpoint, you can append the inherited
parameter to the URI path. If this parameter is set to any value besides 0 or false, the response includes the classes,
class parameters, configuration data, and variables that each group inherits from its ancestor groups.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 529

For example, this request does not specify the inherited parameter:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/classifier-api/v1/groups"

curl --header "$type_header" --cert "$cert" --cacert "$cacert" --key "$key"
 "$uri"

Tip:

Use the following curl command to get a pared-down response that lists all node groups and their corresponding IDs.
Node group IDs are useful when running tasks or plans.

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/classifier-api/v1/groups"
curl --silent --header "$auth_header" "$uri" | jq -M -r '.[] | "\(.name)
 \(.id)"'

The response is more simplified than the full response to the standard GET /v1/groups request:

All Nodes 00000000-0000-4000-8000-000000000000
PE Master 07002034-c20f-44de-97d2-f72d03e481fb
Development one-time run exception 124a11d8-b912-45f0-9a6d-5ddd81aaa0ed
PE PuppetDB 289f176b-1c30-4e85-ad07-131e55f29354
PE Database 28b78e75-3b7e-464e-8f02-29a80b88fe02
Development environment 388f2eea-2f91-4ed7-8f84-93d8bf115ec5
PE Orchestrator 3f490039-395f-4c87-8dfb-f72d03e481fb
Production environment 43d438de-78da-4186-9405-e3f743989a5c
All Environments 6a10e0eb-ab6b-4ba7-b637-28fdf91ed659
PE Compiler 9cab6f77-f0cf-4c0e-b2ce-6aa6a2489c71
PE Infrastructure 9cd74d7e-6fb7-4d17-9cd8-e3f743989a5c
PE Patch Management aae9e4cd-fed5-4f07-8149-98a699a3b692
PE Certificate Authority d4065370-0cab-43cf-a4fa-93d8bf115ec5
PE Agent d4cf6659-6fc8-4419-b2a2-28fdf91jh9607
PE Console de97e269-4a9e-4f3d-a931-39993b0ef3f6
PE Infrastructure Agent e46543a6-61c6-49f2-865f-28fdf91ed659

Response format

A successful response is a JSON array of node group objects using these keys:

Key Definition

name The name of the node group, as a string.

id The node group's ID, which is a string containing a
type-4 (random) UUID. The regular expression used
to validate node group UUIDs is [0-9a-f]{8}-
[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-
[0-9a-f]{12}.

description An optional key containing an arbitrary string describing
the node group.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 530

Key Definition

environment The name of the node group's environment, as a string.
This indirectly defines which classes are available to
declare on the node group, and this is the environment
that nodes in this node group run in.

environment_trumps This is a Boolean that changes the response to conflicting
environment classifications. By default, if a node
belongs to multiple groups with different environments,
a classification-conflict error is returned.
If the environment_trumps flag is set on a node
group, then that node group's environment overrides
environments of other groups (if the other groups do not
have this flag set), and no attempt is made to validate
that the other node groups' classes and class parameters
exist in this node group's environment. This is used,
for example, with Environment-based testing on page
463.

parent The ID of the node group's parent, as a string.
The only node group without a parent is the All
Nodes group, which is the root of the node group
hierarchy. The root group, All Nodes, always
has the lowest-possible random UUID, which is:
00000000-0000-4000-8000-000000000000

rule A Boolean condition on node properties. When a node's
properties satisfy this condition, it's classified into the
node group.

classes An object that defines both the classes consumed by
nodes in this node group and any non-default values
for their parameters. The keys of the object are the
class names, and the values are objects describing the
parameters. The parameter objects' keys are parameter
names, and the values are what the node group sets for
that parameter, which is always a string.

config_data An object similar to the classes object that specifies
parameters that are applied to classes if the class is
assigned in the classifier or in Puppet code. The keys of
the object are the class names, and the values are objects
describing the parameters. The parameter objects’
keys are parameter names, and the values are what
the group sets for that parameter, which is always a
string. This feature is enabled or disabled through the
classifier::allow-config-data setting.
When set to false, this key is omitted.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 531

Key Definition

deleted An object similar to the classes object that shows
which classes and class parameters set by the node
group have since been deleted. If none of the node
group's classes or parameters have been deleted,
this key is omitted. Checking for the presence of
this key is an easy way to check whether the node
group has references that need to be updated. The
keys of this object are class names, and the values
are also objects. These secondary objects always
contain the puppetlabs.classifier/deleted
key, whose value is a Boolean indicating whether
the entire class has been deleted. The other keys of
these objects are parameter names, and the other
values are objects that always contain two keys:
puppetlabs.classifier/deleted, which
is a Boolean indicating whether the specific class
parameter has been deleted, and value, which is the
string value set by the node group for this parameter (the
value is duplicated for convenience; also appears in the
classes object).

variables An object that defines the values of any top-level
variables set by the node group. The object is a mapping
between variable names and their values (which can be
any JSON value).

last_edited The most recent time at which a user committed changes
to a node group. This is a time stamp in ISO 8601
format, YYYY-MM-DDTHH:MM:SSZ.

serial_number A number assigned to a node group. This number
is incremented each time changes to a group are
committed. serial_number is used to prevent
conflicts when multiple users make changes to the same
node group at the same time.

For example, this response describes a single node group:

{
 "environment_trumps": false,
 "parent": "00000000-0000-4000-8000-000000000000",
 "name": "My Nodes",
 "variables": {},
 "id": "085e2797-32f3-4920-9412-8e9decf4ef65",
 "environment": "production",
 "classes": {}
}

This example also describes a single node group, but with more information:

{
 "name": "Webservers",
 "id": "fc500c43-5065-469b-91fc-37ed0e500e81",
 "last_edited": "2018-02-20T02:36:17.776Z",
 "serial_number": 16,

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 532

 "environment": "production",
 "description": "This group captures configuration relevant to all web-
facing production webservers, regardless of location.",
 "parent": "00000000-0000-4000-8000-000000000000",
 "rule": ["and", ["~", ["trusted", "certname"], "www"],
 [">=", ["fact", "total_ram"], "512"]],
 "classes": {
 "apache": {
 "serveradmin": "bofh@travaglia.net",
 "keepalive_timeout": "5"
 }
 },
 "config_data": {
 "puppet_enterprise::profile::console": {"certname":
 "console.example.com"},
 "puppet_enterprise::profile::puppetdb": {"listen_address": "0.0.0.0"}
 },
 "variables": {
 "ntp_servers": ["0.us.pool.ntp.org", "1.us.pool.ntp.org",
 "2.us.pool.ntp.org"]
 }
}

This example includes classes and parameters that have been deleted:

{
 "name": "Spaceship",
 "id": "fc500c43-5065-469b-91fc-37ed0e500e81",
 "last_edited": "2018-03-13T21:37:03.608Z",
 "serial_number": 42,
 "environment": "space",
 "parent": "00000000-0000-4000-8000-000000000000",
 "rule": ["=", ["fact", "is_spaceship"], "true"],
 "classes": {
 "payload": {
 "type": "cubesat",
 "count": "8",
 "mass": "10.64"
 },
 "rocket": {
 "stages": "3"
 }
 },
 "deleted": {
 "payload": {"puppetlabs.classifier/deleted": true},
 "rocket": {
 "puppetlabs.classifier/deleted": false,
 "stages": {
 "puppetlabs.classifier/deleted": true,
 "value": "3"
 }
 }
 },
 "variables": {}
}

In the above example, the entire payload class has been deleted, because the puppetlabs.classifier/
deleted key maps to true. This is in contrast to the rocket class, which has had only its stages parameter
deleted.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 533

POST /v1/groups
Create a node group with a randomly-generated ID.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the body must be a JSON object
describing the node group to be created. The request uses these keys (which are required unless otherwise noted):

Key Definition

name The name of the node group, as a string.

environment The name of the node group's environment. This is
optional. If omitted, the default value is production.

environment_trumps When a node belongs to two or more groups, this
Boolean indicates whether this node group's environment
overrides environments defined by other node groups.
This is optional. If omitted, the default value is false.

description A string describing the node group. This is optional. If
omitted, the node group has no description.

parent The ID of the node group's parent. This is required.

rule The condition that must be satisfied for a node to be
classified into this node group.

For rule formatting assistance, refer to Forming node
classifier API requests on page 526.

variables An optional object that defines the names and values of
any top-level variables set by the node group. Supply
key-value pairs of variable names and corresponding
variable values. Variable values can be any type of JSON
value. The variables object can be omitted if the
node group does not define any top-level variables.

classes A required object that defines the classes to be used
by nodes in the node group. The classes object
contains the parameters for each class. Some classes
have required parameters. This object contains nested
objects – The classes object's keys are class names
(as strings), and each key's value is an object that defines
class parameter names and their values. Within the
nested objects, the keys are the parameter names (as
strings), and each value is the parameter's assigned value
(which can be any type of JSON value). If no classes are
declared, then classes must be supplied as an empty
object ({}). If missing, the server returns a 400 Bad
request response.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 534

Key Definition

config_data An optional object that defines the class parameters to be
used by nodes in the group. Its structure is the same as
the classes object. No configuration data is stored if
you supply a config_data object that only contains
a class name, such as "config_data": {"qux":
{}}.

Note: This feature is enabled by the
classifier::allow-config-data setting.
When set to false, supplying the config_data
object triggers a 400 response.

For example, this request creates a group called My Nodes:

type_header='Content-Type: application/json'
cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/classifier-api/v1/groups"
data='{ "name": "My Nodes",
 "parent": "00000000-0000-4000-8000-000000000000",
 "environment": "production",
 "classes": {}
 }'

curl --header "$type_header" --cert "$cert" --cacert "$cacert" --key "$key"
 --request POST "$uri" --data "$data"

Response format

If the node group was successfully created, the service returns a 303 See Other response with a URI path you
can use with the GET /v1/groups/<id> on page 536 endpoint to retrieve data for the new node group.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key. There are
several errors you might encounter with the POST /v1/groups endpoint:

Response code Message Description

400 Bad Request schema-violation Required keys are missing or the
value of any supplied key does not
match the required type.

400 Bad Request malformed-request The request's body could not be
parsed as JSON.

422 Unprocessable Entity uniqueness-violation The request content violates
uniqueness constraints. For example,
each node group name must be
unique within distinct environments.
The error response describes the
invalid field.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 535

Response code Message Description

422 Unprocessable Entity missing-referents Classes or class parameters declared
on the node group, or inherited
by the node group from its parent,
do not exist in the specified
environment. The error response lists
the missing classes or parameters.
The details contains an array of
objects, where each object uses these
keys to describe a single missing
referent:

• kind: Either "missing-class" or
"missing-parameter", depending
on whether the entire class
doesn't exist, or the parameter is
missing from the class.

• missing: The name of the
missing class or class parameter.

• environment: The
environment that the class or
parameter is missing from.

• group: The name of the node
group where the error was
encountered. Due to inheritance,
this might not be the group where
the parameter is actually defined.

• defined_by: The name of the
node group that defines the class
or parameter. This can be the
same as group or a parent of
group.

422 Unprocessable Entity missing-parent The specified parent node group does
not exist.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 536

Response code Message Description

422 Unprocessable Entity inheritance-cycle The request causes an inheritance
cycle. The error response contains a
description of the cycle, including a
list of the node group names, where
each node group is followed by its
parent until the first node group is
repeated.

GET /v1/groups/<id>
Retrieve a specific node group.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain a node group
ID. For example:

GET https://localhost:4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65

Response format

The successful response is the same as the GET /v1/groups on page 528 endpoint, except that the response
describes only a single node group, rather than all node groups.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If the endpoint can't find a node group with the specified ID, the server returns a 404 Not Found or
malformed-UUID response.

Related information
Node classifier API errors on page 574
Learn about node classifier API error responses.

PUT /v1/groups/<id>
Create a node group with a specific ID.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain the ID you
want to assign to the new group. The ID must be a valid type-4 (random) UUID. The regular expression used to
validate node group UUIDs is [0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]
{12}.

CAUTION: If you use an ID belonging to an existing node group, that node group is overwritten by the new
group.

It is possible to overwrite an existing node group with a new node group definition that contains deleted
classes or parameters.

The request body must be a JSON object describing the node group to be created. The request uses these keys (which
are required unless otherwise noted):

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 537

Key Definition

name The name of the node group, as a string.

environment The name of the node group's environment. This is
optional. If omitted, the default value is production.

environment_trumps When a node belongs to two or more groups, this
Boolean indicates whether this node group's environment
overrides environments defined by other node groups.
This is optional. If omitted, the default value is false.

description A string describing the node group. This is optional. If
omitted, the node group has no description.

parent The ID of the node group's parent. This is required.

rule The condition that must be satisfied for a node to be
classified into this node group.

For rule formatting assistance, refer to Forming node
classifier API requests on page 526.

variables An optional object that defines the names and values of
any top-level variables set by the node group. Supply
key-value pairs of variable names and corresponding
variable values. Variable values can be any type of JSON
value. The variables object can be omitted if the
node group does not define any top-level variables.

classes A required object that defines the classes to be used
by nodes in the node group. The classes object
contains the parameters for each class. Some classes
have required parameters. This object contains nested
objects – The classes object's keys are class names
(as strings), and each key's value is an object that defines
class parameter names and their values. Within the
nested objects, the keys are the parameter names (as
strings), and each value is the parameter's assigned value
(which can be any type of JSON value). If no classes are
declared, then classes must be supplied as an empty
object ({}). If missing, the server returns a 400 Bad
request response.

Response format

If the node group is successfully created, the service returns a 201 Created response and a JSON body describing
the node group.

If the node group already exists, and the existing group is identical to the node group described in the request, then
server takes no action, returns a 200 OK response, and a JSON body describing the node group.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key, and are
similar to the POST /v1/groups on page 533 error responses. However, 422 responses to POST requests can

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 538

include errors caused by a node group’s children, but a node group being created with a PUT request cannot have any
children.

POST /v1/groups/<id>
Edit the name, environment, parent node group, rules, classes, class parameters, configuration data, and variables for
a specific node group.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the body must be a JSON object
describing the changes you want to make to the node group. For a complete list of keys you can include in the
request, refer to POST /v1/groups on page 533.

If your request includes classes, config_data, variables, and rule keys, these values are merged with the
node group's existing values. Any keys in the resulting combined object with a null value are removed. To remove
classes, class parameters, configuration data, variables, or rules from the node group, set the key to null in the change
request.

If the request supplies a rule key that is set to a new value or nil, the rule is updated wholesale or removed from
the group, depending on the supplied value.

If the request contains the name, environment, description, or parent keys, then these values replace the
old values entirely.

The serial_number key is optional. If your request includes a serial_number that does not match the
group's current serial number, the service returns a 409 Conflict response. To bypass this check, omit the
serial_number key from the request.

The following code examples show a node group, the change request, and the end result (where the changes are
merged into the node group's settings).

The original node group settings:

{
 "name": "Webservers",
 "id": "58463036-0efa-4365-b367-b5401c0711d3",
 "environment": "staging",
 "parent": "00000000-0000-4000-8000-000000000000",
 "rule": ["~", ["trusted", "certname"], "www"],
 "classes": {
 "apache": {
 "serveradmin": "bofh@travaglia.net",
 "keepalive_timeout": 5
 },
 "ssl": {
 "keystore": "/etc/ssl/keystore"
 }
 },
 "variables": {
 "ntp_servers": ["0.us.pool.ntp.org", "1.us.pool.ntp.org",
 "2.us.pool.ntp.org"]
 }
}

The change request:

{
 "name": "Production Webservers",
 "id": "58463036-0efa-4365-b367-b5401c0711d3",
 "environment": "production",
 "parent": "01522c99-627c-4a07-b28e-a25dd563d756",
 "classes": {
 "apache": {

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 539

 "serveradmin": "roy@reynholm.co.uk",
 "keepalive_timeout": null
 },
 "ssl": null
 },
 "variables": {
 "dns_servers": ["dns.reynholm.co.uk"]
 }
}

The updated group settings:

{
 "name": "Production Webservers",
 "id": "58463036-0efa-4365-b367-b5401c0711d3",
 "environment": "production",
 "parent": "01522c99-627c-4a07-b28e-a25dd563d756",
 "rule": ["~", ["trusted", "certname"], "www"],
 "classes": {
 "apache": {
 "serveradmin": "roy@reynholm.co.uk"
 }
 },
 "variables": {
 "ntp_servers": ["0.us.pool.ntp.org", "1.us.pool.ntp.org",
 "2.us.pool.ntp.org"],
 "dns_servers": ["dns.reynholm.co.uk"]
 }
}

In the above example, the ssl class was deleted because its entire object was mapped to null, whereas, for the
apache class, only the keepalive_timeout parameter was deleted.

If the node group definition contains classes and parameters that have been deleted, it is still possible to update the
node group with those parameters and classes. Updates that don’t increase the number of errors associated with a
node group are allowed.

Here is an example of a complete curl request to the POST /v1/groups/<id> endpoint:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65"
data='{"classes":
 {"apache": {
 "serveradmin": "bob@example.com",
 "keepalive_timeout": null}
 }
 }'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key and are
similar to the POST /v1/groups on page 533 error responses.

You can't edit the root All Nodes node group’s rule. Attempting o do so returns a 422 Unprocessable
Entity response.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 540

DELETE /v1/groups/<id>
Use the /v1/groups/\<id\> endpoint to delete the node group with the given ID.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain a node group
ID. For example:

DELETE https://localhost:4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65

You can use GET /v1/groups on page 528 to get node group IDs.

Response format

If the node group is successfully deleted, the sever returns a 204 No Content response.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If the endpoint can't find a node group with the specified ID, the server returns a 404 Not Found or
malformed-UUID response.

You can't delete node groups that have children. If you attempt to delete a node group with children, the server
returns a 422 Unprocessable Entity children-present response. To resolve the error, you must either
delete the children or reassign the children to a new parent (such as with the POST /v1/groups/<id> on page 538
endpoint).

Related information
Node classifier API errors on page 574
Learn about node classifier API error responses.

POST /v1/groups/<id>/pin
Pin specific nodes to a node group.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain a node group
ID. For example:

POST https://localhost:4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65/pin

The request must also provide the names of the nodes you want to pin to the group. There are two ways to do this:

• Append the node names to the URI path. If you are pinning more than one node, use encoded comma separation
(%2C) between node names. For example, this request pins the nodes named foo, bar, and baz to the group:

POST https://localhost:4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65/pin?nodes=foo%2Cbar%2Cbaz

• Supply the node names in the request body. For a single node, you can supply this in a simple JSON object. For
multiple nodes, supply the node names in an array. For example, this JSON body pins a single node:

{"nodes": ["foo"]}

And this body pins three nodes:

{"nodes": ["foo", "bar", "baz"]}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 541

While it's easier to append the nodes to the end of the URI path, if you want to pin a lot of nodes at once, the URI
path might get truncated. Strings are truncated if they exceed 8,000 characters. In this case, you have to supply the
nodes in a JSON body, which can be many megabytes in size.

Here is an example of a complete curl request to the POST /v1/groups/<id>/pin endpoint. If necessary,
replace /etc/puppetlabs/puppet/ssl/certs/ca.pem with the correct path to your CA certificate file:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65/pin"
data='{ "nodes": ["example-to-pin.example.vm"] }'

curl --cacert "/etc/puppetlabs/puppet/ssl/certs/ca.pem" --header
 "$type_header" --header "$auth_header" --request POST "$uri" --data "$data"

Response format

If pinning is successful, the service returns a 204 No Content response with an empty body.

If the request contained a node that is already pinned to the group, the node's pinned status is unchanged –- The
service only pins nodes that aren't already pinned to the specified node group.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If your request doesn't specify any nodes to pin, the service returns a 400 Malformed Request response.

If the request body is invalid JSON, is missing the nodes key, or contains any keys other than nodes, the service
returns a 400 Malformed Request response.

POST /v1/groups/<id>/unpin
Unpin specific nodes from a node group.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain a node group
ID. For example:

POST https://localhost:4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65/unpin

The request must also provide the names of the nodes you want to unpin from the group. There are two ways to do
this:

• Append the node names to the URI path. If you are unpinning more than one node, use encoded comma separation
(%2C) between node names. For example, this request unpins the nodes named foo, bar, and baz from the
group:

POST https://localhost:4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65/unpin?nodes=foo%2Cbar%2Cbaz

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 542

• Supply the node names in the request body. For a single node, you can supply this in a simple JSON object. For
multiple nodes, supply the node names in an array. For example, this JSON body unpins a single node:

{"nodes": ["foo"]}

And this body unpins three nodes:

{"nodes": ["foo", "bar", "baz"]}

While it's easier to append the nodes to the end of the URI path, if you want to unpin a lot of nodes at once, the URI
path might get truncated. Strings are truncated if they exceed 8,000 characters. In this case, you have to supply the
nodes in a JSON body, which can be many megabytes in size.

Here is an example of a complete curl request to the POST /v1/groups/<id>/pin endpoint:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65/unpin"
data='{ "nodes": ["example-to-unpin"] }'

curl --header "$type_header" --header "$auth_header" --request POST "$uri"
 --data "$data"

Tip: You can use the POST /v1/commands/unpin-from-all on page 555 endpoint to unpin specific nodes from all
groups they're pinned to.

Response format

If unpinning is successful, the service returns a 204 No Content response with an empty body.

If the request contained a node that is was not pinned to the group, service ignores that node.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If your request doesn't specify any nodes to unpin, the service returns a 400 Malformed Request response.

If the request body is invalid JSON, is missing the nodes key, or contains any keys other than nodes, the service
returns a 400 Malformed Request response.

GET /v1/groups/<id>/rules
Resolve the rules for a specific node group, and then translate those rules to work with the PuppetDB nodes and
inventory endpoints.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain a node group
ID. For example:

GET https://localhost:4433/classifier-api/v1/
groups/085e2797-32f3-4920-9412-8e9decf4ef65/rules

Response format

A successful response returns a JSON object that uses these keys to enumerate the group's rules:

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 543

Key Definition

rule The rules for the group in classifier format.

rule_with_inherited The inherited rules (including the rules for this group) in
classifier format

translated An object containing two children
(nodes_query_format and
inventory_query_format), which represent each
of the inherited rules translated into a different format.

nodes_query_format The optimized translated inherited group in the format
that works with the nodes endpoint in PuppetDB.

inventory_query_format The optimized translated inherited group in the format
that works with the inventory endpoint in PuppetDB.

For example:

{
 "rule": [
 "=",
 [
 "fact",
 "is_spaceship"
],
 "true"
],
 "rule_with_inherited": [
 "and",
 [
 "=",
 [
 "fact",
 "is_spaceship"
],
 "true"
],
 [
 "~",
 "name",
 ".*"
]
],
 "translated": {
 "nodes_query_format": [
 "or",
 [
 "=",
 [
 "fact",
 "is_spaceship"
],
 "true"
],
 [
 "=",
 [
 "fact",
 "is_spaceship",
 true
]

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 544

]
],
 "inventory_query_format": [
 "or",
 [
 "=",
 "facts.is_spaceship",
 "true"
],
 [
 "=",
 "facts.is_spaceship",
 true
]
]
 }
}

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If the endpoint can't find a node group with the specified ID, the server returns a 404 Not Found or
malformed-UUID response.

Related information
Error response description on page 574
Node classifier API error responses are formatted as JSON objects.

Classes endpoint
Use the classes endpoint to retrieve a list of all classes.

To retrieve a list of all classes in a specific environment or a specific class from a specific environment, use the GET /
v1/environments/<environment>/classes on page 558 or GET /v1/environments/<environment>/classes/<name>
on page 559 endpoints.

The output from the classes endpoint (and the environments/<environment>/classes endpoints) is
useful for creating or editing node groups, which usually reference one or more classes. You can use the Groups
endpoints on page 528 to create and edit node groups.

The node classifier gets information about classes from Puppet. Don't use the classes endpoint to create, update, or
delete classes.

GET /v1/classes
Retrieve a list of all classes the node classifier knows about at the time of the request.

Request format

The GET /v1/classes endpoint returns the node classifier's current class data. The node classifier periodically
retrieves class data from the primary server, and you can check the last retrieval time with the GET /v1/last-class-
update on page 570 endpoint. If you want to ensure the response contains the latest data, use the POST /v1/update-
classes on page 570 endpoint to force a retrieval.

When Forming node classifier API requests on page 526 to this endpoint, the request is a basic GET call with
authentication.

Response format

A successful response is a JSON array of objects. Each object uses these keys to describe a class:

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 545

Key Definition

name The name of the class, as a string.

environment The name of the environment that this class exists
in. Note that the same class can exist in different
environments and can have different parameters in each
environment.

parameters An object describing the parameters and default
parameter values for the class. The keys of this object are
the parameter names (strings). Each value is the default
value for the associated parameter as a string, boolean,
number, structured value, or null. If the value is null,
the parameter is required.

This is an example of one class object:

{
 "name": "apache",
 "environment": "production",
 "parameters": {
 "default_mods": true,
 "default_vhost": true,
 ...
 }
}

Classification endpoints
The classification endpoints accepts a node name and a set of facts, and then return information about how the
specified node is classified. The output can help you test your node group classification rules.

POST /v1/classified/nodes/<name>
Retrieve a specific node's classification information based on facts supplied in the body of your request.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain the name of a
specific node, and the body can contain a JSON object using these keys:

Key Definition

fact A JSON object containing regular, non-trusted facts
associated with the node. The object contains key/value
pairs of fact names and fact values. Fact values can be
strings, integers, Booleans, arrays, or objects.

trusted A JSON object containing trusted facts associated
with the node. The object contains key/value pairs of
fact names and fact values. Fact values can be strings,
integers, Booleans, arrays, or objects.

Tip: There is also a POST /v2/classified/nodes/<name> on page 575 endpoint.

Here is an example of a curl command for the /v1/classified/nodes/<name> endpoint:

type_header='Content-Type: application/json'

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 546

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/classifier-api/v1/
classified/nodes/<NAME>"
data='{"fact" : { "<FACT_NAME>" : "<FACT_VALUE>" }}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

Response format

A successful response returns a JSON object using these keys to describe the node's classification:

Key Definition

name The node name, as a string.

groups An array of group IDs for the groups that the node was
classified into.

environment The name of the environment that the node uses, which
is taken from the node groups the node was classified
into.

classes An object containing key/value pairs describing the
classes that this node received from the groups it was
classified into.

Each key/value pair consists of a class name, as a string,
and a subsequent object containing the names and values
of parameters within the named class.

parameters An object containing key/value pairs of top-level
variables and their assigned values.

For example:

{
 "name": "foo.example.com",
 "groups": ["9c0c7d07-a199-48b7-9999-3cdf7654e0bf", "96d1a058-225d-48e2-
a1a8-80819d31751d"],
 "environment": "staging",
 "parameters": {},
 "classes": {
 "apache": {
 "keepalive_timeout": 30,
 "log_level": "notice"
 }
 }
}

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If the node is classified into multiple node groups that supply conflicting classifications to the node, the server returns
a 500 Server error response.

For classification-conflict errors, the msg describes generally why the conflict happened, and the
details contains an object that uses the environment, variables, or classes key to indicate the type of

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 547

conflict (whether it was in setting the environment, setting variables, or setting class parameters). Each key contains
value-detail objects describing the specific conflicts:

Value-detail object key Definition

value The specific value having a conflict. For
environment and classes, these are strings. For
variables, these can be any JSON value type.

from The node group that the node was classified into that
caused the conflicting value to be added to the node's
classification. Refer to defined_by for further details.

defined_by The node group that actually defined the conflicting
value. This is often the from group, but could be
an ancestor of that group, due to How node group
inheritance works on page 452.

The following example demonstrates a conflicting value being inherited from an ancestor group and a conflicting
value supplied directly from the assigned node group. The conflicting value Blue Suede Shoes was included
in the classification because the node matched the Elvis Presley group (as indicated by from). However, the
conflicting value was actually defined by the Carl Perkins group, which is an ancestor of the Elvis Presley
group. This caused the child group to inherit the value from the ancestor group. The Since You've Been Gone
conflicting value is defined by the same group that the node was assigned to.

{
 "kind": "classification-conflict",
 "msg": "The node was classified into multiple unrelated groups that
 defined conflicting class parameters or top-level variables. See `details`
 for a list of the specific conflicts.",
 "details": {
 "classes": {
 "songColors": {
 "blue": [
 {
 "value": "Blue Suede Shoes",
 "from": {
 "name": "Elvis Presley",
 "classes": {},
 "rule": ["=", "nodename", "the-node"],
 ...
 },
 "defined_by": {
 "name": "Carl Perkins",
 "classes": {"songColors": {"blue": "Blue Suede Shoes"}},
 "rule": ["not", ["=", "nodename", "the-node"]],
 ...
 }
 },
 {
 "value": "Since You've Been Gone",
 "from": {
 "name": "Aretha Franklin",
 "classes": {"songColors": {"blue": "Since You've Been Gone"}},
 ...
 },
 "defined_by": {
 "name": "Aretha Franklin",
 "classes": {"songColors": {"blue": "Since You've Been Gone"}},
 ...
 }
 }

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 548

]
 }
 }
 }
}

Related information
Node classifier API errors on page 574
Learn about node classifier API error responses.

POST /v1/classified/nodes/<name>/explanation
Retrieve a detailed explanation about how a node is classified based on facts supplied in the body of your request.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain the name of a
specific node, and the body can contain a JSON object using these keys:

Key Definition

fact A JSON object containing regular, non-trusted facts
associated with the node. The object contains key/value
pairs of fact names and fact values. Fact values can be
strings, integers, Booleans, arrays, or objects.

trusted A JSON object containing trusted facts associated
with the node. The object contains key/value pairs of
fact names and fact values. Fact values can be strings,
integers, Booleans, arrays, or objects.

For example:

{
 "fact": {
 "ear-tips": "pointed",
 "eyebrow pitch": "40",
 "hair": "dark",
 "resting bpm": "120",
 "blood oxygen transporter": "hemocyanin",
 "anterior tricuspids": "2",
 "appendices": "1",
 "spunk": "10"
 }
}

Response format

The response is a JSON object describing how the node would be classified based on the submitted facts.

• If the node would be successfully classified, the response object contains the successful classification outcome.
• If the classification would fail due to conflicts, the response object describes the conflicts.

The response is intended to provide insight into the classification process, so that, if a node isn't classified as
expected, you can trace the classification sequence to the source of the deviation.

Classification proceeds in this order:

1. All node group rules are tested on the node's facts and name. Groups that don't match the node are culled, leaving
only the matching groups. This step contributes to the match_explanations key in the response body.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 549

2. Inheritance relations are used to further cull the matching groups, by removing any matching node group that has
a descendant that is also a matching node group. The remaining node groups are referred to as leaf groups. This
step contributes to the leaf_groups key in the response body.

3. Each leaf group is transformed into its inherited classification by adding all the inherited class and class parameter
values from their ancestors. This step contributes to the inherited_classifications key in the response
body.

4. All inherited classifications and individual node classifications are inspected for conflicts. A conflict occurs
whenever two inherited classifications define different values for the same environment, class parameter, or top-
level variable. This step contributes to the conflicts key in the response body.

5. Any individual node classifications (including classes, class parameters, configuration data, and variables) are
added. This step contributes to the individual_classification key in the response body.

6. Individual node classifications are applied to the group classification, which forms the final classification. This
step contributes to the final_classification key in the response body.

The response's JSON object uses these keys to describe the classification:

Key Definition

match_explanations An object containing group ID's the node matched to.
For each group ID, there is an object explaining why the
node matched that particular group's rules.

leaf_groups This key's value is an array of the leaf groups. This
represent a condensed list of matching groups after
filtering out any matching node group that had a
descendant that was also a matching node group.

inherited_classifications This key's value is an object mapping a leaf group's
ID to the classification values provided by that group
(including inheritance from ancestors).

conflicts This key is present only if there are conflicts in the
inherited classifications. For each conflict there is an
array of conflict details. Each of these details is an object
with three keys: value, from, and defined_by.
The value key is a conflicting value, the from key is
the group whose classification provided the conflicting
value, and the defined_by key is the group that
actually defined the value (which can be an ancestor of
the from group).

individual_classification This key's value includes classes, class parameters,
configuration data, and variables applied directly to the
node.

final_classification This key is present only if there are no conflicts between
the inherited classifications. Its value is the result of
merging all individual node classifications and group
classifications.

node_as_received Represents the node object as defined in the request,
including the name and facts (if supplied).

classification_source An annotated version of the node's classification where
the environment, each class parameter, and each variable
are replaced with an annotated value object.

This example shows a successful (non-conflicting) classification response:

{

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 550

 "node_as_received": {
 "name": "Tuvok",
 "trusted": {},
 "fact": {
 "ear-tips": "pointed",
 "eyebrow pitch": "30",
 "blood oxygen transporter": "hemocyanin",
 "anterior tricuspids": "2",
 "hair": "dark",
 "resting bpm": "200",
 "appendices": "0",
 "spunk": "0"
 }
 },
 "match_explanations": {
 "00000000-0000-4000-8000-000000000000": {
 "value": true,
 "form": ["~", {"path": "name", "value": "Tuvok"}, ".*"]
 },
 "8aeeb640-8dca-4b99-9c40-3b75de6579c2": {
 "value": true,
 "form": ["and",
 {
 "value": true,
 "form": [">=", {"path": ["fact", "eyebrow pitch"], "value":
 "30"}, "25"]
 },
 {
 "value": true,
 "form": ["=", {"path": ["fact", "ear-tips"], "value":
 "pointed"}, "pointed"]
 },
 {
 "value": true,
 "form": ["=", {"path": ["fact", "hair"], "value": "dark"},
 "dark"]
 },
 {
 "value": true,
 "form": [">=", {"path": ["fact", "resting bpm"], "value":
 "200"}, "100"]
 },
 {
 "value": true,
 "form": ["=",
 {
 "path": ["fact", "blood oxygen transporter"],
 "value": "hemocyanin"
 },
 "hemocyanin"
]
 }
]
 }
 },
 "leaf_groups": {
 "8aeeb640-8dca-4b99-9c40-3b75de6579c2": {
 "name": "Vulcans",
 "id": "8aeeb640-8dca-4b99-9c40-3b75de6579c2",
 "parent": "00000000-0000-4000-8000-000000000000",
 "rule": ["and", [">=", ["fact", "eyebrow pitch"], "25"],
 ["=", ["fact", "ear-tips"], "pointed"],
 ["=", ["fact", "hair"], "dark"],
 [">=", ["fact", "resting bpm"], "100"],

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 551

 ["=", ["fact", "blood oxygen transporter"],
 "hemocyanin"]
],
 "environment": "alpha-quadrant",
 "variables": {},
 "classes": {
 "emotion": {"importance": "ignored"},
 "logic": {"importance": "primary"}
 },
 "config_data": {
 "USS::Voyager": {"designation": "subsequent"}
 }
 }
 },
 "inherited_classifications": {
 "8aeeb640-8dca-4b99-9c40-3b75de6579c2": {
 "environment": "alpha-quadrant",
 "variables": {},
 "classes": {
 "logic": {"importance": "primary"},
 "emotion": {"importance": "ignored"}
 },
 "config_data": {
 "USS::Enterprise": {"designation": "original"},
 "USS::Voyager": {"designation": "subsequent"}
 }
 }
 },
 "individual_classification": {
 "classes": {
 "emotion": {
 "importance": "secondary"
 }
 },
 "variables": {
 "full_name": "S'chn T'gai Spock"
 }
 },
 "final_classification": {
 "environment": "alpha-quadrant",
 "variables": {
 "full_name": "S'chn T'gai Spock"
 },
 "classes": {
 "logic": {"importance": "primary"},
 "emotion": {"importance": "secondary"}
 },
 "config_data": {
 "USS::Enterprise": {"designation": "original"},
 "USS::Voyager": {"designation": "subsequent"}
 }
 },
 "classification_sources": {
 "environment": {
 "value": "alpha-quadrant",
 "sources": ["8aeeb640-8dca-4b99-9c40-3b75de6579c2"]
 },
 "variables": {},
 "classes": {
 "emotion": {
 "puppetlabs.classifier/sources":
 ["8aeeb640-8dca-4b99-9c40-3b75de6579c2"],
 "importance": {
 "value": "secondary",

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 552

 "sources": ["node"]
 }
 },
 "logic": {
 "puppetlabs.classifier/sources":
 ["8aeeb640-8dca-4b99-9c40-3b75de6579c2"],
 "importance": {
 "value": "primary",
 "sources": ["8aeeb640-8dca-4b99-9c40-3b75de6579c2"]
 }
 },
 "config_data": {
 "USS::Enterprise": {
 "designation": {
 "value": "original",
 "sources": ["00000000-0000-4000-8000-000000000000"]
 }
 },
 "USS::Voyager": {
 "designation": {
 "value": "subsequent",
 "sources": ["8aeeb640-8dca-4b99-9c40-3b75de6579c2"]
 }
 }
 }
 }
 }
}

This example shows a conflicting classification response:

{
 "node_as_received": {
 "name": "Spock",
 "trusted": {},
 "fact": {
 "ear-tips": "pointed",
 "eyebrow pitch": "40",
 "blood oxygen transporter": "hemocyanin",
 "anterior tricuspids": "2",
 "hair": "dark",
 "resting bpm": "120",
 "appendices": "1",
 "spunk": "10"
 }
 },
 "match_explanations": {
 "00000000-0000-4000-8000-000000000000": {
 "value": true,
 "form": ["~", {"path": "name", "value": "Spock"}, ".*"]
 },
 "a130f715-c929-448b-82cd-fe21d3f83b58": {
 "value": true,
 "form": [">=", {"path": ["fact", "spunk"], "value": "10"}, "5"]
 },
 "8aeeb640-8dca-4b99-9c40-3b75de6579c2": {
 "value": true,
 "form": ["and",
 {
 "value": true,
 "form": [">=", {"path": ["fact", "eyebrow pitch"], "value":
 "30"}, "25"]
 },

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 553

 {
 "value": true,
 "form": ["=", {"path": ["fact", "ear-tips"], "value":
 "pointed"}, "pointed"]
 },
 {
 "value": true,
 "form": ["=", {"path": ["fact", "hair"], "value": "dark"},
 "dark"]
 },
 {
 "value": true,
 "form": [">=", {"path": ["fact", "resting bpm"], "value":
 "200"}, "100"]
 },
 {
 "value": true,
 "form": ["=",
 {
 "path": ["fact", "blood oxygen transporter"],
 "value": "hemocyanin"
 },
 "hemocyanin"
]
 }
]
 }
 },
 "leaf_groups": {
 "a130f715-c929-448b-82cd-fe21d3f83b58": {
 "name": "Humans",
 "id": "a130f715-c929-448b-82cd-fe21d3f83b58",
 "parent": "00000000-0000-4000-8000-000000000000",
 "rule": [">=", ["fact", "spunk"], "5"],
 "environment": "alpha-quadrant",
 "variables": {},
 "classes": {
 "emotion": {"importance": "primary"},
 "logic": {"importance": "secondary"}
 }
 },
 "8aeeb640-8dca-4b99-9c40-3b75de6579c2": {
 "name": "Vulcans",
 "id": "8aeeb640-8dca-4b99-9c40-3b75de6579c2",
 "parent": "00000000-0000-4000-8000-000000000000",
 "rule": ["and", [">=", ["fact", "eyebrow pitch"],
 "25"],
 ["=", ["fact", "ear-tips"], "pointed"],
 ["=", ["fact", "hair"], "dark"],
 [">=", ["fact", "resting bpm"], "100"],
 ["=", ["fact", "blood oxygen
 transporter"], "hemocyanin"]
],
 "environment": "alpha-quadrant",
 "variables": {},
 "classes": {
 "emotion": {"importance": "ignored"},
 "logic": {"importance": "primary"}
 }
 }
 },
 "inherited_classifications": {
 "a130f715-c929-448b-82cd-fe21d3f83b58": {
 "environment": "alpha-quadrant",

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 554

 "variables": {},
 "classes": {
 "logic": {"importance": "secondary"},
 "emotion": {"importance": "primary"}
 }
 },
 "8aeeb640-8dca-4b99-9c40-3b75de6579c2": {
 "environment": "alpha-quadrant",
 "variables": {},
 "classes": {
 "logic": {"importance": "primary"},
 "emotion": {"importance": "ignored"}
 }
 }
 },
 "conflicts": {
 "classes": {
 "logic": {
 "importance": [
 {
 "value": "secondary",
 "from": {
 "name": "Humans",
 "id": "a130f715-c929-448b-82cd-fe21d3f83b58",
 ...
 },
 "defined_by": {
 "name": "Humans",
 "id": "a130f715-c929-448b-82cd-fe21d3f83b58",
 ...
 }
 },
 {
 "value": "primary",
 "from": {
 "name": "Vulcans",
 "id": "8aeeb640-8dca-4b99-9c40-3b75de6579c2",
 ...
 },
 "defined_by": {
 "name": "Vulcans",
 "id": "8aeeb640-8dca-4b99-9c40-3b75de6579c2",
 ...
 }
 }
]
 },
 "emotion": {
 "importance": [
 {
 "value": "ignored",
 "from": {
 "name": "Vulcans",
 "id": "8aeeb640-8dca-4b99-9c40-3b75de6579c2",
 ...
 },
 "defined_by": {
 "name": "Vulcans",
 "id": "8aeeb640-8dca-4b99-9c40-3b75de6579c2",
 ...
 }
 },
 {
 "value": "primary",

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 555

 "from": {
 "name": "Humans",
 "id": "a130f715-c929-448b-82cd-fe21d3f83b58",
 ...
 },
 "defined_by": {
 "name": "Humans",
 "id": "a130f715-c929-448b-82cd-fe21d3f83b58",
 ...
 }
 }
]
 }
 }
 },
 "individual_classification": {
 "classes": {
 "emotion": {
 "importance": "secondary"
 }
 },
 "variables": {
 "full_name": "S'chn T'gai Spock"
 }
 }
}

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

Commands endpoint
Use the commands endpoint to unpin specified nodes from all node groups they’re pinned to.

If you want to unpin one or more nodes from a single node group, use the POST /v1/groups/<id>/unpin on page
541 endpoint.

To re-pin nodes you've unpinned, use the POST /v1/groups/<id>/pin on page 540 endpoint.

POST /v1/commands/unpin-from-all
Unpin one or more specific nodes from all node groups they’re pinned to. Unpinning has no effect on nodes that are
assigned to node groups via dynamic rules.

Request format

If you submit a request to the /v1/commands/unpin-from-all endpoint, the endpoint only removes the
specified nodes from groups that you have permission to view and edit. Because group permissions are applied
hierarchically, you must have one of the following permissions for the parent groups of each group you want to
unpin nodes from:

• Create, edit, and delete child groups
• Edit child group rules

When Forming node classifier API requests on page 526 to this endpoint, the body must be a JSON object
containing the certnames of the nodes you want to unpin. For a single node, you can supply this in a simple JSON
object. For multiple nodes, supply the certnames in an array. For example, this JSON body unpins a single node:

{"nodes": "foo"}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 556

And this body unpins three nodes:

{"nodes": ["foo", "bar", "baz"]}

Here is an example of a complete curl request for this endpoint:

type_header= 'Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/classifier-api/v1/commands/
unpin-from-all"
data='{"nodes": ["host1.example", "host2.example"]}'

curl --insecure --header "$type_header" --header "$auth_header"--request
 POST "$uri" --data "$data"

Tip: Nodes assigned to groups via dynamic rules can't be unpinned. If you want to remove dynamically-classified
nodes from groups, you need to modify the group's rules. To explore a node's classification, use the Classification
endpoints on page 545.

Response format

Note: If you have a lot of node groups, the endpoint takes longer to respond.

If unpinning is successful, the service returns a list of nodes and the groups they were unpinned from. If a node you
specified in your request was not pinned to any groups, that node is omitted from the response. Here are two response
examples:

{"nodes": [{"name": "foo",
 "groups": [{"id": "8310b045-c244-4008-88d0-b49573c84d2d",
 "name": "Webservers",
 "environment": "production"},
 {"id": "84b19b51-6db5-4897-9409-a4a3a94b7f09",
 "name": "Test",
 "environment": "test"}]},
 {"name": "bar",
 "groups": [{"id": "84b19b51-6db5-4897-9409-a4a3a94b7f09",
 "name": "Test",
 "environment": "test"}]}]}

{"nodes":
 [{"name":"host1.example",
 "groups":[{"id":"2d83d860-19b4-4f7b-8b70-
e5ee4d8646db","name":"test","environment":"production"}]},
 {"name":"host2.example",
 "groups":[{"id":"2d83d860-19b4-4f7b-8b70-
e5ee4d8646db","name":"test","environment":"production"}]}]}

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If your request doesn't specify any nodes to unpin, the service returns a 400 Malformed Request response.

If the request body is invalid JSON, is missing the nodes key, or contains any keys other than nodes, the service
returns a 400 Malformed Request response.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 557

Environments endpoints
Use the environments endpoints to retrieve the node classifier's environment data. The responses tell you which
environments are available, whether a named environment exists, and which classes exist in a certain environment.

The responses are useful for creating node groups, which must be associated with an environment. You can use the
Groups endpoints on page 528 to create and edit node groups.

The node classifier gets environment information from Puppet. Do not use the environments endpoints to create,
update, or delete environments.

GET /v1/environments
Retrieve a list of all environments the node classifier knows about at the time of the request.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the request is a basic GET call with
authentication.

Response format

A successful response is a JSON array of objects. Each object uses these keys to describe an environment:

Key Definition

name The name of the environment, as a string.

sync_succeeded A Boolean indicating whether the environment synced
successfully during the last class synchronization.

GET /v1/environments/<name>
Retrieve information about a specific environment. This endpoint is useful for checking whether an environment
exists.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the request is a basic GET call with
authentication. The URI path must specify an environment name, such as production. For example:

GET https://localhost:4433/classifier-api/v1/environments/production

Response format

If the environment exists, the endpoint returns a 200 response and a JSON array containing one object. The object
uses these keys to describe the specified environment:

Key Definition

name The name of the environment, as a string.

sync_succeeded A Boolean indicating whether the environment synced
successfully during the last class synchronization.

Error responses

If there is no environment with the specified name, the endpoint returns a 404 Not Found response with an empty
body. Other possible errors follow the usual format for Node classifier API errors on page 574.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 558

PUT /v1/environments/<name>
Create a new environment with a specific name.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain the name you
want to assign to the new environment. For example, this request creates an environment called staging:

PUT https://localhost:4433/classifier-api/v1/environments/staging

Response format

If the environment is successfully created, the service returns a 201 Created response and a JSON body
describing the environment.

If an environment with the given name already exists, the endpoint might return a 200 OK response.

Error responses

Possible errors follow the usual format for Node classifier API errors on page 574.

GET /v1/environments/<environment>/classes
Retrieve a list of all classes (that the node classifier knows about) in a specific environment.

Request format

The /v1/environments/<environment>/classes endpoint returns the node classifier's current class data
for the specified environment. The node classifier periodically retrieves class data from the primary server, and you
can check the last retrieval time with the GET /v1/last-class-update on page 570 endpoint. If you want to ensure
the response contains the latest data, use the POST /v1/update-classes on page 570 endpoint to force a retrieval. To
get a list of all classes for all environments, use the GET /v1/classes on page 544 endpoint.

When Forming node classifier API requests on page 526 to this endpoint, the request is a basic GET call with
authentication. The URI path must specify an environment, such as production. For example:

GET https://localhost:4433/classifier-api/v1/environments/production/classes

You can use the GET /v1/environments on page 557 endpoint to get a list of known environments.

Response format

A successful response is a JSON array of objects. Each object uses these keys to describe a class:

Key Definition

name The name of the class, as a string.

environment The name of the environment that this class exists
in. Note that the same class can exist in different
environments and can have different parameters in each
environment.

parameters An object describing the parameters and default
parameter values for the class. The keys of this object are
the parameter names (strings). Each value is the default
value for the associated parameter as a string, boolean,
number, structured value, or null. If the value is null,
the parameter is required.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 559

This is an example of one class object:

{
 "name": "apache",
 "environment": "production",
 "parameters": {
 "default_mods": true,
 "default_vhost": true,
 ...
 }
}

For errors, refer to Node classifier API errors on page 574.

GET /v1/environments/<environment>/classes/<name>
Retrieve the class with the given name in the given environment.

Request format

The /v1/environments/<environment>/classes/<name> endpoint returns the node classifier's current
class data for the specified environment and class. The node classifier periodically retrieves class data from the
primary server, and you can check the last retrieval time with the GET /v1/last-class-update on page 570 endpoint.
If you want to ensure the response contains the latest data, use the POST /v1/update-classes on page 570 endpoint
to force a retrieval. To get a list of all classes in an environment, use the GET /v1/environments/<environment>/
classes on page 558 endpoint. To get a list of all classes in all environments, use the GET /v1/classes on page
544 endpoint.

When Forming node classifier API requests on page 526 to this endpoint, the request is a basic GET call with
authentication. The URI path must specify an environment, such as production, and a class name. For example:

GET https://localhost:4433/classifier-api/v1/environments/production/
classes/apache

Response format

A successful response is a JSON array containing one object that uses these keys to describe the class:

Key Definition

name The name of the class, as a string.

environment The name of the environment that this class exists
in. Note that the same class can exist in different
environments and can have different parameters in each
environment.

parameters An object describing the parameters and default
parameter values for the class. The keys of this object are
the parameter names (strings). Each value is the default
value for the associated parameter as a string, boolean,
number, structured value, or null. If the value is null,
the parameter is required.

For example:

{
 "name": "apache",
 "environment": "production",
 "parameters": {

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 560

 "default_mods": true,
 "default_vhost": true,
 ...
 }
}

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If the endpoint can't find a class with the specified name, the server returns a 404 Not Found response with an
empty body.

Nodes check-in history endpoints
Use the nodes endpoints to retrieve records about nodes that have checked into the node classifier.

Enable check-in storage to use this endpoint

By default, node check-in storage is disabled because it can place excessive loads on larger deployments. You must
enable node check-in storage to get any information from the nodes endpoints. If node check-in storage is disabled,
the nodes endpoints return empty arrays.

To enable node check-in storage, set the classifier_node_check_in_storage parameter in the
puppet_enterprise::profile::console class to true.

Related information
Set configuration data on page 458
Configuration data set in the PE console is used for automatic parameter lookup in the same way that Hiera data is
used. Console configuration data takes precedence over Hiera data, but you can combine data from both sources to
configure nodes.

GET /v1/nodes
Retrieve check-in history for all nodes that have checked in with the node classifier.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the request is a basic GET call with
authentication. For example:

GET https://localhost:4433/classifier-api/v1/nodes

You can append these optional parameters to the URI path:

• limit: Set the maximum number of nodes to include in the response. For example, limit=10 limits the
response to 10 nodes. The point at which the limit count starts is determined by offset.

Tip: The amount of time it takes the endpoint to respond depends on the number of records it has to collect.
In deployments that have a very large amount of nodes, the console-services process might run out of
memory and crash. If your deployment has a lot of nodes, setting the limit parameter can expedite the response
time and avoid crashes.

• offset: Specify a zero-indexed integer at which to start returning results. For example, if you set this to 12, the
response returns nodes starting with the 13th record. The default is 0.

For example, this request includes the limit and offset parameters:

GET https://localhost:4433/classifier-api/v1/nodes?limit=25&offset=25

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 561

Response format

A successful response returns a JSON array of objects. Each object contains:

• name: The name of the node, as a string.
• check_ins: An array of objects where each object represents a node classifier check-in event.

Each check-in object uses these keys:

• time: The check-in time, as a string in ISO-8601 format with timezone.
• explanation: An object containing IDs of node groups the node was classified into (during the check-in

event) and sub-objects explaining which rule(s) the node matched to be classified into the group. Rule explanation
objects use these keys:

• value: A Boolean indicating the result of evaluating the form. At the top level, this is the result of the entire
rule condition. Within complex rules, you can use the value to trace individual rule condition results, For
example, you can check which parts of an or condition were true.

• form: A representation of a rule condition. Additional conditions within a complex rule are represented as
nested rule explanation objects.

Tip: If you want more detailed classification explanations, use the POST /v1/classified/nodes/<name>/
explanation on page 548 endpoint.

• transaction_uuid: A UUID representing a specific Puppet transaction that is submitted by Puppet at the
time of the check-in event. This makes it possible to identify the check-in event that generated a specific catalog
and report.

Besides the rule condition markup, the comparison operations in the rule conditions have their first argument (the fact
path) replaced with an object that has both the fact path and the value that was found in the node at that path.

Here is an example of a response object for one node:

{
 "name": "Deep Space 9",
 "check_ins": [
 {
 "time": "2369-01-04T03:00:00Z",
 "explanation": {
 "53029cf7-2070-4539-87f5-9fc754a0f041": {
 "value": true,
 "form": [
 "and",
 {
 "value": true,
 "form": [">=", {"path": ["fact", "pressure hulls"], "value":
 "3"}, "1"]
 },
 {
 "value": true,
 "form": ["=", {"path": ["fact", "warp cores"], "value": "0"},
 "0"]
 },
 {
 "value": true,
 "form": [">" {"path": ["fact", "docking ports"], "value":
 "18"}, "9"]
 }
]
 }
 }
 }
],
 "transaction_uuid": "d3653a4a-4ebe-426e-a04d-dbebec00e97f"

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 562

}

To help explain the response, assume a node named Deep Space 9 checked into the classifier, and, at check-in
time, the node had these facts:

"fact": {
 "pressure hulls": "10",
 "docking ports": "18",
 "docking pylons": "3",
 "warp cores": "0",
 "bars": "1"
 }

Also assume this rule existed for a node group:

["and", [">=", ["fact", "pressure hulls"], "1"],
 ["=", ["fact", "warp cores"], "0"],
 [">=", ["fact", "docking ports"], "10"]]

Tip: Refer to Forming node classifier API requests on page 526 for an explanation of rule condition grammar.

When the Deep Space 9 node checks in for classification, the node's facts caused it to match the rule. When
you check the check-in history, the rule explanation object demonstrates the logic behind the rule evaluation that
ultimately classified the node into that particular node group. For example:

{
 "value": true,
 "form": [
 "and",
 {
 "value": true,
 "form": [">=", {"path": ["fact", "pressure hulls"], "value": "3"},
 "1"]
 },
 {
 "value": true,
 "form": ["=", {"path": ["fact", "warp cores"], "value": "0"}, "0"]
 },
 {
 "value": true,
 "form": [">" {"path": ["fact", "docking ports"], "value": "18"}, "9"]
 }
]
}

Error responses

Possible errors follow the usual format for Node classifier API errors on page 574.

GET /v1/nodes/<node>
Retrieve the check-in history for a specific node.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the request is a basic GET call with
authentication. The URI path must specify a node name. For example:

GET https://localhost:4433/classifier-api/v1/nodes/Node1234

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 563

Response format

The response is the same as the GET /v1/nodes on page 560 endpoint response, but the response only contains
information for the specified node.

Error responses

If there is no check-in information for the node with the given name, the endpoint returns a 404 Not Found
response. Other possible errors follow the usual format for Node classifier API errors on page 574.

Group children endpoint
Use the group-children endpoint to retrieve a list of node groups descending from a specific node group.

GET /v1/group-children/<id>
Retrieve a list of node groups descending from a specific node group,

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain a node group
ID. The ID must be a valid type-4 (random) UUID. You can use the GET /v1/groups on page 528 endpoint to
retrieve node group IDs.

You can append the optional depth parameter to limit how many levels of descendants are returned. For example,
depth=2 limits the response to the group's immediate children and first grandchildren. For example:

GET https://localhost:4433/classifier-api/v1/group-
children/085e2797-32f3-4920-9412-8e9decf4ef65?depth=2

depth must be an integer. If depth=0 the response only returns the base group and no children or grandchildren.

Response format

A successful response returns a JSON array of objects, where each object represents a node group. If grandchildren
are present, the objects are nested to represent the node group ancestry tree.

Restriction: The response only contains information about node groups you have permission to view and the
children of those node groups. If you specified a depth, the response is further constrained. Keep in mind that you
might have permission to view a grandchild group but not that group's parent.

• If you only have permission to view the specified group, the response contains the group's descendants.
• If you have permission to view the descendants of the specified group, but not the specified group itself, the

response returns children from each ancestry tree you have permission to view.
• If you do not have permission to view either the specified group or its descendants, the response is an empty

array.

Each node group object uses these keys:

Key Definition

name The name of the node group, as a string.

id The node group's ID, which is a string containing a
type-4 (random) UUID. The regular expression used
to validate node group UUIDs is [0-9a-f]{8}-
[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-
[0-9a-f]{12}.

description An optional key containing an arbitrary string describing
the node group.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 564

Key Definition

environment The name of the node group's environment, as a string.
This indirectly defines which classes are available to
declare on the node group, and this is the environment
that nodes in this node group run in.

environment_trumps This is a Boolean that changes the response to conflicting
environment classifications. By default, if a node
belongs to multiple groups with different environments,
a classification-conflict error is returned.
If the environment_trumps flag is set on a node
group, then that node group's environment overrides
environments of other groups (if the other groups do not
have this flag set), and no attempt is made to validate
that the other node groups' classes and class parameters
exist in this node group's environment. This is used,
for example, with Environment-based testing on page
463.

parent The ID of the node group's parent, as a string.
The only node group without a parent is the All
Nodes group, which is the root of the node group
hierarchy. The root group, All Nodes, always
has the lowest-possible random UUID, which is:
00000000-0000-4000-8000-000000000000

rule A Boolean condition on node properties. When a node's
properties satisfy this condition, it's classified into the
node group.

classes An object that defines both the classes consumed by
nodes in this node group and any non-default values
for their parameters. The keys of the object are the
class names, and the values are objects describing the
parameters. The parameter objects' keys are parameter
names, and the values are what the node group sets for
that parameter, which is always a string.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 565

Key Definition

deleted An object similar to the classes object that shows
which classes and class parameters set by the node
group have since been deleted. If none of the node
group's classes or parameters have been deleted,
this key is omitted. Checking for the presence of
this key is an easy way to check whether the node
group has references that need to be updated. The
keys of this object are class names, and the values
are also objects. These secondary objects always
contain the puppetlabs.classifier/deleted
key, whose value is a Boolean indicating whether
the entire class has been deleted. The other keys of
these objects are parameter names, and the other
values are objects that always contain two keys:
puppetlabs.classifier/deleted, which
is a Boolean indicating whether the specific class
parameter has been deleted, and value, which is the
string value set by the node group for this parameter (the
value is duplicated for convenience; also appears in the
classes object).

variables An object that defines the values of any top-level
variables set by the node group. The object is a mapping
between variable names and their values (which can be
any JSON value).

children A JSON array containing node group objects for
the group's immediate children. Grandchildren are
represented in additional nested children arrays. If
you included a depth in your request, the amount of
nesting stops at the specified depth.

immediate_child_count The number of immediate children of the group. Child
count reflects the number of children that exist in
the classifier, not the number that are returned in the
request, which can vary based on permissions and query
parameters.

The following example is a response to a request for the first two levels of children under the root group, All Nodes.
The user has permission to view only child-1 and grandchild-5, which limits the response to child-1, the
first children of child-1, and grandchild-5. No additional grandchildren are represented because the request
specified depth=2.

[
 {
 "name": "child-1",
 "id": "652227cd-af24-4fd8-96d4-b9b55ca28efb",
 "parent": "00000000-0000-4000-8000-000000000000",
 "environment_trumps": false,
 "rule": ["and", ["=", ["fact", "foo"], "bar"], ["not", ["<",
 ["fact", "uptime_days"], "31"]]],
 "variables": {},
 "environment": "test",
 "classes": {},
 "children": [
 {

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 566

 "name": "grandchild-1",
 "id": "a3d976ad-51d3-4a29-af57-09990f3a2481",
 "parent": "652227cd-af24-4fd8-96d4-b9b55ca28efb",
 "environment_trumps": false,
 "rule": ["and", ["=", ["fact", "foo"], "bar"], ["or", ["~",
 "name", "db"], ["<", ["fact", "processorcount"], "9"], ["=", ["fact",
 "operatingsystem"], "Ubuntu"]]],
 "variables": {},
 "environment": "test",
 "classes": {},
 "children": [],
 "immediate_child_count": 0
 },
 {
 "name": "grandchild-2",
 "id": "71905c11-5295-41cf-a143-31b278cfc859",
 "parent": "652227cd-af24-4fd8-96d4-b9b55ca28efb",
 "environment_trumps": false,
 "rule": ["and", ["=", ["fact", "foo"], "bar"], ["not", ["~",
 ["fact", "kernel"], "SunOS"]]],
 "variables": {},
 "environment": "test",
 "classes": {},
 "children": [],
 "immediate_child_count": 0
 }
],
 "immediate_child_count": 2
 },
 {
 "name": "grandchild-5",
 "id": "0bb94f26-2955-4adc-8460-f5ce244d5118",
 "parent": "0960f75e-cdd0-4966-96f6-5e60948a7217",
 "environment_trumps": false,
 "rule": ["and", ["=", ["fact", "foo"], "bar"], ["and", ["<",
 ["fact", "processorcount"], "16"], [">=", ["fact", "kernelmajversion"],
 "2"]]],
 "variables": {},
 "environment": "test",
 "classes": {},
 "children": [],
 "immediate_child_count": 0
 }
]

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If the supplied node group ID is not a valid UUID, the server returns a 400 Bad Request malformed-UUID
response.

If the value of depth is not an integer, or it is a negative integer, the server returns a 400 Bad Request
malformed-number or 400 Bad Request illegal-count response.

If the endpoint can't find a node group with the specified ID, the server returns a 400 Not Found response.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 567

Rules endpoint
Use the rules endpoint to translate a node group rule condition into PuppetDB query syntax.

POST /v1/rules/translate
Translate a node group rule condition into PuppetDB query syntax.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the body must be a JSON object
describing a rule condition. The rule condition must be structured like a rule key for a node group object. To get
examples of rule keys, use the GET /v1/groups/<id>/rules on page 542 endpoint.

You can append the optional format parameter to the end of the URI path to change the response format. The
default value is nodes. If you specify format=inventory, the response returns classifier rules in a compatible
dot notation format, instead of the PuppetDB AST format.

Response format

If you did not specify the format in your request, or if you specified format=nodes, then the response is
a PuppetDB query string. You can use this query string with nodes endpoint in PuppetDB to get a list of nodes
matching the rule condition.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

Rules that use structured or trusted facts cannot be converted into PuppetDB queries, because PuppetDB does not
yet support structured or trusted facts. If the rule can't be translated into a PuppetDB query, the server returns a 422
Unprocessable Entity untranslatable-rule response with a message describing why the rule can't be
translated and a copy of your supplied rule.

If the request doesn't contain a valid rule, the server returns a 400 Bad Request response. There are two common
variations of this error:

• malformed-request: The rule is not valid JSON. The error response body contains a copy of your supplied
rule.

• schema-violation: The rule is valid JSON but the rule grammar is incorrect. Refer to Forming node
classifier API requests on page 526 for information about rule grammar. The details key in the error
response body describes the submitted rule object, the schema the object was expected to conform to, and how the
submitted object failed to conform to the schema.

Related information
GET /v1/groups on page 528
Retrieves a list of all node groups in the node classifier.

Import hierarchy endpoint
Use the import hierarchy endpoint to delete all existing node groups from the node classifier service and
replace them with the node groups defined in the body of the request.

POST /v1/import-hierarchy
Delete all existing node groups from the node classifier service and replace them with the node groups defined in the
body of the submitted request.

Request format

CAUTION: This endpoint deletes all existing node groups, and then creates new node groups based on the
content of the request body.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/api/query/v4/ast.html#dot-notation
https://puppet.com/docs/puppetdb/latest/api/query/v4/ast.html

pe | Managing nodes | 568

When Forming node classifier API requests on page 526 to this endpoint, the body must contain an array of node
group objects that form a valid and complete node group hierarchy. Valid means that the hierarchy does not contain
any cycles (self-referencing inheritance loops). Complete means that every node group in the hierarchy is reachable
from the root node group (All Nodes).

Tip: Responses from the GET /v1/groups on page 528 endpoint are valid input for the /v1/import-
hierarchy endpoint.

The request body must be a JSON array containing JSON objects describing the node groups to be created. Use the
following keys. You must specify all keys – This endpoint supplies no default values.

Key Definition

name The name of the node group, as a string.

environment The name of the node group's environment, such as
production.

environment_trumps When a node belongs to two or more groups, this
Boolean indicates whether this node group's environment
overrides environments defined by other node groups.

description A string describing the node group. For no description,
supply an empty string.

parent The ID of the node group's parent.

rule The condition that must be satisfied for a node to be
classified into this node group.

For rule formatting assistance, refer to Forming node
classifier API requests on page 526.

variables An object that defines the names and values of any top-
level variables set by the node group. Supply key-value
pairs of variable names and corresponding variable
values. Variable values can be any type of JSON value.
The variables object can be empty if the node group
does not define any top-level variables.

classes A object that defines the classes to be used by nodes
in the node group. The classes object contains the
parameters for each class. Some classes have required
parameters. This object contains nested objects – The
classes object's keys are class names (as strings), and
each key's value is an object that defines class parameter
names and their values. Within the nested objects, the
keys are the parameter names (as strings), and each
value is the parameter's assigned value (which can be
any type of JSON value). If no classes are declared, then
classes must be supplied as an empty object ({}).

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 569

Key Definition

config_data An object that defines the class parameters to be used
by nodes in the group. Its structure is the same as the
classes object. No configuration data is stored if you
supply a config_data object that only contains a
class name, such as "config_data": {"qux":
{}}.

Note: This key is enabled by the
classifier::allow-config-data setting.
When set to false, supplying the config_data
object triggers a 400 response.

Response format

If the submitted request forms a complete and valid node group hierarchy, and the replacement operation is
successful, the endpoint returns a 204 No Content response with an empty body.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key. There are
several errors you might encounter with the POST /v1/import-hierarchy endpoint:

Response code Message Description

400 Bad Request schema-violation Keys are missing or the value of
any supplied key does not match the
required type.

400 Bad Request malformed-request The request's body could not be
parsed as JSON.

422 Unprocessable Entity unreachable-groups The node group hierarchy contains
node groups that are unreachable
from the root node group. The
response lists the unreachable node
groups.

422 Unprocessable Entity inheritance-cycle The request causes an inheritance
cycle. The error response contains a
description of the cycle, including a
list of the node group names, where
each node group is followed by its
parent until the first node group is
repeated.

You might also encounter some of the errors returned by the POST /v1/groups on page 533 endpoint.

Related information
Groups endpoints on page 528
The groups endpoints create, read, update, and delete groups.

Node classifier API errors on page 574

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 570

Learn about node classifier API error responses.

Last class update endpoint
Use the last-class-update endpoint to retrieve the time that classes were last updated from the primary server.

To prompt the node classifier to fetch updated class and environment definitions from the primary server, use the
Update classes endpoint on page 570.

GET /v1/last-class-update
Retrieve the time that classes were last updated from the primary server.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the request is a basic GET call with
authentication.

Response format

A successful response is a JSON object containing last_update. If there has been an update, last_update
reports the time of the last update in ISO-8601 format. If the node classifier has never updated the classes from the
primary server, last_update is null.

Update classes endpoint
Use the update-classes endpoint to trigger the node classifier to get updated class and environment definitions
from the primary server.

Restriction: If you changed the value of the environment_class_cache_enabled setting on your primary
server to true and you don't use Code Manager, you must manually delete the environment cache before using the
update-classes endpoint.

To check the last time the node classifier got updated definitions from the primary server, use the Last class update
endpoint on page 570.

Related information
Use cached data when updating classes on page 218
The environment_class_cache_enabled setting specifies whether cached data is used when updating
classes in the Puppet Enterprise (PE) console. When true, Puppet Server uses file sync when refreshing classes,
which provides improved performance.

POST /v1/update-classes
Trigger the node classifier to retrieve updated class and environment definitions from the primary server. The
classifier service also uses this endpoint when you refresh classes in the console.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the default request updates definitions
for all environments. If you only want to update a specific environment, append the environment parameter to the
URI path. For example, this request only updates definitions for the production environment:

cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/classifier-api/v1/update-
classes?environment=production"

curl --cert "$cert" --cacert "$cacert" --key "$key" --request POST "$uri"

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/server/admin-api/v1/environment-cache.html

pe | Managing nodes | 571

Response format

If the definitions were successfully updated, the service returns a 201 response with an empty body.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If the node classifier gets an unexpected status from the primary server, the service returns 500 Server Error
unexpected-response and a copy of the response from the primary server.

Related information
Use cached data when updating classes on page 218
The environment_class_cache_enabled setting specifies whether cached data is used when updating
classes in the Puppet Enterprise (PE) console. When true, Puppet Server uses file sync when refreshing classes,
which provides improved performance.

Validation endpoint
Use the validation endpoint to validate groups in the node classifier.

POST /v1/validate/group
Validate groups in the node classifier.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the body must be a JSON object
describing the node group to be validated. The request uses these keys (which are required unless otherwise noted):

Key Definition

name The name of the node group, as a string.

environment The name of the node group's environment. This is
optional. If omitted, the default value is production.

environment_trumps When a node belongs to two or more groups, this
Boolean indicates whether this node group's environment
overrides environments defined by other node groups.
This is optional. If omitted, the default value is false.

description A string describing the node group. This is optional. If
omitted, the node group has no description.

parent The ID of the node group's parent. This is required.

rule The condition that must be satisfied for a node to be
classified into this node group.

For rule formatting assistance, refer to Forming node
classifier API requests on page 526.

variables An optional object that defines the names and values of
any top-level variables set by the node group. Supply
key-value pairs of variable names and corresponding
variable values. Variable values can be any type of JSON
value. The variables object can be omitted if the
node group does not define any top-level variables.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 572

Key Definition

classes A required object that defines the classes to be used
by nodes in the node group. The classes object
contains the parameters for each class. Some classes
have required parameters. This object contains nested
objects – The classes object's keys are class names
(as strings), and each key's value is an object that defines
class parameter names and their values. Within the
nested objects, the keys are the parameter names (as
strings), and each value is the parameter's assigned value
(which can be any type of JSON value). If no classes are
declared, then classes must be supplied as an empty
object ({}). If missing, the server returns a 400 Bad
request response.

For example, this request validates a group called My Nodes:

type_header='Content-Type: application/json'
cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):4433/classifier-api/v1/validate/
group"
data='{ "name": "My Nodes",
 "parent": "00000000-0000-4000-8000-000000000000",
 "environment": "production",
 "classes": {}
 }'

curl --header "$type_header" --cert "$cert" --cacert "$cacert" --key "$key"
 --request POST "$uri" --data "$data"

Response format

If the group is valid, the service returns a 200 OK response with the validated group's information in the body.

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key. There are
several errors you might encounter with the /v1/validate/group endpoint:

Response code Message Description

400 Bad Request schema-violation Required keys are missing or the
value of any supplied key does not
match the required type.

400 Bad Request malformed-request The request's body could not be
parsed as JSON.

422 Unprocessable Entity uniqueness-violation The request content violates
uniqueness constraints. For example,
each node group name must be
unique within distinct environments.
The error response describes the
invalid field.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 573

Response code Message Description

422 Unprocessable Entity missing-referents Classes or class parameters declared
on the node group, or inherited
by the node group from its parent,
do not exist in the specified
environment. The error response lists
the missing classes or parameters.
The details contains an array of
objects, where each object uses these
keys to describe a single missing
referent:

• kind: Either "missing-class" or
"missing-parameter", depending
on whether the entire class
doesn't exist, or the parameter is
missing from the class.

• missing: The name of the
missing class or class parameter.

• environment: The
environment that the class or
parameter is missing from.

• group: The name of the node
group where the error was
encountered. Due to inheritance,
this might not be the group where
the parameter is actually defined.

• defined_by: The name of the
node group that defines the class
or parameter. This can be the
same as group or a parent of
group.

422 Unprocessable Entity missing-parent The specified parent node group does
not exist.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 574

Response code Message Description

422 Unprocessable Entity inheritance-cycle The request causes an inheritance
cycle. The error response contains a
description of the cycle, including a
list of the node group names, where
each node group is followed by its
parent until the first node group is
repeated.

Node classifier API errors
Learn about node classifier API error responses.

Error response description
Node classifier API error responses are formatted as JSON objects.

Error responses use these keys:

Key Definition

kind The kind of error encountered.

msg The message associated with the error.,

details A hash containing additional information about the error.
This information might be less user-friendly than the
msg.

Internal server errors
Endpoints might return 500: Internal Server Error responses in addition to their usual responses. There
are two kinds of internal server error responses: application-error and database-corruption.

An application-error response is a catchall for unexpected errors. The msg of an 500 application-
error response contains the underlying error's message and a description of information contained in details.
The details contain the error's stack trace (as an array of strings) and might contain schema, value, and
error keys if the error was caused by a schema validation failure.

A 500 database-corruption response occurs when a resource that is retrieved from the database fails to
conform to the schema expected of it by the application. This usually indicates a software bug, but can indicate either:

• Genuine corruption in the database
• That a third party has changed values directly in the database

The msg contains a description of how the database corruption could have occurred. The details contains
retrieved, schema, and error keys, which report retrieved resource, the schema it was expected to conform to,
and a description of how the resource failed to conform to that schema.

Not found errors
Any endpoint where a resource identifier is supplied can produce a 404 Not Found Error response if a
resource with that identifier could not be found.

All not found error responses have the same form:

• kind: not-found

• msg: "The resource could not be found"

• details: Contains the URI of the request that caused the 404 response.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 575

Node classifier API v2
These are the endpoints for the node classifier v2 API.

Refer to Forming node classifier API requests on page 526 for information about calling the node classifier API
endpoints.

• Classification endpoints on page 575
The classification endpoints accepts a node name and a set of facts, and then return information about how the
specified node is classified. The output can help you test your node group classification rules.

Related information
API index on page 30
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Classification endpoints
The classification endpoints accepts a node name and a set of facts, and then return information about how the
specified node is classified. The output can help you test your node group classification rules.

• POST /v2/classified/nodes/<name> on page 575
Retrieves classification information for the specified node.

POST /v2/classified/nodes/<name>
Retrieves classification information for the specified node.

Request format

When Forming node classifier API requests on page 526 to this endpoint, the URI path must contain the name of a
specific node, and the body can contain a JSON object using these keys:

Key Definition

fact A JSON object containing regular, non-trusted facts
associated with the node. The object contains key/value
pairs of fact names and fact values. Fact values can be
strings, integers, Booleans, arrays, or objects.

trusted A JSON object containing trusted facts associated
with the node. The object contains key/value pairs of
fact names and fact values. Fact values can be strings,
integers, Booleans, arrays, or objects.

Here is an example of a curl command for the /v2/classified/nodes/<name> endpoint:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):4433/classifier-api/v2/
classified/nodes/<NAME>"
data='{"fact" : { "<FACT_NAME>" : "<FACT_VALUE>" }}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

Response format

A successful response returns a JSON object using these keys to describe the node's classification:

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 576

Key Definition

groups An array of the groups that the node was classified into.
Each group is represented by an object containing the
group id and the name. Contents of the array are sorted
by group name.

environment The name of the environment that the node uses, which
is taken from the node groups the node was classified
into.

classes An array of strings representing the classes that this node
received from the groups it was classified into.

parameters An object containing key/value pairs describing class
parameter values for the node's classes if the
parameters are different from the default parameters.

Each key/value pair consists of a class name, as a string,
and a subsequent object containing the names and values
of non-default parameters within the named class.

For example:

{
 "groups": [{"id": "9c0c7d07-a199-48b7-9999-3cdf7654e0bf",
 "name": "a group"},
 {"id": "96d1a058-225d-48e2-a1a8-80819d31751d",
 "name": "b group"}],
 "environment": "staging",
 "classes": ["apache"],
 "parameters": {
 "apache": {
 "keepalive_timeout": 30,
 "log_level": "notice"
 }
 }
}

Error responses

If there is an error, Node classifier API errors on page 574 provide error information in the kind key.

If the node is classified into multiple node groups that supply conflicting classifications to the node, the server returns
a 500 Server error response.

For classification-conflict errors, the msg describes generally why the conflict happened, and the
details contains an object that uses the environment, variables, or classes key to indicate the type of
conflict (whether it was in setting the environment, setting variables, or setting class parameters). Each key contains
value-detail objects describing the specific conflicts:

Value-detail object key Definition

value The specific value having a conflict. For
environment and classes, these are strings. For
variables, these can be any JSON value type.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 577

Value-detail object key Definition

from The node group that the node was classified into that
caused the conflicting value to be added to the node's
classification. Refer to defined_by for further details.

defined_by The node group that actually defined the conflicting
value. This is often the from group, but could be
an ancestor of that group, due to How node group
inheritance works on page 452.

The following example demonstrates a conflicting value being inherited from an ancestor group and a conflicting
value supplied directly from the assigned node group. The conflicting value Blue Suede Shoes was included
in the classification because the node matched the Elvis Presley group (as indicated by from). However, the
conflicting value was actually defined by the Carl Perkins group, which is an ancestor of the Elvis Presley
group. This caused the child group to inherit the value from the ancestor group. The Since You've Been Gone
conflicting value is defined by the same group that the node was assigned to.

{
 "kind": "classification-conflict",
 "msg": "The node was classified into multiple unrelated groups that
 defined conflicting class parameters or top-level variables. See `details`
 for a list of the specific conflicts.",
 "details": {
 "classes": {
 "songColors": {
 "blue": [
 {
 "value": "Blue Suede Shoes",
 "from": {
 "name": "Elvis Presley",
 "classes": {},
 "rule": ["=", "nodename", "the-node"],
 ...
 },
 "defined_by": {
 "name": "Carl Perkins",
 "classes": {"songColors": {"blue": "Blue Suede Shoes"}},
 "rule": ["not", ["=", "nodename", "the-node"]],
 ...
 }
 },
 {
 "value": "Since You've Been Gone",
 "from": {
 "name": "Aretha Franklin",
 "classes": {"songColors": {"blue": "Since You've Been Gone"}},
 ...
 },
 "defined_by": {
 "name": "Aretha Franklin",
 "classes": {"songColors": {"blue": "Since You've Been Gone"}},
 ...
 }
 }
]
 }
 }
 }
}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 578

Node inventory API v1
These are the endpoints for the node inventory v1 API.

• Forming node inventory API requests on page 578
Requests to the node inventory service API must be well-formed HTTP(S) requests.
• Command endpoints on page 579
Use the command endpoints to create and delete connections in the inventory service database.
• Query endpoints on page 583
Use the query endpoints to retrieve lists of inventory service connections.
• Node inventory API errors on page 586
Node inventory API error responses are formatted as JSON objects.

Related information
API index on page 30
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Forming node inventory API requests
Requests to the node inventory service API must be well-formed HTTP(S) requests.

By default, the node inventory service listens on port 8143 and all endpoints are relative to the /inventory/v1
path. For example, the full URL for the /command/create-connection endpoint on localhost is https://
localhost:8143/inventory/v1/command/create-connection.

Node inventory API requests must include a URI path following the pattern:

https://<DNS>:8143/inventory/v1/<ENDPOINT>

The variable path components derive from:

• DNS: Your PE console host's DNS name. You can use localhost, manually enter the DNS name, or use a
puppet command (as explained in Using example commands on page 25).

• ENDPOINT: Multiple sections specifying the endpoint, such as command/create-connection or query/
connections.

For example, you could use any of these paths to call the GET /query/connections on page 583 endpoint:

https://$(puppet config print server):8143/inventory/v1/query/connections
https://localhost:8143/inventory/v1/query/connections
https://puppet.example.dns:8143/inventory/v1/query/connections

To form a complete curl command, you need to provide appropriate curl arguments, authentication, and you might
need to supply the content type and/or additional parameters specific to the endpoint you are calling.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Token authentication

You must authenticate node classifier API requests. You do this by supplying user authentication tokens in an X-
Authentication request header.

For instructions on generating, configuring, revoking, and deleting authentication tokens in PE, go to Token-based
authentication on page 308.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 579

This example uses a token generated with puppet-access login to call the POST /command/create-connection
on page 579 endpoint:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/inventory/v1/command/create-
connection"
data='{ "certnames": ["new.node"],
 "type": "ssh",
 "parameters": {
 "tmpdir": "/tmp",
 "port": 1234
 },
 "sensitive_parameters": {
 "username": "root",
 "password": "password"
 },
 "duplicates": "replace"
 }'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

This example uses the same token and header pattern to call the POST /query/connections on page 585 endpoint:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/inventory/v1/query/
connections?certname='new.node'"

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri"

Related information
Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

Command endpoints
Use the command endpoints to create and delete connections in the inventory service database.

POST /command/create-connection
Create a new connection entry in the node inventory service database.

Request format

Connection database entries contain connection settings, such as certnames, transport methods, and credentials, that
are used to connect to nodes (identified by their certnames).

When Forming node inventory API requests on page 578 to this endpoint, the request body must be a JSON object
that uses these required keys:

• certnames: An array containing a list of certnames to associate with the supplied connection details.
• type: A string that is either ssh or winrm. This tells bolt-server which connection type to use to access

the node when running a task.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 580

• parameters: An object containing key/value pairs specifying the connection parameters for the specified
transport type. Required and optional parameters depend on the transport method and are described further
below.

Important: When the Puppet orchestrator targets a certname to run a task, it first considers the value of the
hostname key present in the connection parameters, if supplied. Otherwise, it uses the value of the
certnames key as the hostname. Make sure to include the hostname key only when the hostname differs from
the certname. If you're configuring multiple connections (certnames) at once, do not include a hostname key.

• sensitive_parameters: An object containing key/value pairs defining the necessary sensitive data for
connecting to the provided certnames, such as usernames and passwords. These values are stored in an encrypted
format. Required and optional parameters depend on the transport method and are described further below.

• duplicates: A string that is either error or replace. This specifies how to handle cases where supplied
certnames conflict with existing certnames stored in the node inventory connections database. If you specify
error, the endpoint returns a 409 response if it finds any duplicate certnames. If you specify replace, the
endpoint overwrites the existing certname with the new connection details if it finds a duplicate.

Here is an example of a complete request to the /command/create-connection endpoint that specifies and
SSH connection:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/inventory/v1/command/create-
connection"
data='{"certnames": [
 "sshnode1.example.com",
 "sshnode2.example.com"
],
 "type": "ssh",
 "parameters": {
 "port": 1234,
 "connect-timeout": 90,
 "user": "inknowahorse",
 "run-as": "fred"
 },
 "sensitive_parameters": {
 "password": "password",
 "sudo-password": "xtheowl"
 },
 "duplicates": "replace"
}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

SSH parameters and sensitive parameters

When the connection type is ssh, the following keys are available for the parameters object. Only the user
key is required.

user

Required. A string naming the user to log in as when connecting to the host.

port

An integer defining the connection port.

Default: 22

connect-timeout

An integer specifying the length of time, in seconds, that you want PE to wait when establishing connections.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 581

run-as

A string specifying the user name to use to run commands after logging in to the host.

Default: The same value as user.

tmpdir

A string specifying the directory to use to upload and execute temporary files on the target.

Specify this only if the temporary directory is different than /temp.

tty

A Boolean specifying whether to enable text terminal allocation.

hostname

A string specifying the hostname to connect to if it is different from the certname.

When the Puppet orchestrator targets a certname to run a task, it first considers the value of the hostname key
present in the connection parameters, if supplied. If omitted, the certname is used as the hostname when
the orchestrator connects to the host.

Important: Do not specify a hostname when configuring multiple connections (multiple certnames) in the
same request.

Only specify hostname if the node's certname in PE is different than the hostname of the intended target.
In this case the certname in the request body must be the desired node certname, and the hostname in the
parameters object must be the hostname to connect to.

When the connection type is ssh, the following keys are available for the sensitive-parameters object:

password

Conditionally required. A string specifying the password to use to authenticate the connection.

To form a valid request, you must specify either password or private-key-content.

private-key-content

Conditionally required. The contents of a private key, as a string.

To form a valid request, you must specify either password or private-key-content.

sudo-password

An optional string specifying the password to use when changing users via run-as.

Only include this if run-as is specified in the parameters object.

WinRM parameters and sensitive parameters

When the connection type is winrm, the following keys are available for the parameters object. Only the user
key is required.

user

Required. A string naming the user to log in as when connecting to the host.

port

An integer defining the connection port.

Default: 22

connect-timeout

An integer specifying the length of time, in seconds, that you want PE to wait when establishing connections.

tmpdir

A string specifying the directory to use to upload and execute temporary files on the target.

Specify this only if the temporary directory is different than /temp.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 582

extensions

An array listing file extensions that are allowed for tasks.

hostname

A string specifying the hostname to connect to if it is different from the certname.

When the Puppet orchestrator targets a certname to run a task, it first considers the value of the hostname key
present in the connection parameters, if supplied. If omitted, the certname is used as the hostname when
the orchestrator connects to the host.

Important: Do not specify a hostname when configuring multiple connections (multiple certnames) in the
same request.

Only specify hostname if the node's certname in PE is different than the hostname of the intended target.
In this case the certname in the request body must be the desired node certname, and the hostname in the
parameters object must be the hostname to connect to.

When the connection type is winrm, the sensitive-parameters object allows only one key, which is
the password key. This key required and contains a string specifying the password to use to authenticate the
connection.

Response format

If the request is well-formed, valid, and the entries are successfully recorded in the database, the server returns a 201
response with a JSON object containing the connection_id for each connection's record. For example:

{
 "connection_id": "3c4df64f-7609-4d31-9c2d-acfa52ed66ec"
}

The endpoint also inserts each of the provided certnames into PuppetDB with an empty fact set, if they are not already
present. After certnames are added to PuppetDB, you can view them from the Nodes page in the Puppet Enterprise
(PE) console. You can also add them to your inventory node lists when you set up jobs to run tasks.

Error responses

Error responses follow the usual format of Node inventory API errors on page 586.

POST /command/delete-connection
Remove specified certnames from all associated connection entries in the inventory service database. In PuppetDB,
removed certnames are replaced with preserve: false.

Request format

When Forming node inventory API requests on page 578 to this endpoint, the request body must be a JSON object
containing the certnames key. This key is an array of certnames you want to remove. For example:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/inventory/v1/command/delete-
connection"
data='{"certnames": ["mynode5", "mynode6"]}'

curl --insecure --header "$type_header" --header "$auth_header"--request
 POST "$uri" --data "$data"

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 583

Response format

If the request s well-formed, valid, and processed successfully, the service returns a 204 response with an empty
body.

Error responses

Error responses follow the usual format of Node inventory API errors on page 586. If you are not authorized to
delete connections, the service returns a 403 response.

Query endpoints
Use the query endpoints to retrieve lists of inventory service connections.

GET /query/connections
List all the connections entries in the inventory database or request information about a specific connection.

Request format

When Forming node inventory API requests on page 578 to this endpoint, the request is a basic GET call with
authentication. You can append these optional parameters to the URI path:

• certname: A single certname, as a string. Use this to retrieve an individual node's connection details, rather than
details for all nodes.

• sensitive: A Boolean indicating whether you want the response to include sensitive connection parameters.
This parameter has a permission gate, and it doesn't work if you don't have the proper permissions.

• extract: Array of keys indicating the information you want the response to include. The connection_id
key is always returned, and you can use extract to limit the remaining keys. For example,
extract=["type"] limits the response to connection_id and type.

Tip: To return sensitive parameters, the request must include sensitive=true. Otherwise, sensitive parameters
are excluded by default.

For example:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/inventory/v1/query/
connections?certname='new.node'&sensitive=true"

curl --insecure --header "$type_header" --header "$auth_header" "$uri"

Response format

A successful response returns a JSON object containing the items key. The items key is an array of objects, where
each object represents a known connection (or a connection for a single node, depending on the request format). The
connection objects use these keys:

• connection_id: A string that is the unique identifier for the connections entry.
• certnames: Array of strings that are the certnames of the matching connections entries.
• type: A string describing the connection type, such as ssh or winrm.
• parameters: An object containing arbitrary key/value pairs that describe connection settings.
• sensitive_parameters: If specified in the request, and the requesting user has permission to access this

information, this key is an object that contains arbitrary key/value pairs describing the connections sensitive
settings.

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 584

For example, this response describes four connections. This is the typical format to expect when your request includes
no additional parameters:

{
 "items": [
 {
 "connection_id": "3c4df64f-7609-4d31-9c2d-acfa52ed66ec",
 "certnames": ["node.a", "node.b"],
 "type": "ssh",
 "parameters": {
 "tmpdir": "/tmp",
 "port": 1234
 }
 },
 {
 "connection_id": "4932bfe7-69c4-412f-b15c-ac0a7c2883f1",
 "certnames": ["mynode1", "mynode2"],
 "type": "winrm",
 "parameters": {
 "tmpdir": "/tmp",
 "port": 1234
 }
 }
]
}

This response describes a connection for a specific certname:

{
 "items": [
 {
 "connection_id": "3c4df64f-7609-4d31-9c2d-acfa52ed66ec",
 "certnames": ["my.node"],
 "type": "ssh",
 "parameters": {
 "tmpdir": "/tmp",
 "port": 1234
 }
 }
]
}

This response describes a specific certname and includes the sensitive information:

{
 "items": [
 {
 "connection_id": "3c4df64f-7609-4d31-9c2d-acfa52ed66ec",
 "certnames": ["my.node"],
 "type": "ssh",
 "parameters": {
 "tmpdir": "/tmp",
 "port": 1234
 },
 "sensitive_parameters": {
 "username": "<USERNAME>",
 "password": "<PASSWORD>"
 }
 }
]
}

© 2024 Puppet, Inc., a Perforce company

pe | Managing nodes | 585

This response describes a specific aspect of a specific connection (because certname and extract were supplied
in the request):

{
 "items": [
 {
 "connection_id": "3c4df64f-7609-4d31-9c2d-acfa52ed66ec",
 "certnames": ["my.node"],
 "type": "ssh"
 }
]
}

POST /query/connections
Retrieve connection details for a set of certnames.

Request format

When Forming node inventory API requests on page 578 to this endpoint, the request body must be a JSON object.
At minimum, it must be an empty object ({}), or it can use these keys:

• certnames: An array containing a list of certnames to retrieve from the inventory service database. If omitted,
then all connections are returned.

• sensitive: An optional Boolean indicating whether you want the response to include sensitive connection
parameters. This parameter has a permission gate, and it doesn't work if you don't have the proper permissions.

• extract: An array of keys indicating the information you want the response to include. The connection_id
key is always returned, and you can use extract to limit the remaining keys. For example, ["type"] limits
the response to connection_id and type. If omitted, all keys are returned.

Tip: To return sensitive parameters, the request must include "sensitive": "true". Otherwise, sensitive
parameters are excluded by default.

Here are some examples of JSON bodies for the /query/connections endpoint.

An empty request body, which returns information for all known connections but does not include sensitive
parameters:

{}

A request for connection details for a specific certname:

{
 "certnames": ["mynode1"]
}

A request for a specific certname, specific keys, and sensitive parameters:

{
 "certnames": ["averygood.device"],
 "sensitive": "true",
 "extract": ["certnames", "sensitive_parameters"]
}

Response format

The successful response is the same as the GET /query/connections on page 583 endpoint.

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 586

Node inventory API errors
Node inventory API error responses are formatted as JSON objects.

Error responses use these keys:

Key Definition

kind The kind of error encountered.

msg The message associated with the error.,

details A hash containing additional information about the error.
This information might be less user-friendly than the
msg.

Common errors include:

500 unknown-error

An unknown error occurred.

406 not-acceptable

The request contains an accepts header that doesn't allow JSON.

416 unsupported-type

The request contains a content-type header that is not JSON.

400 json-parse-error

There is a problem in the request body.

400 schema-validation-error

The body contains data that isn't in the expected or required format.

403 not-permitted

The user submitting the request doesn't have permission to perform the requested action.

This response is only expected for Command endpoints on page 579.

409 duplicate-certnames

The duplicates parameter is not specified, or it is specified as error, and one or more of the certnames in
the request body already exist in the inventory.

This response is only expected for Command endpoints on page 579.

Managing patches

Use Puppet Enterprise to configure patching node groups to meet your needs, view available operating system patches
for your nodes in the console, and apply patches using the pe_patch::patch_server task.

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 587

• Configuring patch management on page 587
To enable patch management, create a node group for nodes you want to patch and add the node group to the PE
Patch Management parent node group.
• Patching nodes on page 593
After configuring patch management, you can start applying patches to nodes. The patch_server task enables
simply applying patches, while the group_patching plan performs health checks before and after patches are
applied.

Configuring patch management
To enable patch management, create a node group for nodes you want to patch and add the node group to the PE
Patch Management parent node group.

Patch management OS compatibility
Patch management is compatible with current Linux operating systems using YUM, APT, and Zypper package
management, as well as Microsoft Windows operating systems. We currently test against the following platforms, and
these are confirmed to be compatible.

Operating system Versions

AlmaLinux 8

Amazon Linux 2

CentOS 7

Debian 10, 11

Fedora

Note: You must install cron to run patch management
on Fedora. To install cron, run dnf install
cronie

36

Microsoft Windows 10, 11

Microsoft Windows Server

Note: You must use PowerShell 3.0 or higher to patch
Windows nodes.

2012, 2012 R2, 2016, 2019, 2022

Oracle Linux 7, 8

Red Hat Enterprise Linux 7, 8, 9

Rocky Linux 8

Scientific Linux 7

SUSE Linux Enterprise Server 12, 15

Ubuntu 18.04, 20.04, 22.04

Note: If your operating system doesn't support TLSv1.2 or higher, you must Enable TLSv1 or 1.1.

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 588

Where patch information comes from
Your package management software is responsible for ensuring PE can find the latest patch information available.

The pe_patch module uses OS level tools or APIs to find patches for nodes. You still have to manage the
configuration of your package manager, like YUM, APT, Zypper, WSUS, or Windows Update, so your nodes can
search for updates. For example, if you need to go through a proxy and you use YUM, you must configure this on
your own.

Patching involves two distinct steps. First, a cron job scans for new patches and uploads related details to PuppetDB
as part of the pe_patch fact. You can specify when to run the cron job with parameters in the pe_patch
class. Then, patches are applied to specified nodes using the pe_patch::patch_server task or the
pe_patch::group_patching plan.

Note: If you need to restrict which packages/patches your OS finds and which patches are applied:

• For *nix agents patching: Pin a package using yum versionlock, apt-mark, or zypper addlock. The
pinned_packages field in the pe_patch fact refers to versions locked using these methods. This is different
from apt-pinning packages, which is used to prioritize packages rather than locking them at a specific version.

• For Windows agents patching: If you use WSUS or Windows Update to deliver updates, use WSUS to approve
desired updates independently.

Security updates

To find security updates, the pe_patch module uses security metadata when it is available. For example, Red Hat
provides security metadata as additional metadata in YUM, Debian performs checks on the repo the updates are
coming from, and Windows provides this information by default.

In the console, on the Patches page, security metadata feeds into the Apply patches table where you can filter for
Security updates only.

Configure Windows Update

If you are using Windows Update, we recommend you use the puppetlabs/wsus_client module and configure these
parameters in the wsus_client class.

• Set the server_url parameter to the URL of your WSUS server.
• Set the auto_update_options parameter to AutoNotify to automatically download updates and notify

users.

Create a node group for nodes under patch management
Create a node group for nodes you want to patch in Puppet Enterprise (PE) and add nodes to it. For example, create
a node group for testing Windows and *nix patches prior to rolling out patches to other node groups. The PE Patch
Management parent node group has the pe_patch class assigned to it and is in the console by default.

CAUTION: Adding PE infrastructure nodes to patch management node groups can cause service
interruptions when certain patches are applied.

1. In the console, click Node groups, and click Add group.

2. Specify options for the new node group, then click Add.

• Parent name: Select PE Patch Management.
• Group name: Enter a name that describes the role of the node group, for example, patch test.
• Environment: Select production.
• Environment group: Do not select this option.

3. Select the patching node group you created.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/wsus_client

pe | Managing patches | 589

4. On the Node group details page, on the Rules tab, add nodes to the group by either pinning them individually or
adding a rule to automatically add nodes that meet your specifications.

CAUTION: Do not include the same node in multiple node groups under patch management. This can
cause classification conflicts.

5. Select Run > Puppet.

PE can now manage patches for the nodes in your new node group. Repeat these steps to add any additional node
groups you want under patch management.
Related information
Add nodes to a node group on page 454
There are two ways to add nodes to a node group.

Specify patching parameters
Set parameters for node groups under patch management by first applying the pe_patch class to them, then
specifying your desired parameters.

Before you begin
Create at least one node group under patch management.

1. On the Node groups page, select the patching node group you want to add parameters to.

2. If it doesn't already exist, add the pe_patch class to the node group.

a) On the Classes tab, enter pe_patch and select Add class.
b) Commit changes.

3. In the pe_patch class, add the patch_group parameter and specify a value that describes the nodes in this node
group.

Tip: The patch_group parameter is used to identify which nodes to run patching plans against. You might
specify patch_group names that match your node groups, or apply the same patch_group parameter across
several patching node groups that have similar characteristics.

4. Specify any additional patching parameters in the pe_patch class.

5. Commit changes.

Run Puppet on nodes in the node group before running patching tasks or plans.

Assign a patch management blackout window
Apply a blackout window to prevent PE from applying patches to nodes for a specified duration of time. For example,
limit applying patches during an end-of-year change freeze.

Before you begin
Assign the pe_patch class to the applicable node group. See Specify patching parameters on page 589 for more
information.

1. On the Node groups page, select the patching node group you want to assign a blackout window to.

2. On the Classes tab, under Parameter, add the blackout_windows parameter to the pe_patch class.

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 590

3. In the Value field, enter your blackout window as a JSON hash of keys and an ISO compliant timestamp.

For example, an end of year blackout window from the beginning of the day on 15 December 2020 to the end of
the day on 15 January 2021 looks like this:

{
 "End of year change freeze": {
 "start": "2020-12-15T00:00:00+10:00",
 "end": "2021-01-15T23:59:59+10:00"
 }
}

4. Commit changes.

When a user tries to patch nodes during the blackout window, the Patch blocked field on the Apply patches table
changes from No to Yes for affected patches. If the user proceeds with patching, the patching task fails.

Patch management parameters
Configure and tune patch management by adjusting parameters in the pe_patch class.

patch_data_owner

User name for the owner of the patch data. String.

Default: root

patch_data_group

Group name for the owner of the patch data. String.

Default: root

patch_cron_user

User account for running the cron job that scans for new patches in the background. String.

Default: $patch_data_owner

manage_yum_utils

Determines if the yum_utils package should be managed by this module on RedHat family nodes. If true,
use the yum_utils parameter to determine how it should be managed. Boolean.

Default: false

yum_utils

If managed, determines what the package is set to. Enum[installed, absent, purged, held, latest]

Default: installed

block_patching_on_warnings

Determines if the patching task should run if there were warnings present on the pe_patch fact. If true, the
run will abort and take no action. If false, the run will continue and attempt to patch. Boolean.

Default: false

fact_upload

Determines if puppet fact upload runs after any changes are made to the fact cache files. Boolean.

Default: true

apt_autoremove

Determines if apt-get autoremove runs during reboot. Boolean.

Default: false

manage_delta_rpm

Determines if the delta_rpm package should be managed by this module on RedHat family nodes. If true,
use the delta_rpm parameter to determine how it should be managed. Boolean.

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 591

Default: false

delta_rpm

If managed, determines what the delta_rpm package is set to. Enum[installed, absent, purged, held,
latest]

Default: installed

manage_yum_plugin_security

Determines if the yum_plugin_security package should be managed by this module on RedHat family
nodes. If true, use the yum_plugin_security parameter to determine how it should be managed. Boolean.

Default: false

yum_plugin_security

If managed, determines what the yum_plugin_security package is set to. Enum[installed, absent,
purged, held, latest]

Default: installed

reboot_override

Determines if a node reboots after patching. This overrides the setting in the task. Variant, Boolean,
Enum[always, never, patched, smart, default]

• always - The node always reboots during the task run, even if no patches are required.
• never (or false) - The node never reboots during the task run, even if patches are applied.
• patched (or true) - The node reboots if patches are applied.
• smart - Use the OS supplied tools, like needs_restarting on RHEL or a pending reboot check on

Windows, to determine if a reboot is required, if it is reboots, or if it does not reboot.
• default - Uses whatever option is set in the reboot parameter for the pe_patch::patch_server

task.

Default: default

patch_group

Identifies nodes in or across patching node groups to run patching plans against.

Default: undef

pre_patching_scriptpath

The full path to an executable script or binary on the target node to be run before patching.

Default: undef

post_patching_scriptpath

The full path to an executable script or binary on the target node to be run after patching.

Default: undef

patch_cron_hour

The hour or hours to run the cron job that scans for new patches.

Default: absent, or *

patch_cron_month

The month or months to run the cron job that scans for new patches.

Default: absent, or *

patch_cron_monthday

The monthday or monthdays to run the cron job that scans for new patches.

Default: absent, or *

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 592

patch_cron_weekday

The weekday or weekdays to run the cron job that scans for new patches.

Default: absent, or *

patch_cron_min

The min or mins to run the cron job that scans for new patches.

Default: fqdn_rand(59) - a random number between 0 and 59.

ensure

Use present to install scripts, cronjobs, files, etc. Use absent to clean up system that previously hosted.

Default: present

blackout_windows

Determines a window of time when nodes cannot be patched. Hash.

:title - Name of the blackout window. String.

:start- Start of the blackout window (ISO8601 format). String.

:end - End of the blackout window (ISO8601 format). String.

Default: undef

windows_update_criteria

Determines which types of updates Windows Update searches for. To search both software and driver updates,
remove the Type argument. String.

Default: IsInstalled=0 and IsHidden=0 and Type='Software'

Note: See the Microsoft documentation for more information about formatting strings for Windows Update.

Disable patch management
Use the console to disable patch management by editing the ensure parameter in the PE Patch Management node
group. You can also remove patch management by deleting patching node groups.

1. In the console, click Node groups and select the PE Patch Management node group.

2. On the Classes tab, under the pe_patch class, select the ensure parameter,and change the value to absent.

3. Click Add to node group and commit the change.

4. Run Puppet.
The client components of the pe_patch class, like cron and scripts, are removed from PE.

5. Optional: To remove patch management from your infrastructure, click Remove node group on the Node details
page for the PE Patch Management node group.

Note: If you have any child node groups under patch management, you must remove those node groups prior to
removing the PE Patch Management parent node group.

The Patch Management section in the console sidebar remains active after disabling patch management, but the
Patches page no longer reports patch information.

© 2024 Puppet, Inc., a Perforce company

https://docs.microsoft.com/en-us/windows/win32/api/wuapi/nf-wuapi-iupdatesearcher-search

pe | Managing patches | 593

Patching nodes
After configuring patch management, you can start applying patches to nodes. The patch_server task enables
simply applying patches, while the group_patching plan performs health checks before and after patches are
applied.

Patch nodes
Use the patch_server task to apply patches to nodes. You can limit patches to security or non-security updates,
Windows or *nix nodes, or a specific patch group.

Before you begin
Ensure you have permission to run the pe_patch::patch_server task.

1. On the Patches page, in the Apply patches section, use the filters to specify which patches to apply to which
nodes.

Note: Filters use and logic. This means that if you select Security updates and Windows, the results include
security patches for Windows nodes, not all security patches and all Windows patches.

2. Select Run > Task.
The Run a task page appears with patching information pre-filled for the pe_patch::patch_server task.

3. Optional: In the Job details field, provide a description of the task run. This text appears on the Tasks page.

4. Optional: Under Task parameters, add optional parameters to the task. See Patching task parameters on page
593 for a full list of available parameters.

Note: You must click Add parameter for each optional parameter-value pair you add to the task.

5. Optional: If you want to schedule the task to run later, under Schedule, select Later and choose a time.

6. Select Run task to apply patches.

To check the status of the task, look for it on the Tasks page. You can filter the results to view only pe_patch
tasks.

Note: When using patch management to update core packages that affect the networking stack, the task run might
look like it failed due to the PXP agent on the node losing connection with the primary server. However, the task
still completes successfully. You can confirm by checking the pe_patch fact to verify the relevant packages were
updated.

Patching task parameters
The pe_patch::patch_server task applies patches to nodes. When you patch nodes in the console, most of the
information for the patch_server task is prefilled on the Run a task page, but you can add additional parameters
to the task before you run it.

timeout

Indicates how much time elapses before the task run times out.

Accepted values: Any positive integer, in seconds.

Default: 3600

security_only

Indicates whether to apply only security patches.

Accepted values: true, false

Default: false

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 594

yum_params

Indicates additional parameters to include in YUM commands, such as including or excluding repositories.

Accepted values: String

Default: undef

dpkg_params

Indicates additional parameters to include in apt-get commands.

Accepted values: String

Default: undef

zypper_params

Indicates additional parameters to include in Zypper commands.

Accepted values: String

Default: undef

clean_cache

Indicates if YUM or dpkg caches are cleaned at the start of the task.

Accepted values: true, false

Default: false

reboot

Indicates if and when nodes reboot during the task run.

Note: If the node group you're patching has a reboot_override value specified, that value overrides any
reboot parameter you specify in task runs.

Accepted values:

• always — The node always reboots during the task run, even if no patches are required.
• never (or false) — The node never reboots during the task run, even if patches are applied.
• patched (or true) — The node reboots if patches are applied.
• smart — Use the OS supplied tools, like needs_restarting on RHEL or a pending reboot check on

Windows, to determine if a reboot is required.

Default: never

Patch nodes with built-in health checks
Use the group_patching plan to patch nodes with pre- and post-patching health checks. The plan verifies that
Puppet is configured and running correctly on target nodes, patches the nodes, waits for any reboots, and then runs
Puppet on the nodes to verify that they're still operational.

Before you begin
Ensure you have permission to run the pe_patch::group_patching plan.

1. In the console, in the Orchestration section, select Plans and then click Run a plan.

2. Specify plan details:

• Code environment — Select the environment where you installed the module containing the plan you want to
run. For example, production.

• Job description — Provide an optional description of the plan run.
• Plan — Select pe_patch::group_patching.

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 595

3. In the Plan parameters section, specify the patch_group that you want to base running the plan on, and
optionally add other patching plan parameters.

Note: The patch_group parameter is defined in the pe_patch class for node groups under patch management.
For details, see Specify patching parameters on page 589.

4. Optional: In the Schedule section, specify if you want the plan to run at a later date and time.

5. Click Run job.

To check the status of the plan, look for it on the Plans page.

Note: When using patch management to update core packages that affect the networking stack, the task run might
look like it failed due to the PXP agent on the node losing connection with the primary server. However, the task
still completes successfully. You can confirm by checking the pe_patch fact to verify the relevant packages were
updated.

Patching plan parameters
The pe_patch::group_patching plan verifies that Puppet is configured and running correctly on target nodes,
patches the nodes, waits for any reboots, and then runs Puppet on the nodes to verify that they're still operational.

By default, the plan includes a health check which considers "healthy" any nodes on which:

• The Puppet service is enabled and running
• Noop mode and cached catalogs are not enabled
• The run interval is 30 minutes

You can modify plan behavior with several types of optional parameters:

• Patching options let you control how patching itself is applied, including adding an optional string to arguments
passed to your package provider.

• Health check options control when a pre-patching health check and a post-patching Puppet run occurs.

Tip: The health_check_* parameters apply patches only to nodes that match values you specify. For
example, if you change health_check_service_running to false, the pre-patching health check marks nodes on
which the Puppet service is running as "unhealthy" and skips patching them.

• Reboot options control when a post-patching reboot occurs, and let you specify a script to execute after patching.

Patching options

patch_group

Specifies the patch_group, as defined in the pe_patch class parameter, that you want to base running the plan
on.

Accepted values: String

patch_task_timeout

Indicates how much time elapses before the task run times out.

Accepted values: Any positive integer, in seconds.

Default: 3600

security_only

Indicates whether to apply only security patches.

Accepted values: true, false

Default: false

yum_params

Indicates additional parameters to include in YUM commands, such as including or excluding repositories.

Accepted values: String

© 2024 Puppet, Inc., a Perforce company

pe | Managing patches | 596

Default: undef

dpkg_params

Indicates additional parameters to include in apt-get commands.

Accepted values: String

Default: undef

zypper_params

Indicates additional parameters to include in Zypper commands.

Accepted values: String

Default: undef

clean_cache

Indicates if YUM or dpkg caches are cleaned at the start of the task.

Accepted values: true, false

Default: false

sequential_patching

Indicates if nodes in the specified patch group are patched, rebooted, and the post-reboot script run one a time
rather than all at once.

Accepted values: true, false

Default: false

Health check options

run_health_check

Indicates whether to do a pre-patching health check and a post-patching Puppet run.

Accepted values: true, false

Default: true

health_check_noop

Verifies the noop setting during pre-patching health checks.

Accepted values: true, false

Default: false

health_check_runinterval

Verifies the runinterval setting during pre-patching health checks.

Accepted values: Any positive integer, in seconds.

Default: 1800 (equivalent to the default Puppet run interval of 30 minutes)

health_check_service_running

Verifies whether the Puppet service is running during pre-patching health checks.

Accepted values: true, false

Default: true

health_check_service_enabled

Verifies whether the Puppet service is enabled during pre-patching health checks.

Accepted values: true, false

Default: true

health_check_use_cached_catalog

Verifies the use_cached_catalog setting during pre-patching health checks.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 597

Accepted values: true, false

Default: false

Reboot options

reboot

Indicates if and when nodes reboot during the plan run.

Note: If the node group you're patching has a reboot_override value specified, that value overrides any
reboot parameter you specify in plan runs.

Accepted values:

• always — The node always reboots during the plan run, even if no patches are required.
• never — The node never reboots during the plan run, even if patches are applied.
• patched — The node reboots if patches are applied.
• smart — Use the OS supplied tools, like needs_restarting on RHEL or a pending reboot check on

Windows, to determine if a reboot is required.

Default: patched

reboot_wait_time

Indicates how long to wait for nodes to reboot before running a post-patching health check.

Accepted values: Any positive integer, in seconds.

Default: 600

post_reboot_scriptpath

The full path to an executable script or binary on the target node to be run after reboot and before the final Puppet
run.

Accepted values: File path

Default: undef

Orchestrating Puppet runs, tasks, and plans

Puppet orchestrator is an effective tool for making on-demand changes to your infrastructure.

With orchestrator you can initiate Puppet, task, or plan runs whenever you need them, eliminating manual work
across your infrastructure.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 598

• How Puppet orchestrator works on page 598
With the Puppet orchestrator, you can run Puppet, tasks, or plans on-demand.
• Setting up the orchestrator workflow on page 602
The orchestrator—used alongside other Puppet Enterprise (PE) tools, such as Code Manager—allows you to control
when and how infrastructure changes are made before they reach your production environment.
• Configuring Puppet orchestrator on page 609
Once you've installed PE or the client tools package, there are a few tasks you need to do to prepare your PE
infrastructure for orchestration services.
• Run Puppet on demand on page 616
You can use the orchestrator to run jobs from the console, the command line, or through the orchestrator API
endpoints.
• Tasks in PE on page 627
Tasks are ad-hoc actions you can execute on a target and run from the command line or the console.
• Plans in PE on page 660
Plans allow you to tie together tasks, scripts, commands, and other plans to create complex workflows with refined
access control. You can install modules that contain plans or write your own, then run them from the console or the
command line.
• Orchestrator API v1 on page 694
You can use the orchestrator API to run jobs and plans on demand; schedule tasks and plans; get information about
jobs, plans, and events; track node usage; and more.
• Migrating Bolt tasks and plans to PE on page 775
If you use Bolt tasks and plans to automate parts of your configuration management, you can move that Bolt content
to a control repo and transform it into a Puppet Enterprise (PE) environment. This lets you manage and run tasks and
plans using PE and the console. Bolt projects have the same structure as Puppet modules, and they can be loaded from
the modules directory of a PE environment.

How Puppet orchestrator works
With the Puppet orchestrator, you can run Puppet, tasks, or plans on-demand.

When you run Puppet on-demand with the orchestrator, you control the rollout of configuration changes when and
how you want them. You control when Puppet runs and where node catalogs are applied (from the environment level
to an individual node). You no longer need to wait on arbitrary run times to update your nodes.

Puppet tasks allow you to execute actions on target machines. A "task" is a single action that you execute on the
target via an executable file. For example, do you want to upgrade a package or restart a particular service? Set up a
Puppet task run to enforce to make those changes at will.

Puppet plans are bundles of tasks that can be combined with other logic. They allow you to do complex operations,
like run multiple tasks with one command or automatically run certain tasks based on the output of another task.

Tasks and plans are packaged and distributed as Puppet modules.

Puppet orchestrator technical overview
The orchestrator uses pe-orchestration-services, a JVM-based service in Puppet Enterprise (PE), to
execute on-demand Puppet runs on agent nodes in your infrastructure. The orchestrator uses Puppet Execution
Protocol (PXP) agents to orchestrate changes across your infrastructure.

The orchestrator (part of pe-orchestration-services) controls the functionality for the puppet job,
puppet task, and puppet plan commands, and it also controls the functionality for jobs and single-node runs
in the PE console.

The orchestrator is comprised of several components, each with their own configuration and log locations.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 599

Puppet orchestrator architecture

The orchestrator's functionality derives from the Puppet Execution Protocol (PXP), the Puppet Communications
Protocol (PCP), and the Agentless Catalog Executor (ACE) Server.

Puppet Execution Protocol (PXP)

A message format used to request that a task be executed on a remote host and receive responses on the status of
that task.

Used by pe-orchestration-services to run Puppet on agents.

PXP agent

A system service in the agent package that runs PXP.

Puppet Communications Protocol (PCP)

The underlying communication protocol that describes how PXP messages get routed to an agent and back to the
orchestrator.

PCP broker

A JVM-based service that runs in pe-orchestration-services on the primary server and in the pe-
puppetserver service on compilers.

PCP brokers route PCP messages, which declare the content of the message (via message type) and identify the
sender and intended recipient.

PCP brokers on compilers connect to the orchestrator, and the orchestrator uses the brokers to direct messages to
PXP agents connected to the compilers. When using compilers, PXP agents running on PE components (which
includes the primary server, PuppetDB, and the PE console) connect directly to the orchestrator, but all other
PXP agents connect to compilers via load balancers.

Agentless Catalog Executor (ACE) service

A Ruby service that enables you to execute tasks, plans, and Puppet runs on remotely on agentless targets. Refer
to PE ACE server configuration on page 615 for more information.

Bolt vs ACE: Orchestrator uses both ACE and Bolt to run tasks and plans. While both can act on agentless
targets, the primary difference is that Bolt server works with agentless nodes over WinRM or SSH, whereas ACE
works with agentless devices, like network switches and firewalls, over other transports. Go to PE Bolt server
configuration on page 614 to learn about how Bolt works in PE and configuring the Bolt server.

What happens during an on-demand run from the orchestrator ?

Several PE services interact when you Run Puppet on demand on page 616 from the orchestrator.

1. You use the puppet job command to create a job in orchestrator.
2. The orchestrator validates your token with the PE RBAC service.
3. The orchestrator requests environment classification from the node classifier for the nodes targeted in the job. It

also queries PuppetDB for the nodes.
4. The orchestrator creates the job ID and starts polling nodes in the job to check their statuses.
5. The orchestrator queries PuppetDB for the agent version on the nodes in the job.
6. The orchestrator tells the PCP broker to start runs on the nodes in the job, and Puppet runs start on those agents.
7. Agents send run results to the PCP broker.
8. The orchestrator receives run results and requests node run reports (also called agent run reports) from PuppetDB.

What happens during a task run from the orchestrator?

Several services interact during task runs. Because tasks are Puppet code, they must be deployed into an environment
on the primary server. Puppet Server then exposes the task metadata to the orchestrator. When a task runs, the
orchestrator sends the PXP agent a URL indicating where to fetch the task from (on the primary server) and the task
file's checksum. The PXP agent downloads the task file from the supplied URL and caches it for future use. The file
is validated against the checksum before every execution. This process is comprised of the following steps:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 600

1. The PE client sends a task command.
2. The orchestrator checks if the user is authorized.
3. The orchestrator fetches the node target from PuppetDB (if the target is a query) and returns the list of targeted

nodes.
4. The orchestrator requests task data from Puppet Server.
5. Puppet Server returns task metadata, file URIs, and file SHAs.
6. The orchestrator validates the task command and then sends the job ID back to the client.
7. The orchestrator sends task parameters and file information to the PXP agent.
8. The PXP agent sends a provisional response to the orchestrator, checks the SHA against the local cache, and

requests the task file from Puppet Server.
9. Puppet Server returns the task file to the PXP agent.
10. The task runs.
11. The PXP agent sends the result to the orchestrator.
12. The client requests events from the orchestrator.
13. The orchestrator returns the result to the client.

Notes about configuring the orchestrator and related components

Various files contain configuration and tuning settings for orchestrator components.

pe-orchestration-services

This is the underlying service for the orchestrator.

The main configuration file is located at: /etc/puppetlabs/orchestration-services/conf.d

Additional configuration for large infrastructures can include tuning the pe-orchestration-services
JVM heap size, increasing the limit on open file descriptors for pe-orchestration-services, and tuning
ARP tables.

PCP broker

Part of the pe-puppetserver service.

The main configuration file is located at: /etc/puppetlabs/puppetserver/conf.d

The PCP broker requires JVM memory and file descriptors. These resources scale linearly with the number of
active connections. Specifically, the PCP broker requires:

• Approximately 40 KB of memory (when restricted with the -Xmx JVM option)
• One file descriptor per connection
• An approximate baseline of 60 MB of memory and 200 file descriptors

For example, for a deployment with 100 agents, expect to configure the JVM with at least -Xmx64m and 300 file
descriptors. Message handling requires minimal additional memory.

PXP agent

Configuration is managed in the agent profile class (puppet_enterprise::profile::agent).

The PXP agent is configured to use Puppet’s SSL certificates and point to one PCP broker endpoint. If you've
configured disaster recovery, the agent points to additional PCP broker endpoints in the case of failover.

Important: If you reuse an existing agent with a new orchestrator instance, you must delete the pxp-agent
spool directory, which is located at:

• /opt/puppetlabs/pxp-agent/spool on *nix systems
• C:\ProgramData\PuppetLabs\pxp-agent\var\spool on Windows systems

Related information

• Orchestrator and pe-orchestration-services parameters on page 238
• Manage ARP table overflow on page 243

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 601

• Java heap on page 209
• JRuby max active instances on page 207
• Java parameters on page 125

Debugging the orchestrator and related components

If you need to debug the orchestrator or any of its related components, the following log locations might be helpful.

pe-orchestration-services

The main log file is located at:

/var/log/puppetlabs/orchestration-services/orchestration-services.log

PCP brokers

The main log file for PCP brokers on the primary server is located at:

/var/log/puppetlabs/orchestration-services/pcp-broker.log

The main log file for PCP brokers on compilers is located at:

/var/log/puppetlabs/puppetserver/pcp-broker.log

Tip: You can configure logback in your Puppet Server configuration.

You can also enable an access log for messages.

PXP agent

The main log file location varies by OS, and it can be configured if necessary. On *nix systems, the default
location is:

/var/log/puppetlabs/pxp-agent/pxp-agent.log

On Windows systems, the default location is:

C:/ProgramData/PuppetLabs/pxp-agent/var/log/pxp-agent.log

Metadata about Puppet runs triggered through the PXP agent are kept in the spool-dir for 14 days (by
default). The spool-dir location varies by OS.

• For *nix: /opt/puppetlabs/pxp-agent/spool
• For Windows: C:/ProgramData/PuppetLabs/pxp-agent/var/spool

ACE server

The main log file is located at:

/var/log/puppetlabs/ace-server/ace-server.log

Related information

• Configure PXP agent parameters on page 242

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 602

Setting up the orchestrator workflow
The orchestrator—used alongside other Puppet Enterprise (PE) tools, such as Code Manager—allows you to control
when and how infrastructure changes are made before they reach your production environment.

This recommended workflow gives you precise control over rolling out changes, such as deploying new Puppet code
or updating data and classifying nodes. In this workflow, you configure your agents to use cached catalogs during
scheduled runs, and you use orchestrator jobs to send new catalogs only when you're ready. Scheduled runs continue
to enforce the desired state from the last orchestration job until you send another new catalog.

Before you begin:

This workflow assumes you’re familiar with Code Manager. It involves making changes to your control repo, such as
adding or updating modules, editing manifests, or changing your Hiera data.

This workflow requires running deploy actions from the Code Manager command line tool and the orchestrator, so
make sure you have access to a host with PE client tools installed.

Related information
Add code and set up Code Manager on page 61
Set up your control repo, create a Puppetfile, and configure Code Manager so you can start adding content to your
Puppet Enterprise (PE) environments.

Enable cached catalogs for use with the orchestrator
Enabling cached catalogs on your agents ensures Puppet does not enforce any catalog changes on your agents until
you run an orchestrator job to enforce changes.

When you use the orchestrator to enforce changes in a Puppet environment (for example, in your production
environment), you want agents in that environment to maintain their cached catalogs until you run an orchestrator job
that deploys configuration changes for those agents. In these environments, agents reinforce configuration from their
cached catalogs during the normal run interval (30 minutes by default), and they apply new configuration only when
you run Puppet with an orchestration job.

Important: Although enabling cached catalogs is optional (you can run Puppet on nodes with orchestrator
workflows that don't require cached catalogs), our recommended workflow requires enabling cached catalogs so
agents enforce cached catalogs by default and only compile new catalogs when instructed by orchestrator jobs.

1. Run Puppet on the new agents.

CAUTION: Run Puppet on new agents before assigning any application components to them or
performing the next step.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 603

2. In each agent's puppet.conf file, add use_cached_catalog=true to the [agent]section. There are
two ways to do this:

• From the command line on each agent machine, run:

puppet config set use_cached_catalog true --section agent

• Add an ini_setting resource in the node default {} section of the environment’s site.pp file.

Important: This adds the setting to all agents in the environment.

if $facts['kernel'] == 'windows' {
 $config = 'C:/ProgramData/PuppetLabs/puppet/etc/puppet.conf'
} else {
 $config = $settings::config
}

ini_setting { 'use_cached_catalog':
 ensure => present,
 path => $config,
 section => 'agent',
 setting => 'use_cached_catalog',
 value => 'true',
}

3. Run Puppet on the agents again to enforce this configuration.

Set up node groups for testing new features

1. If they don't already exist, create environment node groups for branch testing. For example, you could create
Development environment and Test environment node groups.

2. Within each of these environment node groups, create a child node group to enable on-demand testing of changes
deployed in Git feature branch Puppet environments.
You now have at three levels of environment node groups:

• The top-level parent environment node group

• Node groups representing your actual environments

• Node groups for feature testing

3. On the Rules tab for each feature testing child node group, add a rule with these values:

• Fact: agent_specified_environment
• Operator: ~
• Value: ^.+

This rule matches any nodes from the parent group that have the agent_specified_environment fact set. By
matching nodes to this group, you give the nodes permission to override the server-specified environment and use
their agent-specified environment instead.

Related information
Create environment node groups on page 453

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 604

Create custom environment node groups so you can target Puppet code deployments.

Create a feature branch
After setting up a node group for feature testing, create a feature branch in your control repository. A feature branch
allows you to develop and test code before merging it with the main branch.

1. Create a feature branch in your control repository, and name the branch clearly as a feature branch (for example,
my_feature_branch or feature_<TICKET_NUMBER>).

2. Make changes to the code on the feature branch, and commit and push the changes to the feature branch.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 605

Deploy code to the primary server and test it
After making changes to the code on your feature branch, use Code Manager to push those changes to the primary
server.

1. To deploy the code from the feature branch to the primary server, run this Code Manager command:

puppet code deploy --wait <FEATURE_BRANCH>

After this code deployment, wait while Puppet Server loads the new code. The primary server now has code from
the main/production branch and the feature branch.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 606

2. To test your changes, use this orchestrator command to run Puppet on a few agent-specified development nodes in
the feature branch environment:

puppet job run --nodes <DEV-NODE1>,<DEV_NODE2> --environment
 <FEATURE_BRANCH>

Tip: You can also use the console to create a job targeting a list of nodes in the feature branch environment.

At this point, the production environment maintains the original code deployed to all production nodes, and the
feature branch environment has deployed your new code from the feature branch to the nodes you specified.

3. Review the node run reports in the console by opening the links in the orchestrator command output or using the
Job ID linked on the Job list page. Verify the code changes had the intended effect.

Related information
Run Puppet on one or more specific nodes on page 617

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 607

An orchestrator job can target one or more specific nodes. This is useful if you want to run Puppet on a single node, a
few specific nodes, nodes that are not in the same node group, or nodes that can't easily be identified by a single PQL
query.

Merge and promote your code
If everything works as expected on the development nodes, you're ready to promote your changes into production.

1. Merge your feature branch into the production branch in your control repo.

2. To deploy your updated production branch to the primary server, run this Code Manager command:

puppet code deploy --wait production

Preview the job
Before running Puppet across the production environment, use the puppet job plan command to preview
the job.

1. To ensure the job captures all nodes in the production environment, as well as the agent-specified
development nodes that just ran with the feature branch environment, use this query as the job target:

puppet job plan --query 'inventory {environment in ["production",
 "<FEATURE_BRANCH>"]}'

2. Review the outcome to ensure you want to make these changes.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 608

Run the job on the production environment
If you're satisfied with the job preview, you're ready to enforce changes on the production environment.

1. To deploy the new code to the primary server and all nodes in the production environment, run the orchestrator
job:

puppet job run --query 'inventory {environment in ["production",
 "<FEATURE_BRANCH>"]}'

Tip: You can also use the console to create a job targeted at this PQL query.

2. Check the node run reports in the console to confirm that the changes were applied as intended.

Repeat this process as you develop and promote your code.
Related information
Run Puppet on a PQL query on page 619

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 609

An orchestrator job can target a set of nodes based on a PQL query. This is useful when you want to target a variable
set of nodes that meet specific conditions, such as a particular operating system. When you supply a PQL query, the
orchestrator runs the job on a list of nodes generated by the PQL query.

Configuring Puppet orchestrator
Once you've installed PE or the client tools package, there are a few tasks you need to do to prepare your PE
infrastructure for orchestration services.

• Set PE RBAC permissions and token authentication for Puppet orchestrator
• Enable cached catalogs for use with the orchestrator (optional)
• Review the orchestrator configuration files and adjust them as needed

All of these instructions assume that PE client tools are installed.

Related information
Installing client tools on page 168
PE client tools are a set of command line tools that let you access Puppet Enterprise services from a workstation that
might or might not be managed by Puppet.

Orchestration services settings

Global logging and SSL settings

/etc/puppetlabs/orchestration-services/conf.d/global.conf contains settings shared across
the Puppet Enterprise (PE) orchestration services.

The file global.certs typically requires no changes and contains the following settings:

Setting Definition Default

ssl-cert Certificate file path for the
orchestrator host.

/etc/puppetlabs/
orchestration-services/
ssl/<orchestrator-host-
fqdn>.cert.pem

ssl-key Private key path for the orchestrator
host.

/etc/puppetlabs/
orchestration-services/
ssl/<orchestrator-host-
fqdn>.private_key.pem

ssl-ca-cert CA file path /etc/puppetlabs/puppet/ssl/
certs/ca.pem

The file global.logging-config is a path to logback.xml file that configures logging for most of the
orchestration services. See http://logback.qos.ch/manual/configuration.html for documentation on the structure of the
logback.xml file. It configures the log location, rotation, and formatting for the following:

• orchestration-services (appender section F1)
• orchestration-services status (STATUS)
• pcp-broker (PCP)
• pcp-broker access (PCP_ACCESS)
• aggregate-node-count (AGG_NODE_COUNT)

© 2024 Puppet, Inc., a Perforce company

http://logback.qos.ch/manual/configuration.html

pe | Orchestrating Puppet runs, tasks, and plans | 610

Allow list of trapperkeeper services to start

/etc/puppetlabs/orchestration-services/bootstrap.cfg is the list of trapperkeeper services
from the orchestrator and pcp-broker projects that are loaded when the pe-orchestration-services system
service starts.

• To disable a service in this list, remove it or comment it with a # character and restart pe-orchestration-
services

• To enable an NREPL service for debugging, add
puppetlabs.trapperkeeper.services.nrepl.nrepl-service/nrepl-service to this list
and restart pe-orchestration-services.

The pcp-broker and orchestrator HTTP services

/etc/puppetlabs/orchestration-services/conf.d/webserver.conf describes how and where
to the run pcp-broker and orchestrator web services, which accept HTTP API requests from the rest of the PE
installation and from external nodes and users.

The file webserver.orchestrator configures the orchestrator web service. Defaults are as follows:

Setting Definition Default

access-log-config A logback XML file configuring
logging for orchestrator access
messages.

/etc/puppetlabs/
orchestration-services/
request-logging.xml

client-auth Determines the mode that the server
uses to validate the client's certificate
for incoming SSL connections.

want or need

default-server Allows multi-server configurations
to run operations without specifying
a server-id. Without a server-id,
operations will run on the selected
default. Optional.

true

ssl-ca-cert Sets the path to the CA certificate PEM
file used for client authentication.

/etc/puppetlabs/puppet/ssl/
certs/ca.pem

ssl-cert Sets the path to the server certificate
PEM file used by the web service for
HTTPS.

/etc/puppetlabs/
orchestration-services/
ssl/<orchestrator-host-
fqdn>.cert.pem

ssl-crl-path Describes a path to a Certificate
Revocation List file. Optional.

/etc/puppetlabs/puppet/ssl/
crl.pem

ssl-host Sets the host name to listen on for
encrypted HTTPS traffic.

0.0.0.0.

ssl-key Sets the path to the private key PEM
file that corresponds with the ssl-
cert

/etc/puppetlabs/
orchestration-services/
ssl/<orchestrator-host-
fqdn>.private_key.pem

ssl-port Sets the port to use for encrypted
HTTPS traffic.

8143

The file webserver.pcp-broker configures the pcp-broker web service. Defaults are as follows:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 611

Setting Definition Default

client-auth Determines the mode that the server
uses to validate the client's certificate
for incoming SSL connections.

want or need

ssl-ca-cert Sets the path to the CA certificate
PEM file used for client
authentication.

/etc/puppetlabs/puppet/ssl/
certs/ca.pem

ssl-cert Sets the path to the server certificate
PEM file used by the web service for
HTTPS.

/etc/puppetlabs/
orchestration-services/
ssl/<orchestrator-host-
fqdn>.cert.pem

ssl-crl-path Describes a path to a Certificate
Revocation List file. Optional.

/etc/puppetlabs/puppet/ssl/
crl.pem

ssl-host Sets the host name to listen on for
encrypted HTTPS traffic.

0.0.0.0.

ssl-key Sets the path to the private key PEM
file that corresponds with the ssl-
cert.

/etc/puppetlabs/
orchestration-services/
ssl/<orchestrator-host-
fqdn>.private_key.pem

ssl-port Sets the port to use for encrypted
HTTPS traffic.

8142

/etc/puppetlabs/orchestration-services/conf.d/web-routes.conf describes how to route
HTTP requests made to the API web servers, designating routes for interactions with other services. These should not
be modified. See the configuration options at the trapperkeeper-webserver-jetty project's docs

Analytics trapperkeeper service configuration

/etc/puppetlabs/orchestration-services/conf.d/analytics.conf contains the internal setting
for the analytics trapperkeeper service.

Setting Definition Default

analytics.url Specifies the API root. <puppetserver-host-
url>:8140/analytics/v1

Authorization trapperkeeper service configuration

/etc/puppetlabs/orchestration-services/conf.d/auth.conf contains internal settings for the
authorization trapperkeeper service. See configuration options in the trapperkeeper-authorization project's docs.

JMX metrics trapperkeeper service configuration

/etc/puppetlabs/orchestration-services/conf.d/metrics.conf contains internal settings for
the JMX metrics service built into orchestration-services. See the service configuration options in the trapperkeeper-
metrics project's docs.

Orchestrator trapperkeeper service configuration

/etc/puppetlabs/orchestration-services/conf.d/orchestrator.conf contains internal
settings for the orchestrator project's trapperkeeper service.

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/trapperkeeper-webserver-jetty9/blob/main/doc/webrouting-config.md
https://github.com/puppetlabs/analytics
https://github.com/puppetlabs/trapperkeeper-authorization/blob/main/doc/authorization-config.md
https://github.com/puppetlabs/trapperkeeper-metrics/blob/main/documentation/configuration.md
https://github.com/puppetlabs/trapperkeeper-metrics/blob/main/documentation/configuration.md

pe | Orchestrating Puppet runs, tasks, and plans | 612

PCP broker trapperkeeper service configuration

/etc/puppetlabs/orchestration-services/conf.d/pcp-broker.conf contains internal settings
for the pcp-broker project's trapperkeeper service. See the service configuration options in the pcp-broker project's
docs.

Related information
Orchestrator and pe-orchestration-services parameters on page 238
These are some optional parameters you can use to configure the behavior of the orchestrator and the pe-
orchestration-services service.

Orchestrator configuration files
The configuration file for the orchestrator allows you to run commands from the CLI without having to pass
additional flags. Whether you are running the orchestrator from the primary server or from a separate work station,
there are two types of configuration files: a global configuration file and a user-specified configuration file.

Orchestrator global configuration file

If you're running the orchestrator from a PE-managed machine, on either the primary server or an agent node, PE
manages the global configuration file.

This file is installed on both managed and non-managed workstations at:

• *nix systems --- /etc/puppetlabs/client-tools/orchestrator.conf
• Windows --- C:/ProgramData/PuppetLabs/client-tools/orchestrator.conf

The class that manages the global configuration file is puppet_enterprise::profile::controller. The
following parameters and values are available for this class:

Parameter Value

manage_orchestrator true or false (default is true)

orchestrator_url url and port (default is primary server url and port 8143)

The only value PE sets in the global configuration file is the orchestrator_url (which sets the orchestrator's
service-url in /etc/puppetlabs/client-tools/orchestrator.conf).

Important: If you're using a managed workstation, do not edit or change the global configuration file. If you're using
an unmanaged workstation, you can edit this file as needed.

Orchestrator user-specified configuration file

You can manually create a user-specified configuration file and populate it with orchestrator configuration file
settings. PE does not manage this file.

This file needs to be located at ~/.puppetlabs/client-tools/orchestrator.conf for both *nix and
Windows.

If present, the user specified configuration always takes precedence over the global configuration file. For example, if
both files have contradictory settings for the environment, the user specified settings prevail.

Orchestrator configuration file settings

The orchestrator configuration file is formatted in JSON. For example:

{
 "options" : {
 "service-url": "https://<PRIMARY SERVER HOSTNAME>:8143",
 "cacert": "/etc/puppetlabs/puppet/ssl/certs/ca.pem",
 "token-file": "~/.puppetlabs/token",

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/pcp-broker/blob/main/doc/configuration.md#service-configuration
https://github.com/puppetlabs/pcp-broker/blob/main/doc/configuration.md#service-configuration

pe | Orchestrating Puppet runs, tasks, and plans | 613

 "color": true
 }
}

The orchestrator configuration files (the user-specified or global files) can take the following settings:

Setting Definition

service-url The URL that points to the primary server
and the port used to communicate with the
orchestration service. (You can set this with
the orchestrator_url parameter in the
puppet_enterprise::profile::controller
class.) Default value: https://<PRIMARY SERVER
HOSTNAME>:8143

environment The environment used when you issue commands with
Puppet orchestrator.

cacert The path for the Puppet Enterprise CA cert.

• *nix: /etc/puppetlabs/puppet/ssl/
certs/ca.pem

• Windows: C:\ProgramData\PuppetLabs\puppet\etc
\ssl\certs\ca.pem

token-file The location for the authentication token. Default value:
~/.puppetlabs/token

color Determines whether the orchestrator output uses color.
Set to true or false.

noop Determines whether the orchestrator runs the Puppet
agent in no-op mode. Set to true or false.

Setting PE RBAC permissions and token authentication for orchestrator
Before you run any orchestrator jobs, you need to set the appropriate permissions in PE role-based access control
(RBAC) and establish token-based authentication.

Most orchestrator users require the following permissions to run orchestrator jobs or tasks:

Type Permission Definition

Puppet agent Run Puppet on agent nodes. The ability to run Puppet on nodes
using the console or orchestrator.
Instance must always be "*".

Job orchestrator Start, stop and view jobs The ability to start and stop jobs and
tasks, view jobs and job progress,
and view an inventory of nodes that
are connected to the PCP broker.

Tasks Run tasks The ability to run specific tasks on
all nodes, a selected node group, or
nodes that match a PQL query.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 614

Type Permission Definition

Nodes View node data from PuppetDB. The ability to view node data
imported from PuppetDB. Object
must always be "*".

Note: If you don't have permission to view a node group, or the node group doesn't have any matching nodes, that
node group isn't listed as an option. In addition, node groups don't appear if they have no rules specified.

Assign task permissions to a user role

1. In the console, on the Access control page, click the User roles tab.
2. From the list of user roles, click the one you want to have task permissions.
3. On the Permissions tab, in the Type box, select Tasks.
4. For Permission, select Run tasks, and then select a task from the Object list. For example, facter_task.
5. Click Add permission, and then commit the change.

Using token authentication

Before running an orchestrator job, you must generate an RBAC access token to authenticate to the orchestration
service. If you attempt to run a job without a token, PE prompts you to supply credentials.

For information about generating a token with the CLI, see the documentation on token-based authentication.

Related information
Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

Create a user role on page 282
Puppet Enterprise (PE) includes five default roles. You can also create your own roles.

Assign permissions to a user role on page 283
You can mix and match permissions to create custom user roles that provide users with precise access to Puppet
Enterprise (PE) actions.

PE Bolt server configuration
The PE Bolt server provides an API for running tasks over SSH and WinRM using Bolt, which is the technology
underlying PE tasks. You do not need to have Bolt installed to configure the Bolt server or run tasks in PE. The API
server for tasks is available as pe-bolt-server.

Bolt vs ACE: Orchestrator uses both ACE and Bolt to run tasks and plans. While both can act on agentless targets,
the primary difference is that Bolt server works with agentless nodes over WinRM or SSH, whereas ACE works with
agentless devices, like network switches and firewalls, over other transports.

The PE Bolt server is a Puma application that runs as a standalone service.

The server is configured in /etc/puppetlabs/bolt-server/conf.d/bolt-server.conf, managed by
the puppet_enterprise::profile::bolt_server class, which includes the parameters described in the
following table:

© 2024 Puppet, Inc., a Perforce company

https://puma.io

pe | Orchestrating Puppet runs, tasks, and plans | 615

Setting Type Description Default

bolt_server_loglevelString Bolt log level. Acceptable
values are debug, info,
notice, warn, or
error.

notice

concurrency Integer Maximum number of
server threads.

100

master_host String URI of the primary server
where Bolt can download
tasks.

$puppet_enterprise::puppet_master_host

master_port Integer Port the Bolt server can
access the primary server
on.

$puppet_enterprise::puppet_master_port

ssl_cipher_suites Array of strings TLS cipher suites in order
of preference.

$puppet_enterprise::params::secure_ciphers

ssl_listen_port Integer Port the Bolt server runs
on.

62658

($puppet_enterprise::bolt_server_port)

allowlist Array of strings List of hosts that can
connect to pe-bolt-
server.

[$certname]

Related information
Configure cipher suites on page 225
Regulatory compliance or other security requirements might require you to change the cipher suites your SSL-enabled
PE services use to communicate with other PE components.

PE ACE server configuration
The PE ACE server is a service that allows for tasks and catalogs to run against remote targets that can't run a Puppet
agent, such as network switches and firewalls.

Bolt vs ACE: Orchestrator uses both ACE and Bolt to run tasks and plans. While both can act on agentless targets,
the primary difference is that Bolt server works with agentless nodes over WinRM or SSH, whereas ACE works with
agentless devices, like network switches and firewalls, over other transports.

The ACE server is a Puma application that runs as a standalone service.

The server is configured in /etc/puppetlabs/ace-server/conf.d/ace-server.conf and managed
in the puppet_enterprise::profile::ace_server class, which includes the parameters described in the
following table:

Setting Type Description Default

service_loglevel String Bolt log level. Acceptable
values are debug, info,
notice, warn, or
error.

notice

concurrency Integer Maximum number of
server threads.

$puppet_enterprise::ace_server_concurrency

© 2024 Puppet, Inc., a Perforce company

https://puma.io

pe | Orchestrating Puppet runs, tasks, and plans | 616

Setting Type Description Default

master_host String URI that ACE can access
the primary server on.

pe_repo::compile_master_pool_address

Default:
$puppet_enterprise::puppet_master_host

master_port Integer Port that ACE can access
the primary server on.

$puppet_enterprise::puppet_master_port

hostcrl String The host CRL path $puppet_enterprise::params::hostcrl

ssl_cipher_suites Array of strings TLS cipher suites in order
of preference.

$puppet_enterprise::params::secure_ciphers

ssl_listen_port Integer Port that ACE runs on. 44633

($puppet_enterprise::ace_server_port))

allowlist Array of strings List of hosts that can
connect to pe-ace-
server.

[$certname]

Related information
Configure cipher suites on page 225
Regulatory compliance or other security requirements might require you to change the cipher suites your SSL-enabled
PE services use to communicate with other PE components.

Run Puppet on demand
You can use the orchestrator to run jobs from the console, the command line, or through the orchestrator API
endpoints.

• Run Puppet on demand from the console on page 616
When you set up a job to run Puppet from the console, the orchestrator creates a job ID to track the job, shows you
all nodes included in the job, and runs Puppet on the targeted nodes in the appropriate order. Puppet compiles a new
catalog for each node included in the job.
• Run Puppet on demand from the CLI on page 623
Use the puppet job run command to start an on-demand Puppet run to enforce changes on your agent nodes.

Related information
Orchestrator API v1 on page 694
You can use the orchestrator API to run jobs and plans on demand; schedule tasks and plans; get information about
jobs, plans, and events; track node usage; and more.

Run Puppet on demand from the console
When you set up a job to run Puppet from the console, the orchestrator creates a job ID to track the job, shows you
all nodes included in the job, and runs Puppet on the targeted nodes in the appropriate order. Puppet compiles a new
catalog for each node included in the job.

You can specify one, and only one, of these targets for a job:

• A list of one or more specific nodes.
• A node group.
• A Puppet Query Language (PQL) query defining a set of nodes.

Tip: When configuring the job in the console, if you switch the target method in the Select a target type dropdown,
then the target list clears and you must re-select the target nodes. However, you can perform a one-time conversion of
a PQL query to a static node list if you want to add or remove specific nodes from the query results.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 617

Run Puppet on one or more specific nodes
An orchestrator job can target one or more specific nodes. This is useful if you want to run Puppet on a single node, a
few specific nodes, nodes that are not in the same node group, or nodes that can't easily be identified by a single PQL
query.

Before you begin

Make sure you have access to the nodes you want to target.

Make sure you have the permissions necessary to run jobs.

Tip: You can add network devices to a node list when you have installed modules for device transports in your
production environment. You can find such modules in Puppet Forge.

To schedule a recurring Puppet run or schedule a single run for a later time or date, refer to Schedule a Puppet run on
page 622.

1. In the console, on the Jobs page, click Run Puppet.

2. Optional: In the Job description field, provide a description. The text you enter here appears on the job list and
job details pages.

3. Under Environment, select one of the following options to specify the environment you want the nodes to run in:

• Run nodes in their own assigned environment: Nodes run in the environment specified by the Node
Manager or their puppet.conf file.

• Select an environment for nodes to run in: Nodes run in the environment you select from the dropdown
list. Nodes can run in an environment if their environment is agent-specified or if they're classified in that
environment by the node manager.

4. Under Run options, select the run mode for the job. The default run mode for a job always attempts to enforce
new catalogs on nodes. To change the run mode, use the following selections:

• No-op: Simulate a Puppet run on all nodes in the job without enforcing a new catalog.
• Debug: Print all debugging messages.
• Trace: Print stack traces on some errors.
• Eval-trace: Display how long it took for each step to run.
• Override noop = true configuration: If any nodes in the job have noop = true set in their

puppet.conf files, Puppet ignores that setting and enforce a new catalog on those nodes. This setting
corresponds to the --no-noop flag available on the orchestrator CLI.

5. Click Next: Select nodes.

6. Under Node selection method, from the dropdown, select Node list.

7. In the search field, search for and select the nodes you want to add to the job.

You can select nodes from multiple searches to create a complete list of the nodes you want to target.

The search does not handle regular expressions.

Nodes you select are added to the list under Nodes selected for this job. To remove nodes from the list, you can
click Edit selection.

8. When you have selected all the nodes you want to target, click Next: Review and schedule.

9. Review the details of your job configuration and the selected nodes. To make changes, you can click Edit in the
Configure job and Select nodes summaries, or click Back to return to previous steps.

10. Schedule the job or, to start the Puppet run immediately, click Run job.

You can view the job status and a list of previous and scheduled jobs on the Jobs page.

To rerun a job, click on the relevant job ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

pe | Orchestrating Puppet runs, tasks, and plans | 618

Run Puppet on a node group
An orchestrator job can target all nodes in a specific node group.

Before you begin

Make sure you have access to the nodes you want to target.

Note: If you don't have permission to view a node group, or the node group doesn't have any matching nodes, that
node group isn't listed as an option. In addition, node groups don't appear if they have no rules specified.

To schedule a recurring Puppet run or schedule a single run for a later time or date, refer to Schedule a Puppet run on
page 622.

1. In the console, on the Jobs page, click Run Puppet.

2. Optional: In the Job description field, provide a description. The text you enter here appears on the job list and
job details pages.

3. Under Environment, select one of the following options to specify the environment you want the nodes to run in:

• Run nodes in their own assigned environment: Nodes run in the environment specified by the Node
Manager or their puppet.conf file.

• Select an environment for nodes to run in: Nodes run in the environment you select from the dropdown
list. Nodes can run in an environment if their environment is agent-specified or if they're classified in that
environment by the node manager.

4. Under Run options, select the run mode for the job. The default run mode for a job always attempts to enforce
new catalogs on nodes. To change the run mode, use the following selections:

• No-op: Simulate a Puppet run on all nodes in the job without enforcing a new catalog.
• Debug: Print all debugging messages.
• Trace: Print stack traces on some errors.
• Eval-trace: Display how long it took for each step to run.
• Override noop = true configuration: If any nodes in the job have noop = true set in their

puppet.conf files, Puppet ignores that setting and enforce a new catalog on those nodes. This setting
corresponds to the --no-noop flag available on the orchestrator CLI.

5. Click Next: Select nodes.

6. Under Node selection method, from the dropdown select Node group.

7. From the Choose a node group dropdown, type or select a node group, and click Select.

8. Optional: To convert the list of nodes captured by the selected node group into a static list of nodes, click Convert
query to static node list.

Tip: If you select this option, the job target becomes a node list. You can add or remove nodes from the node list
before running the job, but you cannot edit the query.

9. When you have selected the node group containing the nodes you want to target or have created a static list of
targeted nodes, click Next: Review and schedule.

10. Schedule the job or, to start the Puppet run immediately, click Run job.

You can view the job status and a list of previous and scheduled jobs on the Jobs page.

To rerun a job, click on the relevant job ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 619

Run Puppet on a PQL query
An orchestrator job can target a set of nodes based on a PQL query. This is useful when you want to target a variable
set of nodes that meet specific conditions, such as a particular operating system. When you supply a PQL query, the
orchestrator runs the job on a list of nodes generated by the PQL query.

Before you begin

Make sure you have access to the nodes you want to target.

Make sure you have the permissions necessary to run jobs and PQL queries.

To run PQL queries, you need the View node data from PuppetDB permission.

Tip: You can Add custom PQL queries to the console on page 238 to quickly select them when running jobs.

To schedule a recurring Puppet run or schedule a single run for a later time or date, refer to Schedule a Puppet run on
page 622.

1. In the console, on the Jobs page, click Run Puppet.

2. Optional: In the Job description field, provide a description. The text you enter here appears on the job list and
job details pages.

3. Under Environment, select one of the following options to specify the environment you want the nodes to run in:

• Run nodes in their own assigned environment: Nodes run in the environment specified by the Node
Manager or their puppet.conf file.

• Select an environment for nodes to run in: Nodes run in the environment you select from the dropdown
list. Nodes can run in an environment if their environment is agent-specified or if they're classified in that
environment by the node manager.

4. Under Run options, select the run mode for the job. The default run mode for a job always attempts to enforce
new catalogs on nodes. To change the run mode, use the following selections:

• No-op: Simulate a Puppet run on all nodes in the job without enforcing a new catalog.
• Debug: Print all debugging messages.
• Trace: Print stack traces on some errors.
• Eval-trace: Display how long it took for each step to run.
• Override noop = true configuration: If any nodes in the job have noop = true set in their

puppet.conf files, Puppet ignores that setting and enforce a new catalog on those nodes. This setting
corresponds to the --no-noop flag available on the orchestrator CLI.

5. Click Next: Select nodes.

6. Under Node selection method, from the dropdown, select PQL query.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 620

7. Specify the target nodes by doing one of the following:

• Enter a PQL query that captures the nodes you want to target. See the Puppet Query Language (PQL)
reference for more information.

• From the Common queries dropdown, select one of the queries, and replace the defaults inside the braces
({ }) with values specific to nodes you want to target.

Note: These queries include [certname] as [<projection>] to restrict the output.

Target PQL query

All nodes nodes[certname] { }

Nodes with a Puppet agent inventory[certname]
{facts.aio_agent_version ~ "\\d+" }

Nodes with a specific resource (example: httpd) resources[certname] { type =
"Service" and title = "httpd" }

Nodes with a specific fact and value (example: OS
name is CentOS)

inventory[certname] { facts.os.name
= "<OS>" }

Nodes with a specific report status (example: last run
failed)

reports[certname]
{ latest_report_status = "failed" }

Nodes with a specific class (example: Apache) resources[certname] { type = "Class"
and title = "Apache" }

Nodes assigned to a specific environment (example:
production)

nodes[certname]
{ catalog_environment =
"production" }

Nodes with a specific version of a resource type
(example: OpenSSL v1.1.0e)

resources[certname] {type =
"Package" and title="openssl"
and parameters.ensure =
"1.0.1e-51.el7_2.7" }

Nodes with a specific resource and operating system
(example: httpd and CentOS)

inventory[certname] { facts.os.name
= "CentOS" and resources { type =
"Service" and title = "httpd" } }

8. Click Submit query and click Refresh node list to update the node results.

9. If you change or edit the query after it runs, click Submit query again.

10. Optional: To convert the list of nodes captured by the PQL query to a static list of nodes, click Convert query to
static node list.

Tip: If you select this option, the job target becomes a node list. You can add or remove nodes from the node list
before running the job, but you cannot edit the query.

11. When you have submitted a query that captures the nodes you want to target or have created a static list of
targeted nodes, click Next: Review and schedule.

12. Schedule the job or, to start the Puppet run immediately, click Run job.

You can view the job status and a list of previous and scheduled jobs on the Jobs page.

To rerun a job, click on the relevant job ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

Important: Unless you converted your PQL query to a node list, each time you run this job the PQL query runs
again. Therefore, the job might run on a different set of nodes each time, depending on how your inventory has
changed between runs. If you want the job to run on the same set of nodes queried when you originally created the
query, you must convert the query to a node list before you run the job again.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/api/query/v4/pql.html
https://puppet.com/docs/puppetdb/latest/api/query/v4/pql.html

pe | Orchestrating Puppet runs, tasks, and plans | 621

Add custom PQL queries to the console
Add your own Puppet Query Language (PQL) queries to the console to quickly access them when running jobs.

For help forming queries, go to the PQL Reference guide in the Puppet documentation.

1. On the primary server, copy the custom_pql_queries.json.example file, and remove the .example
suffix. For example, you can use this command:

sudo cp
/etc/puppetlabs/console-services/custom_pql_queries.json.example
/etc/puppetlabs/console-services/custom_pql_queries.json

2. Edit the file contents to include your own PQL queries or remove any existing queries.

3. Refresh the console UI in your browser.

You can now see your custom queries in the PQL drop-down options when running jobs.

Run jobs from other node lists
In addition to the Jobs page, you can run Puppet jobs on lists of nodes shown on the Status, Events, and some Node
groups pages.

Before you begin

Make sure you have the permissions necessary to run jobs.

For information about creating jobs on the Jobs page, refer to Run Puppet on one or more specific nodes on page
617, Run Puppet on a PQL query on page 619, and Run Puppet on a node group on page 618.

1. In the console, go to one of these pages and, depending on the page, go to the specific section or tab containing the
node list you want to target:

• Status: This page shows a list of all your managed nodes, and gathers essential information about your
infrastructure at a glance.

• Events page, Nodes with events section: This page shows a summary of activity in your infrastructure and
helps you analyze the details of important changes or investigate common causes behind related events. For
example, if your Puppet runs are failing due to outdated code, after you update the code, you can create a job
targeting the nodes listed as failed on the Events page. The ensures you're targeting the particular failed nodes
you want to target.

• Node groups pages for classification node groups: Node groups automate classification of nodes with similar
functions in your infrastructure. If you make a classification change to a node group, you can quickly create a
job to run Puppet on all the nodes in that group, pushing the change to all those nodes at once.

2. Click Run > Puppet.

The list of nodes from the page, or page section, you were viewing is converted to a list of target nodes for the
new Puppet run.

3. Optional: In the Job description field, provide a description. The text you enter here appears on the job list and
job details pages.

4. Under Environment, select one of the following options to specify the environment you want the nodes to run in:

• Run nodes in their own assigned environment: Nodes run in the environment specified by the Node
Manager or their puppet.conf file.

• Select an environment for nodes to run in: Nodes run in the environment you select from the dropdown
list. Nodes can run in an environment if their environment is agent-specified or if they're classified in that
environment by the node manager.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/7/api/query/v4/pql.html

pe | Orchestrating Puppet runs, tasks, and plans | 622

5. Under Run options, select the run mode for the job. The default run mode for a job always attempts to enforce
new catalogs on nodes. To change the run mode, use the following selections:

• No-op: Simulate a Puppet run on all nodes in the job without enforcing a new catalog.
• Debug: Print all debugging messages.
• Trace: Print stack traces on some errors.
• Eval-trace: Display how long it took for each step to run.
• Override noop = true configuration: If any nodes in the job have noop = true set in their

puppet.conf files, Puppet ignores that setting and enforce a new catalog on those nodes. This setting
corresponds to the --no-noop flag available on the orchestrator CLI.

6. Important: Do not change the Node selection method from Node list to PQL query in the dropdown. Changing
the node selection method clears the targeted nodes list.

7. Click Next: Review and schedule.

8. Schedule the job or, to start the Puppet run immediately, click Run job.

You can view the job status and a list of previous and scheduled jobs on the Jobs page.

To rerun a job, click on the relevant job ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

Schedule a Puppet run
Schedule a job to deploy configuration changes at a particular date and time or on a recurring schedule.

Before you begin

Make sure you have access to the nodes you want to target.

Make sure you have the permissions necessary to run jobs.

If a reboot occurs or you restore a backup, scheduled Puppet jobs are rescheduled based on the last execution time. If
a reboot is caused by a scheduled Puppet job running in the orchestrator, that job returns a failed status.

1. In the console, on the Jobs page, click Run Puppet.

2. Optional: In the Job description field, provide a description. The text you enter here appears on the job list and
job details pages.

3. Under Environment, select one of the following options to specify the environment you want the nodes to run in:

• Run nodes in their own assigned environment: Nodes run in the environment specified by the Node
Manager or their puppet.conf file.

• Select an environment for nodes to run in: Nodes run in the environment you select from the dropdown
list. Nodes can run in an environment if their environment is agent-specified or if they're classified in that
environment by the node manager.

4. Under Run options, select the run mode for the job. The default run mode for a job always attempts to enforce
new catalogs on nodes. To change the run mode, use the following selections:

• No-op: Simulate a Puppet run on all nodes in the job without enforcing a new catalog.
• Debug: Print all debugging messages.
• Trace: Print stack traces on some errors.
• Eval-trace: Display how long it took for each step to run.
• Override noop = true configuration: If any nodes in the job have noop = true set in their

puppet.conf files, Puppet ignores that setting and enforce a new catalog on those nodes. This setting
corresponds to the --no-noop flag available on the orchestrator CLI.

5. Click Next: Select nodes.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 623

6. Under Node selection method, from the dropdown, select a target type.

• Node list: Add individual nodes by name.
• PQL Query: Use the Puppet query language to retrieve a list of nodes.
• Node group: Select an existing node group.

For details about the target options, refer to Run Puppet on one or more specific nodes on page 617, Run
Puppet on a PQL query on page 619, and Run Puppet on a node group on page 618.

7. When you have used one of the node selection methods to select the nodes you want to target click Next: Review
and schedule.

8. Under Schedule, select Later and choose a start date, time, time zone, and frequency for the job to run.

9. Optional: To repeat the job on a regular schedule, change the run frequency from Once to Hourly, Daily, or
Weekly.

Note: If a recurring job's run overlaps with the next scheduled run, the job skips the overlapped time and doesn't
run again until the next scheduled start time.

10. Click Schedule job.

Your job appears on the Scheduled Puppet run tab of the Jobs page.

Edit a scheduled job
You can view and edit a scheduled job if, for example, you want to change the selected run options or add nodes to
the job.

If you want to edit a scheduled job created by another user, you must have the appropriate role-based permissions to
do so.

1. In the console, go to Jobs and switch to the Scheduled Puppet run tab.

2. In the list of scheduled jobs, locate the job you want to edit and click the view icon.

3. On the View scheduled job page, click Actions > Edit in the upper right corner.

4. Make your required changes and click Save changes.

Delete a scheduled job

If you want to delete a scheduled job created by another user, you must have the appropriate role-based permissions
to do so.

1. In the console, go to Jobs and switch to the Scheduled Puppet Run tab.

2. Locate the scheduled job you want to delete and click the trashcan icon.

3. Confirm that you want to remove the scheduled job.

Stop an in-progress job
You can stop a job if, for example, you need to reconfigure a class or push a configuration change that the job needs.
When you stop a Puppet job, in-progress jobs finish, and jobs that aren't started are canceled.

To stop a job:

• In the console, go to Jobs, switch to the Puppet run tab, locate the job you want to stop, and click Stop.
• If you started the job on the command line, press CTRL + C.

Run Puppet on demand from the CLI
Use the puppet job run command to start an on-demand Puppet run to enforce changes on your agent nodes.

Use the puppet job run command to immediately enforce change across nodes, rather than waiting for the next
scheduled Puppet run. For example, if you add a new class parameter to a set of nodes, or if you deploy code to a
new Puppet environment, you might want to use this command to run Puppet across all the nodes in the impacted
environment.

Each time you use the puppet job run command, you can select one, and only one, of these targets:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 624

• A list of one or more specific nodes, identified by certname.
• A node group, identified by node group ID.
• A Puppet Query Language (PQL) query defining a set of nodes.

The first time you run a command, you need to authenticate. For details, refer to Setting PE RBAC permissions and
token authentication for orchestrator on page 613.

If you're running this command from a managed or non-managed Windows workstation, you must specify the full
path to the command. For example: c:\Program Files\Puppet Labs\Client\bin\puppet-task
run

Run Puppet on one or more specific nodes
An orchestrator job can target one or more specific nodes, identified by certname. This is useful if you want to run
Puppet on a single node, a few specific nodes, nodes that are not in the same node group, or nodes that can't easily be
identified by a PQL query.

Before you begin
You need to know the certnames of the node or nodes you want to target. Optionally, you can store the node names in
a text file with each node name on a separate line.

Make sure you have the permissions necessary to run jobs.

Make sure you have access to the nodes you want to target.

1. Log into your primary server or the client tools workstation.

2. Run one of the following commands:

• To run a job on a single node run:

puppet job run --nodes <NODE NAME>

• To run a job on multiple nodes, supply a comma-separated list of node names. Do not put spaces between the
node names.

puppet job run --nodes <COMMA-SEPARATED_LIST_OF_NODE_NAMES>

• To run a job on a list of nodes in a text file, supply the path to the text file:

puppet job run --nodes @<PATH_TO_.txt_FILE>

Tip: You can append additional options, such as --noop, after the node names or filepath. To learn about
options you can supply to this command, refer to puppet job run command options on page 626.

When you execute the puppet job run command, the orchestrator generates a job ID for the job, shows you a
list of nodes targeted by the job, and proceeds to run Puppet on the targeted nodes in the appropriate order. Puppet
compiles a new catalog for all nodes targeted by the job.

To view the job status, run: puppet job show <JOB_ID>

To view a list of the 50 most-recent running and completed jobs, run: puppet job show

Run Puppet on a PQL query
An orchestrator job can target a set of nodes based on a PQL query. This is useful when you want to target a variable
set of nodes that meet specific conditions, such as a particular operating system. When you supply a PQL query, the
orchestrator runs the job on a list of nodes generated by the PQL query.

Before you begin

Make sure you have access to the nodes you want to target.

Make sure you have the permissions necessary to run jobs and PQL queries.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 625

1. Log into your primary server or the client tools workstation.

2. Run one of the following commands:

• To supply the PQL query in the command:

puppet job run --query '<QUERY>'

For example:

puppet job run --query 'nodes[certname] { facts {name =
 "operatingsystem" and value = "Debian" }}'

• To supply the query in a text file:

puppet job run --query @<PATH_TO_.txt_FILE>

Tip: You can append additional options, such as --noop, after the query or filepath. To learn about options you
can supply to this command, refer to puppet job run command options on page 626.

The following table shows some examples of PQL queries you might use for particular node targets.

Target PQL query

A single node by certname 'nodes { certname = "mynode" }'

All nodes with web in their certname 'nodes { certname ~ "web" }'

All CentOS nodes 'inventory { facts.os.name =
"CentOS" }'

All CentOS nodes with httpd managed 'inventory { facts.operatingsystem
= "CentOS" and resources { type =
"Service" and title = "httpd" } }'

All nodes with failed reports 'reports { latest_report? = true and
status = "failed" }'

All nodes matching the environment of the last
received catalog

'nodes { catalog_environment =
"production" }'

Tip:

Make sure to wrap the entire query in single quotes and use double quotes inside the query.

To shorten the command, you can use -q in place of --query.

When you execute the puppet job run command, the orchestrator generates a job ID for the job, shows you a
list of nodes targeted by the job, and proceeds to run Puppet on the targeted nodes in the appropriate order. Puppet
compiles a new catalog for all nodes targeted by the job.

To view the job status, run: puppet job show <JOB_ID>

To view a list of the 50 most-recent running and completed jobs, run: puppet job show

Run Puppet on a node group
An orchestrator job can target all nodes in a specific node group, identified by node group ID.

Before you begin
You need to know the node group ID of the node group you want to target. You can use the node classifier API GET /
v1/groups on page 528 endpoint to retrieve a list of node groups and their IDs.

Make sure you have the permissions necessary to run jobs.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 626

Make sure you have access to the nodes you want to target.

1. Log into your primary server or the client tools workstation.

2. Run the following command:

puppet job run --node-group <NODE_GROUP_ID>

Tip: You can append additional options, such as --noop, after the node group ID. To learn about options you
can supply to this command, refer to puppet job run command options on page 626.

When you execute the puppet job run command, the orchestrator generates a job ID for the job, shows you a
list of nodes targeted by the job, and proceeds to run Puppet on the targeted nodes in the appropriate order. Puppet
compiles a new catalog for all nodes targeted by the job.

To view the job status, run: puppet job show <JOB_ID>

To view a list of the 50 most-recent running and completed jobs, run: puppet job show

puppet job run command options
You might want to use these options with the puppet job run command. Alternately, use puppet job --
help to get a complete list of options you can use with puppet job commands.

Option Description

--noop A flag indicating whether to run the job in no-op mode.
No-op mode simulates changes from a new catalog
without actually enforcing the changes. Excluding this
option assumes noop = false, unless noop is
specified elsewhere, such as the agent's puppet.conf
file.

Cannot be used in conjunction with --no-noop.

--no-noop A flag indicating whether to run the job in enforcement
mode and enforce a new catalog on all targeted nodes.
This flag overrides noop = true if set in the agent's
puppet.conf file. Cannot be used in conjunction with
--noop.

--environment or -e Supply an environment name, as a string, to override the
environment specified in the orchestrator configuration
file. The orchestrator uses this option to tell nodes which
environment to run the job in. If any nodes can’t run in
the specified environment, those node runs fail. A node
can run in an environment as long as it is classified into
that environment in the PE node classifier.

--no-enforce-environment A flag indicating whether you want the job to ignore the
environment set by the --environment flag. When
you use this flag, agents run in the environment specified
by the PE Node Manager or their puppet.conf files.

--description Supply a description of the job, as a string. The
description appears on the job list and job details pages,
and it is returned when you use the puppet job
show command.

--concurrency Supply an integer specifying the maximum number of
nodes to run at one time. The default is an unlimited
number of nodes. You can also configure concurrent
compile requests in the console.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 627

Post-run node status
After a Puppet run, the orchestrator returns a list of targeted nodes and their run statuses.

Node runs can be in progress, completed, skipped, or failed.

• For completed runs, the orchestrator prints the configuration version, the transaction ID, a summary of resource
events, and a link to the full node run report in the console.

• For in progress runs, the orchestrator prints the elapsed time, in seconds, since the run started.
• When there is afailed run, subsequent or related runs might be skipped. For failed runs, the orchestrator

prints an error message indicating why the run failed, a list of applications that were affected by the failure, and
any applications that were affected by skipped node runs.

Use puppet job show to see a list of the 50 most-recent in progress, completed, and failed jobs.

In the console, on the Jobs page, you can review a list of jobs and to view job details for previous or in-progress jobs.

Stop an in-progress job
You can stop a job if, for example, you need to reconfigure a class or push a configuration change that the job needs.
When you stop a Puppet job, in-progress jobs finish, and jobs that aren't started are canceled.

To stop a job:

• In the console, go to Jobs, switch to the Puppet run tab, locate the job you want to stop, and click Stop.
• If you started the job on the command line, press CTRL + C.

Tasks in PE
Tasks are ad-hoc actions you can execute on a target and run from the command line or the console.

A task is a single action that you execute on target machines. With tasks, you can troubleshoot and deploy changes to
individual or multiple systems in your infrastructure.

You can run tasks from your tool of choice: the console, the orchestrator command line interface (CLI), or the
orchestrator API /command/task endpoint.

When you run a task, you can run it immediately, schedule it to run later, or schedule it to run at a recurring frequency
- hourly, daily, weekly, every 2 weeks, or every four weeks. After you launch a task, you can check on the status or
view the output later with the console or CLI.

If a reboot occurs or if you need to restore a backup, scheduled tasks are rescheduled based on the last execution time.
If the scheduled task running in the orchestrator is what caused the reboot, the task run appears as failed.

Note: If you are running multiple tasks, make sure your task_concurrency and
bolt_server::concurrency limits can accommodate your needs. To adjust these settings, go to Orchestrator
and pe-orchestration-services parameters on page 238.

• Installing tasks on page 627
Puppet Enterprise comes with some pre-installed tasks, and you can install or write other tasks you want to use.
• Running tasks in PE on page 628
Use the orchestrator to set up jobs in the console or on the command line and run Bolt tasks across systems in your
infrastructure.
• Writing tasks on page 642
Bolt tasks are similar to scripts, but they are kept in modules and can have metadata. This allows you to reuse and
share them.

Installing tasks
Puppet Enterprise comes with some pre-installed tasks, and you can install or write other tasks you want to use.

PE includes the following pre-installed tasks:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 628

• package - Inspect, install, upgrade, and manage packages.
• service - Start, stop, restart, and check the status of a service.
• facter_task - Inspect the value of system facts.
• puppet_conf - Inspect Puppet agent configuration settings.

You can find other tasks packaged in Puppet modules that you can install from the Forge and then manage with a
Puppetfile and Code Manager. To install a module (so that you can use the tasks in the module), select the desired
install method under Start using this module on the module's Forge page and follow the presented instructions.

You can also write tasks.

Related information
Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.

Running tasks in PE
Use the orchestrator to set up jobs in the console or on the command line and run Bolt tasks across systems in your
infrastructure.

Running a task does not update your Puppet configuration. If you run a task that changes the state of a resource that
Puppet is managing, a subsequent Puppet run changes the state of that resource back to what is defined in your Puppet
configuration. For example, if you use a task to update the version of a managed package, the version of that package
is reset to whatever is specified in a manifest on the next Puppet run.

Note: If you have set up compilers and you want to use tasks, you must either set primary_uris or
server_list on agents to point to your compilers. This setting is described in the section on configuring
compilers for orchestrator scale.

• Running tasks from the console on page 628
Run ad-hoc tasks on targeted nodes to upgrade packages, restart services, or perform any other type of single-action
executions on nodes in your inventory.
• Running tasks from the command line on page 637
Use the puppet task run command to run tasks on agent nodes.
• Stop a task in progress on page 641
You can stop a task that is currently running if, for example, you realize you need to adjust your PQL query or edit
the task run parameters.
• Inspecting tasks on page 641
You can inspect task documentation, outcomes of task jobs, a list of installed tasks, and a list of tasks you have
permission to run.

Related information
Configure compilers on page 166
Compilers must be configured to appropriately route communication between your primary server and agent nodes.

Running tasks from the console
Run ad-hoc tasks on targeted nodes to upgrade packages, restart services, or perform any other type of single-action
executions on nodes in your inventory.

When you set up a job to run a task from the console, the orchestrator creates an ID to track the task job, shows you
all the targeted nodes, and runs the tasks on those nodes in the appropriate order. Puppet compiles a new catalog for
each node targeted.

You can use one of the following methods to target nodes for a task: :

• Specify a list of one or more nodes.
• Specify a node group.
• Use a Puppet Query Language (PQL) query to define a set of nodes.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

pe | Orchestrating Puppet runs, tasks, and plans | 629

Tip: When configuring the task job in the console, if you switch the target method in the Select a target type
dropdown, then the target list clears and you must re-select the target nodes. However, you can perform a one-time
conversion of a PQL query to a static node list if you want to add or remove specific nodes from the query results.

Run a task on one or more specific nodes
An orchestrator job can target one or more specific nodes. This is useful if you want to run a task on a single node, a
few specific nodes, nodes that are not ins the same node group, or nodes that can't be easily identified by a single PQL
query.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

Make sure you have permissions necessary to run tasks.

Tip: You can add network devices to a node list when you have installed modules for device transports in your
production environment. You can find such modules in Puppet Forge.

1. In the console, in the Orchestration section, click Tasks.

2. Click Run a task in the upper right corner of the Tasks page.

3. In the Code environment field, select the environment where you installed the module containing the task you
want to run. The default is production.

4. In the Task field, select a task to run. For example, service.

Note: If the tasks you expect are not available, you either have no tasks installed, or you don't have the correct
permissions to run them.

5. Optional: In the Concurrency limit field, specify the number of nodes on which the task can be executed
simultaneously.

6. Optional: In the Task description field, provide a description. The text you enter here appears on the task list and
task details pages.

7. Optional: If you want to limit how long the task can run before being automatically cancelled, under Timeout,
select Yes and specify a time interval (such as 5 minutes).

8. Under Task parameters, add optional parameters and enter values for the optional and required parameters on the
list.

Important: You must click Add to task for each optional parameter-value pair you add to the task.

To view information about required and optional parameters for the task, select View task metadata below the
Concurrency limit field.

Express values as strings, arrays, objects, integers, or Booleans. You must express empty strings by entering a pair
of double quotation marks with no space between (""). Structured values, like arrays, must be valid JSON.

Tasks that have default values use the default values when running unless you specify other values.

Note: The parameters you supply the first time you run a task are used for subsequent task runs when you use
Run again on the Task details page.

9. Click Next: Select nodes.

10. Under Node selection method, from the dropdown, select Node list.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/

pe | Orchestrating Puppet runs, tasks, and plans | 630

11. On the Inventory nodes tab, in the Find in inventory search field, search for and select the nodes you want to
add to the task.

You can select nodes from multiple searches to create a complete list of the nodes you want to target.

The search does not handle regular expressions.

Nodes you select are added to the list under Nodes selected for this task. To remove nodes from the list, click
Edit selection.

12. When you have selected all the nodes you want to target, click Next: Review and schedule.

13. Review the details of your job configuration and the selected nodes. To make changes, you can click Edit in the
Configure job and Select nodes summaries, or click Back to return to previous steps.

14. Schedule the task or, to run the task immediately, click Run task.

You can view the task job status and a list of previous and scheduled tasks on the Tasks page.

To rerun a task, click on the relevant ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

Run a task over SSH
Use the SSH protocol to run tasks on target nodes that do not have the Puppet agent installed.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

Make sure you have permissions necessary to run tasks.

1. In the console, in the Orchestration section, click Tasks.

2. Click Run a task in the upper right corner of the Tasks page.

3. In the Code environment field, select the environment where you installed the module containing the task you
want to run. The default is production.

4. In the Task field, select a task to run. For example, service.

Note: If the tasks you expect are not available, you either have no tasks installed, or you don't have the correct
permissions to run them.

5. Optional: In the Concurrency limit field, specify the number of nodes on which the task can be executed
simultaneously.

6. Optional: In the Task description field, provide a description. The text you enter here appears on the task list and
task details pages.

7. Optional: If you want to limit how long the task can run before being automatically cancelled, under Timeout,
select Yes and specify a time interval (such as 5 minutes).

8. Under Task parameters, add optional parameters and enter values for the optional and required parameters on the
list.

Important: You must click Add to task for each optional parameter-value pair you add to the task.

To view information about required and optional parameters for the task, select View task metadata below the
Concurrency limit field.

Express values as strings, arrays, objects, integers, or Booleans. You must express empty strings by entering a pair
of double quotation marks with no space between (""). Structured values, like arrays, must be valid JSON.

Tasks that have default values use the default values when running unless you specify other values.

Note: The parameters you supply the first time you run a task are used for subsequent task runs when you use
Run again on the Task details page.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 631

9. Click Next: Select nodes.

10. Under Node selection method, from the dropdown, select Node list.

11. Create the node list.

a) Click the SSH nodes tab.

Restriction: This target is available only for tasks permitted to run on all nodes.

b) In the SSH node hostnames field, enter an SSH node hostname, or specify multiple SSH nodes by entering a
list of hostnames separated by commas.

c) Under Credentials, enter the SSH username and the authentication method required to access the nodes you
specified. You can use one of the following authentication methods:

• The SSH key. Make sure to include beginning and end tags.
• The SSH password.

d) Click Add nodes.

Nodes you specified are listed under Nodes selected for this task.
e) Optional: Select additional target options.

For example, to add a target port number, select Target Port from the drop-down list, enter the number, and
click Add.

f) Repeat these steps to add other nodes. You can add SSH nodes with different credentials to create the node list.

Tip: To remove a node from the table, select the check box next to it and click Remove selected.

12. When you have selected all the nodes you want to target, click Next: Review and schedule.

13. Review the details of your job configuration and the selected nodes. To make changes, you can click Edit in the
Configure job and Select nodes summaries, or click Back to return to previous steps.

14. Schedule the task or, to run the task immediately, click Run task.

You can view the task job status and a list of previous and scheduled tasks on the Tasks page.

To rerun a task, click on the relevant ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

Run a task over WinRM
Use the Windows Remote Management (WinRM) to run tasks on target nodes that do not have the Puppet agent
installed.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

Make sure you have permissions necessary to run tasks.

1. In the console, in the Orchestration section, click Tasks.

2. Click Run a task in the upper right corner of the Tasks page.

3. In the Code environment field, select the environment where you installed the module containing the task you
want to run. The default is production.

4. In the Task field, select a task to run. For example, service.

Note: If the tasks you expect are not available, you either have no tasks installed, or you don't have the correct
permissions to run them.

5. Optional: In the Concurrency limit field, specify the number of nodes on which the task can be executed
simultaneously.

6. Optional: In the Task description field, provide a description. The text you enter here appears on the task list and
task details pages.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 632

7. Optional: If you want to limit how long the task can run before being automatically cancelled, under Timeout,
select Yes and specify a time interval (such as 5 minutes).

8. Under Task parameters, add optional parameters and enter values for the optional and required parameters on the
list.

Important: You must click Add to task for each optional parameter-value pair you add to the task.

To view information about required and optional parameters for the task, select View task metadata below the
Concurrency limit field.

Express values as strings, arrays, objects, integers, or Booleans. You must express empty strings by entering a pair
of double quotation marks with no space between (""). Structured values, like arrays, must be valid JSON.

Tasks that have default values use the default values when running unless you specify other values.

Note: The parameters you supply the first time you run a task are used for subsequent task runs when you use
Run again on the Task details page.

9. Click Next: Select nodes.

10. Under Node selection method, from the dropdown, select Node list.

11. Create the node list.

a) Click the WinRM nodes tab.

Restriction: This target is available only for tasks permitted to run on all nodes.

b) In the WinRM node hostnames field, enter a WinRM node hostname, or specify multiple WinRM nodes by
entering a list of hostnames separated by commas.

c) Under Credentials, enter the WinRM username and password required to access the nodes you specified.
d) Click Add nodes.

Nodes you specified are listed under Nodes selected for this task.
e) Optional: Select additional target options.

For example, to add a target port number, select Target Port from the drop-down list, enter the number, and
click Add.

f) Repeat these steps to add other nodes. You can add nodes with different credentials to create the node list.

Tip: To remove a node from the table, select the check box next to it and click Remove selected.

12. When you have selected all the nodes you want to target, click Next: Review and schedule.

13. Review the details of your job configuration and the selected nodes. To make changes, you can click Edit in the
Configure job and Select nodes summaries, or click Back to return to previous steps.

14. Schedule the task or, to run the task immediately, click Run task.

You can view the task job status and a list of previous and scheduled tasks on the Tasks page.

To rerun a task, click on the relevant ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

Run a task on a node group
Similar to running a task on a list of nodes that you create in the console, you can run a task on a node group.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

Make sure you have permissions necessary to run tasks.

Note: If you don't have permission to view a node group, or the node group doesn't have any matching nodes, that
node group isn't listed as an option. In addition, node groups don't appear if they have no rules specified.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 633

1. In the console, in the Orchestration section, click Tasks.

2. Click Run a task in the upper right corner of the Tasks page.

3. In the Code environment field, select the environment where you installed the module containing the task you
want to run. The default is production.

4. In the Task field, select a task to run. For example, service.

Note: If the tasks you expect are not available, you either have no tasks installed, or you don't have the correct
permissions to run them.

5. Optional: In the Concurrency limit field, specify the number of nodes on which the task can be executed
simultaneously.

6. Optional: In the Task description field, provide a description. The text you enter here appears on the task list and
task details pages.

7. Optional: If you want to limit how long the task can run before being automatically cancelled, under Timeout,
select Yes and specify a time interval (such as 5 minutes).

8. Under Task parameters, add optional parameters and enter values for the optional and required parameters on the
list.

Important: You must click Add to task for each optional parameter-value pair you add to the task.

To view information about required and optional parameters for the task, select View task metadata below the
Concurrency limit field.

Express values as strings, arrays, objects, integers, or Booleans. You must express empty strings by entering a pair
of double quotation marks with no space between (""). Structured values, like arrays, must be valid JSON.

Tasks that have default values use the default values when running unless you specify other values.

Note: The parameters you supply the first time you run a task are used for subsequent task runs when you use
Run again on the Task details page.

9. Click Next: Select nodes.

10. Under Node selection method, from the dropdown select Node group.

11. From the Choose a node group dropdown, type or select a node group, and click Select.

12. Optional: To convert the list of nodes captured by the selected node group into a static list of nodes, click Convert
query to static node list.

Tip: If you select this option, the job target becomes a node list. You can add or remove nodes from the node list
before running the job, but you cannot edit the query.

13. When you have selected the node group containing the nodes you want to target or have created a static list of
targeted nodes, click Next: Review and schedule.

14. Schedule the task or, to run the task immediately, click Run task.

You can view the task job status and a list of previous and scheduled tasks on the Tasks page.

To rerun a task, click on the relevant ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

Run a task on a PQL query
Create a PQL query to run tasks on nodes that meet specific conditions.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

Make sure you have the permissions necessary to run tasks and PQL queries.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 634

1. In the console, in the Orchestration section, click Tasks.

2. Click Run a task in the upper right corner of the Tasks page.

3. In the Code environment field, select the environment where you installed the module containing the task you
want to run. The default is production.

4. In the Task field, select a task to run. For example, service.

Note: If the tasks you expect are not available, you either have no tasks installed, or you don't have the correct
permissions to run them.

5. Optional: In the Concurrency limit field, specify the number of nodes on which the task can be executed
simultaneously.

6. Optional: In the Task description field, provide a description. The text you enter here appears on the task list and
task details pages.

7. Optional: If you want to limit how long the task can run before being automatically cancelled, under Timeout,
select Yes and specify a time interval (such as 5 minutes).

8. Under Task parameters, add optional parameters and enter values for the optional and required parameters on the
list.

Important: You must click Add to task for each optional parameter-value pair you add to the task.

To view information about required and optional parameters for the task, select View task metadata below the
Concurrency limit field.

Express values as strings, arrays, objects, integers, or Booleans. You must express empty strings by entering a pair
of double quotation marks with no space between (""). Structured values, like arrays, must be valid JSON.

Tasks that have default values use the default values when running unless you specify other values.

Note: The parameters you supply the first time you run a task are used for subsequent task runs when you use
Run again on the Task details page.

9. Click Next: Select nodes.

10. Under Node selection method, from the dropdown, select PQL query.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 635

11. Specify a target by doing one of the following:

• Enter a query that selects the target you want. See the Puppet Query Language (PQL) reference for more
information.

• Click Common queries, select one of the queries, and replace the defaults in the braces ({ }) with values that
specify the target you want.

Target PQL query

All nodes nodes[certname] { }

Nodes with a specific resource (example: httpd) resources[certname] { type =
"Service" and title = "httpd" }

Nodes with a specific fact and value (example: OS
name is CentOS)

inventory[certname] { facts.os.name
= "<OS>" }

Nodes with a specific report status (example: last run
failed)

reports[certname]
{ latest_report_status = "failed" }

Nodes with a specific class (example: Apache) resources[certname] { type = "Class"
and title = "Apache" }

Nodes assigned to a specific environment (example:
production)

nodes[certname]
{ catalog_environment =
"production" }

Nodes with a specific version of a resource type
(example: OpenSSL v1.1.0e)

resources[certname] {type =
"Package" and title="openssl"
and parameters.ensure =
"1.0.1e-51.el7_2.7" }

Nodes with a specific resource and operating system
(example: httpd and CentOS)

inventory[certname]
{ facts.operatingsystem = "CentOS"
and resources { type = "Service" and
title = "httpd" } }

12. Click Submit query and click Refresh node list to update the node results.

13. If you change or edit the query after it runs, click Submit query again.

14. Optional: To convert the list of nodes captured by the PQL query to a static list of nodes, click Convert query to
static node list.

Tip: If you select this option, the job target becomes a node list. You can add or remove nodes from the node list
before running the job, but you cannot edit the query.

15. When you have submitted a query that captures the nodes you want to target or have created a static list of
targeted nodes, click Next: Review and schedule.

16. Schedule the task or, to run the task immediately, click Run task.

You can view the task job status and a list of previous and scheduled tasks on the Tasks page.

To rerun a task, click on the relevant ID and click Run again, choosing whether to rerun it on all nodes or only
the nodes that failed during the initial run.

Important: Unless you converted your PQL query to a node list, each time you run this task the PQL query runs
again. Therefore, the job might run on a different set of nodes each time, depending on how your inventory has
changed between runs. If you want the task to run on the same set of nodes queried when you originally created the
query, you must convert the query to a node list before you run the task again.

Add custom PQL queries to the console
Add your own Puppet Query Language (PQL) queries to the console to quickly access them when running jobs.

For help forming queries, go to the PQL Reference guide in the Puppet documentation.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/api/query/v4/pql.html
https://puppet.com/docs/puppetdb/7/api/query/v4/pql.html

pe | Orchestrating Puppet runs, tasks, and plans | 636

1. On the primary server, copy the custom_pql_queries.json.example file, and remove the .example
suffix. For example, you can use this command:

sudo cp
/etc/puppetlabs/console-services/custom_pql_queries.json.example
/etc/puppetlabs/console-services/custom_pql_queries.json

2. Edit the file contents to include your own PQL queries or remove any existing queries.

3. Refresh the console UI in your browser.

You can now see your custom queries in the PQL drop-down options when running jobs.
Schedule a task
Schedule a task to perform single-action executions at a particular date and time or on a recurring schedule.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

Make sure you have permissions necessary to run tasks.

If a reboot occurs or you restore a backup, scheduled Puppet jobs are rescheduled based on the last execution time. If
a reboot is caused by a scheduled Puppet job running in the orchestrator, that job returns a failed status.

1. In the console, in the Orchestration section, click Tasks.

2. Click Run a task in the upper right corner of the Tasks page.

3. In the Code environment field, select the environment where you installed the module containing the task you
want to run. The default is production.

4. In the Task field, select a task to run. For example, service.

Note: If the tasks you expect are not available, you either have no tasks installed, or you don't have the correct
permissions to run them.

5. Optional: In the Concurrency limit field, specify the number of nodes on which the task can be executed
simultaneously.

6. Optional: In the Task description field, provide a description. The text you enter here appears on the task list and
task details pages.

7. Optional: If you want to limit how long the task can run before being automatically cancelled, under Timeout,
select Yes and specify a time interval (such as 5 minutes).

8. Under Task parameters, add optional parameters and enter values for the optional and required parameters on the
list.

Important: You must click Add to task for each optional parameter-value pair you add to the task.

To view information about required and optional parameters for the task, select View task metadata below the
Concurrency limit field.

Express values as strings, arrays, objects, integers, or Booleans. You must express empty strings by entering a pair
of double quotation marks with no space between (""). Structured values, like arrays, must be valid JSON.

Tasks that have default values use the default values when running unless you specify other values.

Note: The parameters you supply the first time you run a task are used for subsequent task runs when you use
Run again on the Task details page.

9. Click Next: Select nodes.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 637

10. Under Node selection method, from the dropdown, select a target type.

• Node list: Add individual nodes by name.
• PQL Query: Use the Puppet query language to retrieve a list of nodes.
• Node group: Select an existing node group.

For details about the target options, refer to Run a task on one or more specific nodes on page 629, Run a task
on a PQL query on page 633, and Run a task on a node group on page 632.

11. When you have used one of the node selection methods to select the nodes you want to target click Next: Review
and schedule.

12. Under Schedule, select Later and choose a start date, time, time zone, and frequency for the job to run.

13. Optional: To repeat the job on a regular schedule, change the run frequency from Once to Hourly, Daily, or
Weekly.

Note: If a recurring job's run overlaps with the next scheduled run, the job skips the overlapped time and doesn't
run again until the next scheduled start time.

14. Click Schedule task.

Your job appears on the Scheduled Tasks tab of the Tasks page.
Edit a scheduled task
You can view and edit a scheduled task job if, for example, you want to change the selected run options or add nodes
to the job.

If you want to edit a scheduled task created by another user, you must have the appropriate role-based permissions to
do so.

1. In the console, go to Tasks and switch to the Scheduled Tasks tab.

2. In the list of scheduled tasks, locate the task job you want to edit and click the view icon.

3. On the View scheduled task page, click Edit task in the upper right corner.

4. Make your required changes and click Save changes.

Delete a scheduled task

If you want to delete a scheduled task job created by another user, you must have the appropriate role-based
permissions to do so.

1. In the console, go to Tasks and switch to the Scheduled Tasks tab.

2. Locate the scheduled task job you want to delete and click the trashcan icon.

3. Confirm that you want to remove the scheduled task.

Running tasks from the command line
Use the puppet task run command to run tasks on agent nodes.

Use the puppet task tool and the relevant module to make changes arbitrarily, rather than through a Puppet
configuration change. For example, to inspect a package or quickly stop a particular service.

You can run tasks on a single node, on nodes identified in a static list, on nodes retrieved by a PQL query, or on nodes
in a node group.

Use the orchestrator command puppet task to trigger task runs.

The first time you run a command, you need to authenticate. For details, refer to Setting PE RBAC permissions and
token authentication for orchestrator on page 613.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 638

Run a task on a list of nodes or a single node
Use a node list target when you need to run a job on a set of nodes that doesn't easily resolve to a PQL query. Use a
single node or a comma-separated list of nodes.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

Make sure you have the permissions necessary to run tasks and PQL queries.

Log into your primary server or client tools workstation and run one of the following commands:

• To run a task job on a single node: puppet task run <TASK NAME> <PARAMETER>=<VALUE>
<PARAMETER>=<VALUE> --nodes <NODE NAME> <OPTIONS>

• To run a task job on a list of nodes, use a comma-separated list of node names: puppet task run <TASK
NAME> <PARAMETER>=<VALUE> <PARAMETER>=<VALUE> --nodes <NODE NAME>,<NODE
NAME>,<NODE NAME>,<NODE NAME> <OPTIONS>

Note: Do not add spaces in the list of nodes.

• To run a task job on a node list from a text file: puppet task run <TASK NAME>
<PARAMETER>=<VALUE> <PARAMETER>=<VALUE> --nodes @/path/to/file.txt

Note: In the text file, put each node on a separate line.

For example, to run the service task with two required parameters, on three specific hosts:

puppet task run service action=status name=nginx --nodes host1,host2,host3

Tip: Use puppet task show <TASK NAME> to see a list of available parameters for a task. Not all tasks
require parameters.

Refer to the puppet task command options to see how to pass parameters with the --params flag.

Run a task on a PQL query
Create a PQL query to run tasks on nodes that meet specific conditions.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

Make sure you have the permissions necessary to run tasks and PQL queries.

Log into your primary server or client tools workstation and run one of the following commands:

• To specify the query on the command line: puppet task run <TASK NAME> <PARAMETER>=<VALUE>
<PARAMETER>=<VALUE> --query '<QUERY>' <OPTIONS>

• To pass the query in a text file: puppet task run <TASK NAME> <PARAMETER>=<VALUE>
<PARAMETER>=<VALUE> --query @/path/to/file.txt

For example, to run the service task with two required parameters, on nodes with "web" in their certname:

puppet task run service action=status name=nginx --query 'nodes { certname ~
 "web" }'

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 639

Tip: Use puppet task show <TASK NAME> to see a list of available parameters for a task. Not all tasks
require parameters.

Refer to the puppet task command options to see how to pass parameters with the --params flag.

The following table shows some examples of PQL queries you might use for particular node targets.

Target PQL query

A single node by certname 'nodes { certname = "mynode" }'

All nodes with web in their certname 'nodes { certname ~ "web" }'

All CentOS nodes 'inventory { facts.os.name =
"CentOS" }'

All CentOS nodes with httpd managed 'inventory { facts.operatingsystem
= "CentOS" and resources { type =
"Service" and title = "httpd" } }'

All nodes with failed reports 'reports { latest_report? = true and
status = "failed" }'

All nodes matching the environment of the last received
catalog

'nodes { catalog_environment =
"production" }'

Tip:

Make sure to wrap the entire query in single quotes and use double quotes inside the query.

To shorten the command, you can use -q in place of --query.

Run a task on a node group
Similar to running a task on a list of nodes, you can run a task on a node group.

Before you begin

Install the tasks you want to use.

Make sure you have access to the nodes you want to target.

1. Log into your primary server or client tools workstation.

2. Run the command: puppet task run <TASK NAME> --node-group <node-group-id>

Tip: Use the /v1/groups endpoint to retrieve a list node groups and their IDs.

Related information
GET /v1/groups on page 528
Retrieves a list of all node groups in the node classifier.

puppet task run command options
The following are common options you can use with the task action. For a complete list of global options run
puppet task --help.

Option Value Description

--noop Flag, default false Run a task to simulate changes
without actually enforcing the
changes.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 640

Option Value Description

--params String Specify a JSON object that includes
the parameters, or specify the
path to a JSON file containing
the parameters, prefaced with
@, for example, @/path/to/
file.json. Do not use this flag
if specifying parameter-value pairs
inline; see more information below.

--environment, -e Environment name Use tasks installed in the specified
environment.

--description Flag, defaults to empty Provide a description for the job,
to be shown on the job list and job
details pages, and returned with the
puppet job show command.

You can pass parameters into the task one of two ways:

• Inline, using the <PARAMETER>=<VALUE> syntax:

puppet task run <TASK NAME> <PARAMETER>=<VALUE> <PARAMETER>=<VALUE> --
nodes <LIST OF NODES>
puppet task run my_task action=status service=my_service timeout=8 --nodes
 host1,host2,host3

• With the --params option, as a JSON object or reference to a JSON file:

puppet task run <TASK NAME> --params '<JSON OBJECT>' --nodes <LIST OF
 NODES>
puppet task run my_task --params '{ "action":"status",
 "service":"my_service", "timeout":8 }' --nodes host1,host2,host3
puppet task run my_task --params @/path/to/file.json --nodes
 host1,host2,host3

You can't combine these two ways of passing in parameters; choose either inline or --params. If you use the
inline way, parameter types other than string, integer, double, and Boolean will be interpreted as strings. Use the --
params method if you want them read as their original type.

Reviewing task job output
The output the orchestrator returns depends on the type of task you run. Output is either standard output (STDOUT)
or structured output. At minimum, the orchestrator prints a new job ID and the number of nodes in the task.

The following example shows a task to check the status of the Puppet service running on a list of nodes derived from
a PQL query.

[example@orch-master ~]$ puppet task run service name=puppet action=status -
q 'nodes {certname ~ "br"}' --environment=production
Starting job ...
New job ID: 2029
Nodes: 8

Started on bronze-11 ...
Started on bronze-8 ...
Started on bronze-3 ...
Started on bronze-6 ...
Started on bronze-2 ...
Started on bronze-5 ...
Started on bronze-7 ...
Started on bronze-10 ...

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 641

Finished on node bronze-11
 status : running
 enabled : true
Finished on node bronze-3
 status : running
 enabled : true
Finished on node bronze-8
 status : running
 enabled : true
Finished on node bronze-7
 status : running
 enabled : true
Finished on node bronze-2
 status : running
 enabled : true
Finished on node bronze-6
 status : running
 enabled : true
Finished on node bronze-5
 status : running
 enabled : true
Finished on node bronze-10
 status : running
 enabled : true

Job completed. 8/8 nodes succeeded.
Duration: 1 sec

Tip: To view the status of all running, completed, and failed jobs run the puppet job show command, or view
them from the Job details page in the console.

Stop a task in progress
You can stop a task that is currently running if, for example, you realize you need to adjust your PQL query or edit
the task run parameters.

There are three ways to stop a task:

• In the PE console, go to the Tasks page, find the task run you want to stop, and click Stop job.
• On the command line, press CTRL + C.
• Use POST /command/stop on page 701.

When you stop a task, any Puppet runs that are already underway finish, but no new runs start on the node until you
initiate the task again. While in-progress runs finish, the server continues to produce events for the job. The job's
status changes to stopped once all in-progress runs finish.

Tip: If you also need to stop in-progress Puppet runs (for example, if you need to stop a task that is hanging), use the
force option with POST /command/stop on page 701 or use the force stop option in the console.

Be aware that force immediately ends the job. This can result in an inconsistent or undesirable state due to job
components (tasks, plans, Puppet runs, and so on) being ended prematurely.

Inspecting tasks
You can inspect task documentation, outcomes of task jobs, a list of installed tasks, and a list of tasks you have
permission to run.

To view installed tasks, tasks you have permission to run, and task documentation, log into your primary server or
client tools workstation and run one of the following commands:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 642

Command Definition

puppet task show <TASK> Check the documentation for a specific task. Returns the
command format to run the task and any parameters you
can use with it.

puppet task show Get a list of tasks that you have permission to run.

puppet task show --all Get a list of all installed tasks.

To get information about the outcome of specific jobs, including scheduled jobs, you can use the:

• Scheduled jobs endpoints on page 733 (Many scheduled job functions are also available in the console.)
• Tasks endpoints on page 765
• Jobs endpoints on page 719

Writing tasks
Bolt tasks are similar to scripts, but they are kept in modules and can have metadata. This allows you to reuse and
share them.

You can write tasks in any programming language the target nodes run, such as Bash, PowerShell, or Python. A task
can even be a compiled binary that runs on the target. Place your task in the ./tasks directory of a module and add
a metadata file to describe parameters and configure task behavior.

For a task to run on remote *nix systems, it must include a shebang (#!) line at the top of the file to specify the
interpreter.

For example, the Puppet mysql::sql task is written in Ruby and provides the path to the Ruby interpreter. This
example also accepts several parameters as JSON on stdin and returns an error.

#!/opt/puppetlabs/puppet/bin/ruby
require 'json'
require 'open3'
require 'puppet'

def get(sql, database, user, password)
 cmd = ['mysql', '-e', "#{sql} "]
 cmd << "--database=#{database}" unless database.nil?
 cmd << "--user=#{user}" unless user.nil?
 cmd << "--password=#{password}" unless password.nil?
 stdout, stderr, status = Open3.capture3(*cmd) # rubocop:disable Lint/
UselessAssignment
 raise Puppet::Error, _("stderr: ' %{stderr}') % { stderr: stderr }") if
 status != 0
 { status: stdout.strip }
end

params = JSON.parse(STDIN.read)
database = params['database']
user = params['user']
password = params['password']
sql = params['sql']

begin
 result = get(sql, database, user, password)
 puts result.to_json
 exit 0
rescue Puppet::Error => e
 puts({ status: 'failure', error: e.message }.to_json)
 exit 1
end

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 643

Related information
Task compatibility on page 16
Information is provided about the Puppet task specification that is compatible with Puppet Enterprise (PE).

Secure coding practices for tasks
Use secure coding practices when you write tasks and help protect your system.

Note: The information in this topic covers basic coding practices for writing secure tasks. It is not an exhaustive list.

One of the methods attackers use to gain access to your systems is remote code execution, where by running an
allowed script they gain access to other parts of the system and can make arbitrary changes. Because Bolt executes
scripts across your infrastructure, it is important to be aware of certain vulnerabilities, and to code tasks in a way that
guards against remote code execution.

Adding task metadata that validates input is one way to reduce vulnerability. When you require an enumerated
(enum) or other non-string types, you prevent improper data from being entered. An arbitrary string parameter does
not have this assurance.

For example, if your task has a parameter that selects from several operational modes that are passed to a shell
command, instead of

String $mode = 'file'

use

Enum[file,directory,link,socket] $mode = file

If your task has a parameter that identifies a file on disk, ensure that a user can't specify a relative path that takes them
into areas where they shouldn't be. Reject file names that have slashes.

Instead of

String $path

use

Pattern[/\A[^\/\\]*\z/] $path

In addition to these task restrictions, different scripting languages each have their own ways to validate user input.

PowerShell

In PowerShell, code injection exploits calls that specifically evaluate code. Do not call Invoke-Expression or
Add-Type with user input. These commands evaluate strings as C# code.

Reading sensitive files or overwriting critical files can be less obvious. If you plan to allow users to specify a file
name or path, use Resolve-Path to verify that the path doesn't go outside the locations you expect the task to
access. Use Split-Path -Parent $path to check that the resolved path has the desired path as a parent.

For more information, see PowerShell Scripting and Powershell's Security Guiding Principles.

Bash

In Bash and other command shells, shell command injection takes advantage of poor shell implementations. Put
quotations marks around arguments to prevent the vulnerable shells from evaluating them.

Because the eval command evaluates all arguments with string substitution, avoid using it with user input; however
you can use eval with sufficient quoting to prevent substituted variables from being executed.

© 2024 Puppet, Inc., a Perforce company

https://docs.microsoft.com/en-us/powershell/scripting/PowerShell-Scripting?view=powershell-6
https://blogs.msdn.microsoft.com/powershell/2008/09/30/powershells-security-guiding-principles/

pe | Orchestrating Puppet runs, tasks, and plans | 644

Instead of

eval "echo $input"

use

eval "echo '$input'"

These are operating system-specific tools to validate file paths: realpath or readlink -f.

Python

In Python malicious code can be introduced through commands like eval, exec, os.system, os.popen, and
subprocess.call with shell=True. Use subprocess.call with shell=False when you include user
input in a command or escape variables.

Instead of

os.system('echo '+input)

use

subprocess.check_output(['echo', input])

Resolve file paths with os.realpath and confirm them to be within another path by looping over
os.path.dirname and comparing to the desired path.

For more information on the vulnerabilities of Python or how to escape variables, see Kevin London's blog post on
Dangerous Python Functions.

Ruby

In Ruby, command injection is introduced through commands like eval, exec, system, backtick (``) or %x()
execution, or the Open3 module. You can safely call these functions with user input by passing the input as additional
arguments instead of a single string.

Instead of

system("echo #{flag1} #{flag2}")

use

system('echo', flag1, flag2)

Resolve file paths with Pathname#realpath, and confirm them to be within another path by looping over
Pathname#parent and comparing to the desired path.

For more information on securely passing user input, see the blog post Stop using backtick to run shell command in
Ruby.

Naming tasks
Task names are named based on the filename of the task, the name of the module, and the path to the task within the
module.

You can write tasks in any language that runs on the target nodes. Give task files the extension for the language they
are written in (such as .rb for Ruby), and place them in the top level of your module's ./tasks directory.

Task names are composed of one or two name segments, indicating:

• The name of the module where the task is located.

© 2024 Puppet, Inc., a Perforce company

https://www.kevinlondon.com/2015/07/26/dangerous-python-functions.html
https://www.hilman.io/blog/2016/01/stop-using-backtick-to-run-shell-command-in-ruby/
https://www.hilman.io/blog/2016/01/stop-using-backtick-to-run-shell-command-in-ruby/

pe | Orchestrating Puppet runs, tasks, and plans | 645

• The name of the task file, without the extension.

For example, the puppetlabs-mysql module has the sql task in ./mysql/tasks/sql.rb, so the task name
is mysql::sql. This name is how you refer to the task when you run tasks.

The task filename init is special: the task it defines is referenced using the module name only. For example, in the
puppetlabs-service module, the task defined in init.rb is the service task.

Each task or plan name segment:

• Must start with a lowercase letter.
• Can include digits.
• Can include underscores.
• Namespace segments must match the following regular expression: \A[a-z][a-z0-9_]*\Z
• The file extension must not use the reserved extensions .md or .json.

Single-platform tasks
A task can consist of a single executable with or without a corresponding metadata file. For instance, ./mysql/
tasks/sql.rb and ./mysql/tasks/sql.json. In this case, no other ./mysql/tasks/sql.* files can
exist.

Cross-platform tasks
A task can have multiple implementations, with metadata that explains when to use each one. A primary use case for
this is to support different implementations for different target platforms, referred to as cross-platform tasks.

A task can also have multiple implementations, with metadata that explains when to use each one. A primary use
case for this is to support different implementations for different target platforms, referred to as cross-platform
tasks. For instance, consider a module with the following files:

- tasks
 - sql_linux.sh
 - sql_linux.json
 - sql_windows.ps1
 - sql_windows.json
 - sql.json

This task has two executables (sql_linux.sh and sql_windows.ps1), each with an implementation metadata
file and a task metadata file. The executables have distinct names and are compatible with older task runners such as
Puppet Enterprise 2018.1 and earlier. Each implementation has it's own metadata which documents how to use the
implementation directly or marks it as private to hide it from UI lists.

An implementation metadata example:

{
 "name": "SQL Linux",
 "description": "A task to perform sql operations on linux targets",
 "private": true
}

The task metadata file contains an implementations section:

{
 "implementations": [
 {"name": "sql_linux.sh", "requirements": ["shell"]},
 {"name": "sql_windows.ps1", "requirements": ["powershell"]}
]
}

Each implementations has a name and a list of requirements. The requirements are the set of features which
must be available on the target in order for that implementation to be used. In this case, the sql_linux.sh

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 646

implementation requires the shell feature, and the sql_windows.ps1 implementations requires the PowerShell
feature.

The set of features available on the target is determined by the task runner. You can specify additional features
for a target via set_feature or by adding features in the inventory. The task runner chooses the first
implementation whose requirements are satisfied.

The following features are defined by default:

• puppet-agent: Present if the target has the Puppet agent package installed. This feature is automatically added
to hosts with the name localhost.

• shell: Present if the target has a posix shell.
• powershell: Present if the target has PowerShell.

Sharing executables
Multiple task implementations can refer to the same executable file.

Executables can access the _task metaparameter, which contains the task name. For example, the following creates
the tasks service::stop and service::start, which live in the executable but appear as two separate tasks.

myservice/tasks/init.rb

#!/usr/bin/env ruby
require 'json'

params = JSON.parse(STDIN.read)
action = params['action'] || params['_task']
if ['start', 'stop'].include?(action)
 `systemctl #{params['_task']} #{params['service']}`
end

myservice/tasks/start.json

{
 "description": "Start a service",
 "parameters": {
 "service": {
 "type": "String",
 "description": "The service to start"
 }
 },
 "implementations": [
 {"name": "init.rb"}
]
}

myservice/tasks/stop.json

{
 "description": "Stop a service",
 "parameters": {
 "service": {
 "type": "String",
 "description": "The service to stop"
 }
 },
 "implementations": [
 {"name": "init.rb"}
]

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 647

}

Sharing task code
Multiple tasks can share common files between them. Tasks can additionally pull library code from other modules.

To create a task that includes additional files pulled from modules, include the files property in your metadata as an
array of paths. A path consists of:

• the module name
• one of the following directories within the module:

• files — Most helper files. This prevents the file from being treated as a task or added to the Puppet Ruby
loadpath.

• tasks — Helper files that can be called as tasks on their own.
• lib — Ruby code that might be reused by types, providers, or Puppet functions.

• the remaining path to a file or directory; directories must include a trailing slash /

All path separators must be forward slashes. An example would be stdlib/lib/puppet/.

The files property can be included both as a top-level metadata property, and as a property of an implementation,
for example:

{
 "implementations": [
 {"name": "sql_linux.sh", "requirements": ["shell"], "files": ["mymodule/
files/lib.sh"]},
 {"name": "sql_windows.ps1", "requirements": ["powershell"], "files":
 ["mymodule/files/lib.ps1"]}
],
 "files": ["emoji/files/emojis/"]
}

When a task includes the files property, all files listed in the top-level property and in the specific implementation
chosen for a target are copied to a temporary directory on that target. The directory structure of the specified
files is preserved such that paths specified with the files metadata option are available to tasks prefixed with
_installdir. The task executable itself is located in its module location under the _installdir as well, so
other files can be found at ../../mymodule/files/ relative to the task executable's location.

For example, you can create a task and metadata in a module at ~/.puppetlabs/bolt/site-modules/
mymodule/tasks/task.{json,rb}.

Metadata

{
 "files": ["multi_task/files/rb_helper.rb"]
}

File resource

multi_task/files/rb_helper.rb

def useful_ruby
 { helper: "ruby" }
end

Task

#!/usr/bin/env ruby
require 'json'

params = JSON.parse(STDIN.read)

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 648

require_relative File.join(params['_installdir'], 'multi_task', 'files',
 'rb_helper.rb')
Alternatively use relative path
require_relative File.join(__dir__, '..', '..', 'multi_task', 'files',
 'rb_helper.rb')
 puts useful_ruby.to_json

Output

Started on localhost...
Finished on localhost:
 {
 "helper": "ruby"
 }
Successful on 1 node: localhost
Ran on 1 node in 0.12 seconds

Task helpers

To help with writing tasks, Bolt includes python_task_helper and ruby_task_helper. It also makes a useful
demonstration of including code from another module.

Python example

Create task and metadata in a module at ~/.puppetlabs/bolt/site-modules/mymodule/tasks/
task.{json,py}.

Metadata

{
 "files": ["python_task_helper/files/task_helper.py"],
 "input_method": "stdin"
}

Task

#!/usr/bin/env python
import os, sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..',
 'python_task_helper', 'files'))
from task_helper import TaskHelper

class MyTask(TaskHelper):
 def task(self, args):
 return {'greeting': 'Hi, my name is '+args['name']}

if __name__ == '__main__':
 MyTask().run()

Output

$ bolt task run mymodule::task -n localhost name='Julia'
Started on localhost...
Finished on localhost:
 {
 "greeting": "Hi, my name is Julia"
 }
Successful on 1 node: localhost
Ran on 1 node in 0.12 seconds

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/puppetlabs-python_task_helper
https://github.com/puppetlabs/puppetlabs-ruby_task_helper

pe | Orchestrating Puppet runs, tasks, and plans | 649

Ruby example

Create task and metadata in a new module at ~/.puppetlabs/bolt/site-modules/mymodule/tasks/
mytask.{json,rb}.

Metadata

{
 "files": ["ruby_task_helper/files/task_helper.rb"],
 "input_method": "stdin"
}

Task

#!/usr/bin/env ruby
require_relative '../../ruby_task_helper/files/task_helper.rb'

class MyTask < TaskHelper
 def task(name: nil, **kwargs)
 { greeting: "Hi, my name is #{name}" }
 end
end

MyTask.run if __FILE__ == $0

Output

$ bolt task run mymodule::mytask -n localhost name="Robert'); DROP TABLE
 Students;--"
Started on localhost...
Finished on localhost:
 {
 "greeting": "Hi, my name is Robert'); DROP TABLE Students;--"
 }
Successful on 1 node: localhost
Ran on 1 node in 0.12 seconds

Writing remote tasks
Some targets are hard or impossible to execute tasks on directly. In these cases, you can write a task that runs on a
proxy target and remotely interacts with the real target.

For example, a network device might have a limited shell environment or a cloud service might be driven only by
HTTP APIs. By writing a remote task, Bolt allows you to specify connection information for remote targets in their
inventory file and injects them into the _target metaparam.

This example shows how to write a task that posts messages to Slack and reads connection information from
inventory.yaml:

#!/usr/bin/env ruby
modules/slack/tasks/message.rb

require 'json'
require 'net/http'

params = JSON.parse(STDIN.read)
the slack API token is passed in from inventory
token = params['_target']['token']

uri = URI('https://slack.com/api/chat.postMessage')
http = Net::HTTP.new(uri.host, uri.port)
http.use_ssl = true

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 650

req = Net::HTTP::Post.new(uri, 'Content-type' => 'application/json')
req['Authorization'] = "Bearer #{params['_target']['token']}"
req.body = { channel: params['channel'], text: params['message'] }.to_json

resp = http.request(req)

puts resp.body

To prevent accidentally running a normal task on a remote target and breaking its configuration, Bolt won't run a task
on a remote target unless its metadata defines it as remote:

{
 "remote": true
}

Add Slack as a remote target in your inventory file:

nodes:
 - name: my_slack
 config:
 transport: remote
 remote:
 token: <SLACK_API_TOKEN>

Finally, make my_slack a target that can run the slack::message:

bolt task run slack::message --nodes my_slack message="hello" channel=<slack
 channel id>

Defining parameters in tasks
Allow your task to accept parameters as either environment variables or as a JSON hash on standard input.

Tasks can receive input as either environment variables, a JSON hash on standard input, or as PowerShell arguments.
By default, the task runner submits parameters as both environment variables and as JSON on stdin.

If your task needs to receive parameters only in a certain way, such as stdin only, you can set the input method in
your task metadata. For Windows tasks, it's usually better to use tasks written in PowerShell. See the related topic
about task metadata for information about setting the input method.

Environment variables are the easiest way to implement parameters, and they work well for simple JSON types such
as strings and numbers. For arrays and hashes, use structured input instead because parameters with undefined values
(nil, undef) passed as environment variables have the String value null. For more information, see Structured
input and output on page 653.

To add parameters to your task as environment variables, pass the argument prefixed with the Puppet task prefix PT_
.

For example, to add a message parameter to your task, read it from the environment in task code as
PT_message. When the user runs the task, they can specify the value for the parameter on the command line as
message=hello , and the task runner submits the value hello to the PT_message variable.

#!/usr/bin/env bash
echo your message is $PT_message

Defining parameters in Windows

For Windows tasks, you can pass parameters as environment variables, but it's easier to write your task in PowerShell
and use named arguments. By default tasks with a .ps1 extension use PowerShell standard argument handling.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 651

For example, this PowerShell task takes a process name as an argument and returns information about the process. If
no parameter is passed by the user, the task returns all of the processes.

[CmdletBinding()]
Param(
 [Parameter(Mandatory = $False)]
 [String]
 $Name
)

if ($Name -eq $null -or $Name -eq "") {
 Get-Process
} else {
 $processes = Get-Process -Name $Name
 $result = @()
 foreach ($process in $processes) {
 $result += @{"Name" = $process.ProcessName;
 "CPU" = $process.CPU;
 "Memory" = $process.WorkingSet;
 "Path" = $process.Path;
 "Id" = $process.Id}
 }
 if ($result.Count -eq 1) {
 ConvertTo-Json -InputObject $result[0] -Compress
 } elseif ($result.Count -gt 1) {
 ConvertTo-Json -InputObject @{"_items" = $result} -Compress
 }
}

To pass parameters in your task as environment variables (PT_parameter), you must set input_method in your
task metadata to environment. To run Ruby tasks on Windows, the Puppet agent must be installed on the target
nodes.

Defining sensitive parameters
You can define task parameters, like passwords or API keys, as sensitive. The parameter is then masked when it
appears in logs and API responses. When you want to view these values, set the log file to the correct level based on
the service.

To define a parameter as sensitive within the JSON metadata, add the "sensitive": true property.

{
 "description": "This task has a sensitive property denoted by its
 metadata",
 "input_method": "stdin",
 "parameters": {
 "user": {
 "description": "The user",
 "type": "String[1]"
 },
 "password": {
 "description": "The password",
 "type": "String[1]",
 "sensitive": true
 }
 }
}

Some services log sensitive parameter values. Here are the minimum log levels for each service where sensitive
values can be seen.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 652

Service Minimum log level that shows
sensitive parameters

Default log level

pe-bolt-server INFO INFO

pe-ace-server INFO INFO

pxp-agent DEBUG INFO

pcp-broker TRACE INFO

If you don't want sensitive parameters to be logged, configure the relevant service's log level to be one level higher
than its minimum sensitive parameter value log level. For example, to avoid seeing sensitive parameters for pxp-
agent, set the log level to INFO, which is one level higher than DEBUG, the minimum log level that shows sensitive
parameters for pxp-agent.

Returning errors in tasks
To return a detailed error message if your task fails, include an Error object in the task's result.

Tip: When writing PowerShell or Bash scripts, it is a common practice to implement error handling that ignores
errors during execution to allow the script to complete regardless of errors encountered. You might use variables such
as $ErrorActionPreference = SilenceContinue or set +e for this. However, this can lead to a false
sense of security by ignoring critical errors.

Don't use this type of error handling with Puppet tasks. By design, Puppet tasks are meant to highlight or stop upon
encountering errors, with the intention that you'll address the discovered errors. Instead of ignoring errors, use the try-
catch-finally technique. For more information refer to:

• About Try Catch Finally in the Microsoft PowerShell documentation.
• Bash Basics: shell_try_catch.sh on GitHub.

When a task exits non-zero, the task runner checks for an error key (`_error`). If one is not present, the task runner
generates a generic error and adds it to the result. If there is no text on stdout but text is present on stderr, the
stderr text is included in the message.

{ "_error": {
 "msg": "Task exited 1:\nSomething on stderr",
 "kind": "puppetlabs.tasks/task-error",
 "details": { "exitcode": 1 }
}

An error object includes the following keys:

msg

A human readable string that appears in the UI.

kind

A standard string for machines to handle. You can share kinds between your modules or namespace kinds per
module.

details

An object of structured data about the tasks.

Tasks can provide more details about the failure by including their own error object in the result at _error.

#!/opt/puppetlabs/puppet/bin/ruby

require 'json'

begin
 params = JSON.parse(STDIN.read)

© 2024 Puppet, Inc., a Perforce company

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_try_catch_finally
https://gist.github.com/YakDriver/d5285a1d6f0f7b595240f508665e856d

pe | Orchestrating Puppet runs, tasks, and plans | 653

 result = {}
 result['result'] = params['dividend'] / params['divisor']

rescue ZeroDivisionError
 result[:_error] = { msg: "Cannot divide by zero",
 # namespace the error to this module
 kind: "puppetlabs-example_modules/dividebyzero",
 details: { divisor: divisor },
 }
rescue Exception => e
 result[:_error] = { msg: e.message,
 kind: "puppetlabs-example_modules/unknown",
 details: { class: e.class.to_s },
 }
end

puts result.to_json

Structured input and output
If you have a task that has many options, returns a lot of information, or is part of a task plan, consider using
structured input and output with your task.

The task API is based on JSON. Task parameters are encoded in JSON, and the task runner attempts to parse the
output of the tasks as a JSON object.

The task runner can inject keys into that object, prefixed with _. If the task does not return a JSON object, the task
runner creates one and places the output in an _output key.

Structured input
For complex input, such as hashes and arrays, you can accept structured JSON in your task.

By default, the task runner passes task parameters as both environment variables and as a single JSON object on stdin.
The JSON input allows the task to accept complex data structures.

To accept parameters as JSON on stdin, set the params key to accept JSON on stdin.

#!/opt/puppetlabs/puppet/bin/ruby
require 'json'

params = JSON.parse(STDIN.read)

exitcode = 0
params['files'].each do |filename|
 begin
 FileUtils.touch(filename)
 puts "updated file #{filename}"
 rescue
 exitcode = 1
 puts "couldn't update file #{filename}"
 end
end
exit exitcode

If your task accepts input on stdin it should specify "input_method": "stdin" in its metadata.json
file, or it might not work with sudo for some users.

Returning structured output
To return structured data from your task, print only a single JSON object to stdout in your task.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 654

Structured output is useful if you want to use the output in another program, or if you want to use the result of the task
in a Puppet task plan.

#!/usr/bin/env python
import json
import sys
minor = sys.version_info
result = { "major": sys.version_info.major, "minor":
 sys.version_info.minor }
json.dump(result, sys.stdout)

Returning sensitive data
To return secrets from a task, use the _sensitive key in the output.

Here is an example of using the _sensitive key:

#!/opt/puppetlabs/puppet/bin/ruby

require 'json'

user_name = 'someone'
Generate a 10 letter password
user_password = [*'a'..'z'].sample(10).join

result = { user: user_name, _sensitive: { password: user_password } }

puts result.to_json

When using the _sensitive key, PE treats the result as sensitive. The orchestrator redacts the value of the
_sensitive key before storing it in the database.

Note: Redaction is a temporary solution for hiding the value of the _sensitive key. In a future release, PE will
begin storing the value in an encrypted format in the database.

For a redaction example, given this output:

{“user”: ”foo_user”, “_sensitive”: {“password”: “foo_password”}}

The orchestrator stores it in the database as follows:

{“user”: ”foo_user”, “_sensitive”: “Sensitive [value redacted]”}

The redacted value of the _sensitive key still appears in the following places:

• In the orchestrator API, in task run results.
• In the console, in task and plan run results.
• In logs that record the task output.

Note: The sensitive output is still written to the PXP agent spool directory and appears in the PXP agent logs for
levels equal to or higher than the debug level.

Converting scripts to tasks
To convert an existing script to a task, you can either write a task that wraps the script or you can add logic in your
script to check for parameters in environment variables.

If the script is already installed on the target nodes, you can write a task that wraps the script. In the task, read the
script arguments as task parameters and call the script, passing the parameters as the arguments.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 655

If the script isn't installed or you want to make it into a cohesive task so that you can manage its version with code
management tools, add code to your script to check for the environment variables, prefixed with PT_, and read them
instead of arguments.

CAUTION: For any tasks that you intend to use with PE and assign RBAC permissions, make sure the
script safely handles parameters or validate them to prevent shell injection vulnerabilities.

Given a script that accepts positional arguments on the command line:

version=$1
[-z "$version"] && echo "Must specify a version to deploy && exit 1

if [-z "$2"]; then
 filename=$2
else
 filename=~/myfile
fi

To convert the script into a task, replace this logic with task variables:

version=$PT_version #no need to validate if we use metadata
if [-z "$PT_filename"]; then
 filename=$PT_filename
else
 filename=~/myfile
fi

Wrapping an existing script
If a script is not already installed on targets and you don't want to edit it, for example if it's a script someone else
maintains, you can wrap the script in a small task without modifying it.

CAUTION: For any tasks that you intend to use with PE and assign RBAC permissions, make sure the
script safely handles parameters or validate them to prevent shell injection vulnerabilities.

Given a script, myscript.sh, that accepts 2 positional args, filename and version:

1. Copy the script to the module's files/ directory.
2. Create a metadata file for the task that includes the parameters and file dependency.

{ "input_method": "environment", "parameters": { "filename": { "type":
 "String[1]" }, "version": { "type": "String[1]" } }, "files":
 ["script_example/files/myscript.sh"] }

3. Create a small wrapper task that reads environment variables and calls the task.

#!/usr/bin/env bash set -e script_file="$PT__installdir/script_example/
files/myscript.sh" # If this task is going to be run from windows nodes
 the wrapper must make sure it's exectutable chmod +x $script_file
 commandline=("$script_file" "$PT_filename" "$PT_version") # If the
 stderr output of the script is important redirect it to stdout.
 "${commandline[@]}" 2>&1

Supporting no-op in tasks
Tasks support no-operation functionality, also known as no-op mode. This function shows what changes the task
would make, without actually making those changes.

No-op support allows a user to pass the --noop flag with a command to test whether the task will succeed on all
targets before making changes.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 656

To support no-op, your task must include code that looks for the _noop metaparameter. No-op is supported only in
Puppet Enterprise.

If the user passes the --noop flag with their command, this parameter is set to true, and your task must not make
changes. You must also set supports_noop to true in your task metadata or the task runner will refuse to run the
task in noop mode.

No-op metadata example

{
 "description": "Write content to a file.",
 "supports_noop": true,
 "parameters": {
 "filename": {
 "description": "the file to write to",
 "type": "String[1]"
 },
 "content": {
 "description": "The content to write",
 "type": "String"
 }
 }
}

No-op task example

#!/usr/bin/env python
import json
import os
import sys

params = json.load(sys.stdin)
filename = params['filename']
content = params['content']
noop = params.get('_noop', False)

exitcode = 0

def make_error(msg):
 error = {
 "_error": {
 "kind": "file_error",
 "msg": msg,
 "details": {},
 }
 }
 return error

try:
 if noop:
 path = os.path.abspath(os.path.join(filename, os.pardir))
 file_exists = os.access(filename, os.F_OK)
 file_writable = os.access(filename, os.W_OK)
 path_writable = os.access(path, os.W_OK)

 if path_writable == False:
 exitcode = 1
 result = make_error("Path %s is not writable" % path)
 elif file_exists == True and file_writable == False:
 exitcode = 1
 result = make_error("File %s is not writable" % filename)

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 657

 else:
 result = { "success": True , '_noop': True }
 else:
 with open(filename, 'w') as fh:
 fh.write(content)
 result = { "success": True }
except Exception as e:
 exitcode = 1
 result = make_error("Could not open file %s: %s" % (filename, str(e)))
print(json.dumps(result))
exit(exitcode)

Task metadata
Task metadata files describe task parameters, validate input, and control how the task runner executes the task.

Your task must have metadata to be published and shared on the Forge. Specify task metadata in a JSON file with the
naming convention <TASKNAME>.json . Place this file in the module's ./tasks folder along with your task file.

For example, the module puppetlabs-mysql includes the mysql::sql task with the metadata file,
sql.json.

{
 "description": "Allows you to execute arbitrary SQL",
 "input_method": "stdin",
 "parameters": {
 "database": {
 "description": "Database to connect to",
 "type": "Optional[String[1]]"
 },
 "user": {
 "description": "The user",
 "type": "Optional[String[1]]"
 },
 "password": {
 "description": "The password",
 "type": "Optional[String[1]]",
 "sensitive": true
 },
 "sql": {
 "description": "The SQL you want to execute",
 "type": "String[1]"
 }
 }
}

Adding parameters to metadata
To document and validate task parameters, add the parameters to the task metadata as JSON object, parameters.

If a task includes parameters in its metadata, the task runner rejects any parameters input to the task that aren't
defined in the metadata.

In the parameter object, give each parameter a description and specify its Puppet type. For a complete list of types,
see the types documentation.

For example, the following code in a metadata file describes a provider parameter:

"provider": {
 "description": "The provider to use to manage or inspect the service,
 defaults to the system service manager",
 "type": "Optional[String[1]]"
 }

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/lang_data.html#puppet-data-types

pe | Orchestrating Puppet runs, tasks, and plans | 658

Define default parameters

You can define default task parameters, which are supplied to a task run even if the user does not specify a value for
the parameter.

For example, the default location for this log_location parameter is /var/log/puppetlabs

"log_location": {
 "type": "String",
 "description": "The location the log will be stored in"
 "default": "/var/log/puppetlabs"
}

Note: Parameters with defaults are considered optional.

Define sensitive parameters

You can define task parameters as sensitive, for example, passwords and API keys. These values are masked when
they appear in logs and API responses. When you want to view these values, set the log file to level: debug.

To define a parameter as sensitive within the JSON metadata, add the "sensitive": true property.

{
 "description": "This task has a sensitive property denoted by its
 metadata",
 "input_method": "stdin",
 "parameters": {
 "user": {
 "description": "The user",
 "type": "String[1]"
 },
 "password": {
 "description": "The password",
 "type": "String[1]",
 "sensitive": true
 }
 }
}

 Task metadata reference
The following table shows task metadata keys, values, and default values.

Metadata key Description Value Default

description A description of what the
task does.

String None

input_method One or more input methods
to use to pass parameters to
the task.

environment, stdin,
or powershell

For .ps1 tasks, the default
value is powershell.

For other tasks, the default
is both environment
and stdin.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 659

Metadata key Description Value Default

parameters The parameters or input
types the task accepts,
which must be valid Puppet
types. You can provide an
optional description. Refer
to Task metadata types on
page 659 and Adding
parameters to metadata
on page 657 for more
information.

Array of objects describing
each parameter

None (equivalent to Any)

puppet_task_version The spec version used. Integer 1 (which is the only valid
value)

supports_noop Whether the task supports
no-op mode. Must be true
for the task to accept the
--noop option on the
command line.

Boolean false

implementations A list of task
implementations and the
requirements used to select
which one to run. Refer
to Cross-platform tasks
on page 645 for more
information.

Array of objects describing
each implementation

None

files A list of files to be
provided when running the
task, addressed by module.
Refer to Sharing task code
on page 647 for more
information.

Array of strings None

Task metadata types
Task metadata can accept most Puppet data types.

Restriction: Some Puppet types can not be represented as JSON, such as Hash[Integer, String], Object,
or Resource. Do not use these in tasks, because they can never be matched.

Type Description

String Accepts any string.

String[1] Accepts any non-empty string, which is a string at least
one character in length.

Enum[choice1, choice2] Accepts one of the listed choices.

Pattern[/\A\w+\Z/] Accepts strings matching the regex /\w+/ or non-empty
strings of word characters.

Integer Accepts integer values. JSON has no integer type, so this
can vary depending on input.

Optional[String[1]] This type designates the parameter as optional and
permits null values. Tasks have no required nullable
values.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 660

Type Description

Array[String] Matches an array of strings.

Hash Matches a JSON object.

Variant[Integer, Pattern[/\A\d+\Z/]] Matches an integer or a string of an integer

Boolean Accepts Boolean values.

Specifying parameters
Parameters for tasks can be passed to the bolt command as CLI arguments or as a JSON hash.

To pass parameters individually to your task or plan, specify the parameter value on the command line in the format
parameter=value. Pass multiple parameters as a space-separated list. Bolt attempts to parse each parameter value
as JSON and compares that to the parameter type specified by the task or plan. If the parsed value matches the type, it
is used; otherwise, the original string is used.

For example, to run the mysql::sql task to show tables from a database called mydatabase:

bolt task run mysql::sql database=mydatabase sql="SHOW TABLES" --nodes
 neptune --modules ~/modules

To pass a string value that is valid JSON to a parameter that would accept both quote the string. For example to pass
the string true to a parameter of type Variant[String, Boolean] use 'foo="true"'. To pass a String
value wrapped in " quote and escape it 'string="\"val\"'. Alternatively, you can specify parameters as a
single JSON object with the --params flag, passing either a JSON object or a path to a parameter file.

To specify parameters as JSON, use the parameters flag followed by the JSON: --params '{"name":
"openssl"}'

To set parameters in a file, specify parameters in JSON format in a file, such as params.json. For example, create
a params.json file that contains the following JSON:

{
 "name":"openssl"
}

Then specify the path to that file (starting with an at symbol, @) on the command line with the parameters flag: --
params @params.json

Plans in PE
Plans allow you to tie together tasks, scripts, commands, and other plans to create complex workflows with refined
access control. You can install modules that contain plans or write your own, then run them from the console or the
command line.

A plan is a bundle of tasks, commands, scripts, or other plans that can be combined with other logic. They allow you
to do complex operations, like running multiple tasks with one command or running certain tasks based on the output
of another task.

You can run plans using the tool of your choice: the console, the command line, or the orchestrator API POST /
command/plan_run on page 711 endpoint.

RBAC for plans and tasks do not intersect. This means that if a user does not have access to a specific task, but they
have access to run a plan containing that task, they are still able to run the plan. This allows you to implement more
customized access control to tasks by wrapping them within plans. See Defining plan permissions on page 670 for
information about RBAC considerations when writing plans or managing plan access.

Note:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 661

If you have set up compilers and you want to use plans, you must set either primary_uris or server_list on
your agents to point to your compilers.

If you are running multiple tasks or tasks within plans, make sure the task_concurrency and
bolt_server::concurrency limits can support the number of tasks you need to run simultaneously. To adjust
these settings, refer to Orchestrator and pe-orchestration-services parameters on page 238.

• Plans in PE versus Bolt plans on page 661
Some plan language functions, features, and behaviors are different in PE than they are in Bolt. If you are used to Bolt
plans, familiarize yourself with some of these key differences and limitations before you attempt to write or run plans
in PE.
• Installing plans on page 663
Plans are packaged in modules and deployed with Code Manager. PE includes some pre-installed plans. You can also
download modules that contain plans from the Forge and write custom plans.
• Running plans in PE on page 664
The orchestrator can run plans across systems in your infrastructure. You can set up plan jobs from the Puppet
Enterprise (PE) console or the command line. Plan jobs can run once or on a recurring schedule.
• Writing plans on page 669
Plans allow you to run more than one task with a single command, compute values for the input to a task, and run
other complex workflows at the same time. They also allow you greater flexibility for creating custom RBAC
limitations by wrapping tasks and other workflows within plans.

Plans in PE versus Bolt plans
Some plan language functions, features, and behaviors are different in PE than they are in Bolt. If you are used to Bolt
plans, familiarize yourself with some of these key differences and limitations before you attempt to write or run plans
in PE.

Unavailable plan language functions

The following Bolt plan functions don't work in PE because they haven’t been implemented yet or cause issues during
plan runs:

• add_to_group

• background

• dir::children

• download_file

• file::exists

• file::readable

• file::write

• get_resources

• out::verbose

• parallelize

• prompt

• prompt::menu

• remove_from_group

• resolve_references

• resource

• run_task_with

• set_config

• set_feature

• set_resources

• set_var

• system::env

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 662

• wait

• write_file

Apply blocks

The apply feature, including apply_prep, only works for targets using the PXP agent and the PCP transport. It
fails on remote devices and on targets connected via SSH or WinRM.

Target groups

Support for target groups is unavailable in PE. Using add_to_group causes a plan to fail and referencing a group
name in get_targets doesn't return any nodes. When using get_targets you must reference either node
certnames or supply a PuppetDB query. Here is an example of a plan using get_targets with node certnames:

plan example::get_targets_example () {
 $nodes = get_targets([‘node1.example.com’, ‘node2.example.com’])
 run_command(‘whoami’, $nodes)
}

Target behaviors

PE assumes all target references can be matched to one of the following:

• A connected agent with a certname
• An entry in the PE inventory service

Therefore, target names must match either a certname or an entry in the PE inventory service.

New targets can't be added to the inventory service inside a plan. New target objects created in plans can't connect
because PE can't recognize them.

Targets return an empty hash when asked about connection information.

Target configuration

While you can set up node transport configuration through the PE inventory for nodes to use SSH or WinRM, you
can't change the configuration settings for targets from within a plan. Using the set_config function in a plan
causes the plan to fail and referencing a target object’s configuration hash always returns an empty hash.

The use of URIs in a target name to override the transport is also not supported. All references to targets (i.e. when
using get_targets) must be either PuppetDB queries or valid certnames that are already in the PE inventory.

Here is an example of a plan that uses get_targets correctly:

plan example::get_targets_example () {
 ## NOTE! If you used ssh://node1.example.com as the first entry, this plan
 would fail!
 $nodes = get_targets([‘node1.example.com’, ‘node2.example.com’])
 run_command(‘whoami’, $nodes)
}

The localhost target

The special target localhost is not available for plans in PE. Using localhost anywhere in a plan results in a
plan failure. If you need to run a plan on the primary server host, use the primary server's certname to reference it.

For example, you can use the following plan for the primary server host my-primary-server.company.com:

plan example::referencing_the_primary_server(){
 # Note that if you tried to use `localhost` instead of `my-primary-server`
 this plan would fail!

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 663

 run_command(‘whoami’, ‘my-primary-server.company.com’)
}

The _run_as parameter

Plans in PE do not support the _run_as parameter for changing the user that accesses hosts or executes actions. If
this parameter is supplied to any plan function, the plan runs but the user doesn't change.

For example, the following plan is valid, but can't run as other_user:

plan example::run_as_example (TargetSpec $nodes) {
 run_command(‘whoami’, $nodes, _run_as => ‘other_user’)
}

Script and file sources

When using run_script or file::read, the source location for the files must be from a module that uses a
modulename/filename selector for a file or directory in $MODULEROOT/files. PE does not support file
sources that reference absolute paths.

The following two code examples show a module structure and a plan that correctly use the modulename/
filename selector:

example/
files
 ###my_script.sh
plans
 ###run_script_example.pp

plan example::run_script_example (TargetSpec $nodes) {
 run_script(‘example/my_script.sh’, $nodes)
}

Code deployment for plans

Using plans in PE requires Managing code with Code Manager on page 790. You must enable Code Manager to
deploy code to your primary server.

Primary servers deploy a second codedir from which plans load code. This secondary code location on your
primary server impacts standard module functionality:

• You can't use the puppet module install command to install modules for plans, because the puppet
module tool can't install to the plan codedir. However, the puppet module install command works as
usual for non-plan Puppet code executed and compiled from Puppet Server.

• A $modulepath configuration that uses fully qualified paths might not work for plans if they reference the
standard /etc/puppetlabs/code location. It is more reliable to use relative paths in $modulepath.

Installing plans
Plans are packaged in modules and deployed with Code Manager. PE includes some pre-installed plans. You can also
download modules that contain plans from the Forge and write custom plans.

Important: Built-in plans can work without Code Manager; however, you must use Code Manager to install custom
plans and plans from the Forge.

To install a new module containing a plan:

1. Find the module you want on the Forge.
2. Under Start using this module, select r10k or Code Manager as the Installation method.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 664

3. Using Code Manager, follow the instructions. You must use Code Manager.

In the Forge, modules containing plans have a Plans section in the README.

You can also learn how to write plans in Puppet language and check out some example plans.

Running plans in PE
The orchestrator can run plans across systems in your infrastructure. You can set up plan jobs from the Puppet
Enterprise (PE) console or the command line. Plan jobs can run once or on a recurring schedule.

Plans can't change your Puppet configuration, which defines the desired state of your infrastructure. If you run a
plan that changes the state of a resource managed by Puppet (for example, upgrading a package or service), the next
Puppet run changes that resource's state back to what is defined in your Puppet configuration.

If you have set up compilers and you want to use plans, you must set either primary_uris or server_list
on your agents to point to your compilers. This setting is described in the section on configuring compilers for
orchestrator scale.

Important:

Plans in PE require Managing code with Code Manager on page 790.

Unlike Tasks in PE on page 627, you cannot stop a plan that is in progress.

• Running plans from the console on page 664
Run ad hoc plans from the console.
• Running plans from the command line on page 665
Run a plan using the puppet plan run command.
• Inspecting plans on page 666
You can inspect plan metadata, outcomes of plan events, a list of all installed plans, and a list of plans you have
permission to run.
• Running plans alongside code deployments on page 667
The orchestrator's file sync client has a built-in locking mechanism that ensures your plans run in a consistent
environment state. The locking mechanism prevents plans from starting while a code deployment is in progress, and it
prevents new code deployments from synchronizing while a plan is running. You can disable this locking mechanism
if you want to run plans and deploy code simultaneously. Consider the tradeoffs before deciding whether to disable
the file sync locking mechanism.
• Running plans with pe-plan-runner on page 668
The pe-plan-runner service improves scalability and performance compared to the existing Puppet orchestrator
service. Disabled by default, the pe-plan-runner service runs on the primary server, allowing concurrent
execution of up to 100 plans, with potential for further scaling based on available primary server memory.

Running plans from the console
Run ad hoc plans from the console.

Before you begin

Install the tasks you want to use.

Make sure you have permissions necessary to run tasks.

When you set up a plan run from the console, the orchestrator creates an ID to track the plan run, shows the nodes
included in the plan, and runs the plan on those nodes in the appropriate order. Puppet compiles a new catalog for
each node included in the plan run.

1. In the console, in the Orchestration section, select Plans and then click Run a plan.

2. Under Code environment, select the environment where you installed the module containing the plan you want to
run. For example, production.

3. Optional: Under Job description, provide a description. This text appears on the Plans page.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/writing_plans_in_puppet_language_pe.html#writing_plans_in_puppet_language_pe
https://puppet.com/docs/pe/latest/writing_plans_in_puppet_language_pe.html#example_plans_pe

pe | Orchestrating Puppet runs, tasks, and plans | 665

4. Optional: If you want to limit how long the plan can run before being automatically cancelled, select Yes for
Timeout and select the duration and unit (such as thirty minutes).

5. Under Plan, select the plan you want to run.

6. Under Plan parameters, add optional parameters, then enter values for the optional and required parameters on
the list. Click Add parameter for each optional parameter-value pair you add to the plan.

To view information about required and optional parameters for the plan, select view plan metadata below the
Plan field.

Express values as strings, arrays, objects, integers, or booleans (true or false). You must express empty strings as
two double quotes with no space (""). Structured values, like an array, must be valid JSON.

Plans with default values run using the default unless you specify another value.

7. Under Schedule, select Later and choose a start date, time, time zone, and frequency for the job to run.

8. Select Run job.

Your plan status and output appear on the Plans page.

If you need to stop an in-progress plan, click Stop Plan on the plan's run details page in the console or use the POST /
command/stop_plan on page 702 endpoint. This prevents new events from starting and allows in-progress events
to finish. If you need to force stop an in-progress task from a stopped plan, refer to Stop a task in progress on page
641.

Edit a scheduled plan
You can view and edit a scheduled plan if, for example, you want to specify a timeout or modify parameters.

If you want to edit a scheduled plan created by another user, you must have the appropriate role-based permissions to
do so.

1. In the console, go to Plans and switch to the Scheduled Plans tab.

2. In the list of scheduled plans, locate the plan you want to edit and click the view icon.

3. Click Actions > Edit in the upper-right corner.

4. Make your required changes and click Save changes.

Delete a scheduled plan

If you want to delete a scheduled plan created by another user, you must have the appropriate role-based permissions
to do so.

1. In the console, go to Plans and switch to the Scheduled Plans tab.

2. In the list of scheduled plans, locate the plan you want to edit and click the trashcan icon.

3. Confirm that you want to remove the scheduled plan job.

Running plans from the command line
Run a plan using the puppet plan run command.

On the command line, run the command puppet plan run with the following information included:

• The full name of the plan, formatted as <MODULE>::<PLAN>.
• Any plan parameters.

Note: To find out what parameters can be included in a plan, view the plan metadata by running the command
puppet plan show <PLAN NAME> on the command line. For more information, see Inspecting plans on
page 666

• Credentials, if required, formatted with the --user and --password flags.

For example, if a plan defined in mymodule/plans/myplan.pp accepts a load_balancer parameter, run:

puppet plan run mymodule::myplan load_balancer=lb.myorg.com

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 666

You can pass a comma-separated list of node names, wildcard patterns, or group IDs to a plan parameter that is
passed to a run function or that the plan resolves using get_targets.

If you need to stop an in-progress plan, click Stop Plan on the plan's run details page in the console or use the POST /
command/stop_plan on page 702 endpoint. This prevents new events from starting and allows in-progress events
to finish. If you need to force stop an in-progress task from a stopped plan, refer to Stop a task in progress on page
641.

Related information
GET /v1/groups on page 528
Retrieves a list of all node groups in the node classifier.

Plan command options
The following are common options you can use with the plan action. For a complete list of global options run
puppet plan --help.

Option Definition

--params A string value used to specify either a JSON object
that includes the parameters or the path to a JSON file
containing the parameters, prefaced with @. For example,
@/path/to/file.json. Do not use this flag if
specifying inline parameter-value pairs.

--environment or -e The name of the environment where the plan is installed.

--description A flag used to provide a description for the job to be
shown on the job list and job details pages and returned
with the puppet job show command. It defaults to
empty.

You can pass parameters into the plan one of two ways:

• Inline, using the <PARAMETER>=<VALUE> syntax.
• With the --params option, as a JSON object or reference to a JSON file.

For example, review this plan:

plan example::test_params(Targetspec $nodes, String $command){
 run_command($command, $nodes)
}

You can pass parameters using either option below:

•
puppet plan run example::test_params nodes=my-node.company.com
 command=whoami

•
puppet plan run example::test_params --params ‘{“nodes”:”my-
node.company.com”, “command”:”whoami”}’

You can't combine these two ways of passing in parameters. Choose either inline or --params.

If you use the inline way, parameter types other than string, integer, double, and Boolean will be interpreted as
strings. Use the --params method if you want them read as their original type.

Inspecting plans
You can inspect plan metadata, outcomes of plan events, a list of all installed plans, and a list of plans you have
permission to run.

To view plan metadata in the PE console, choose the relevant plan in the Plan field and click the View plan
metadata link.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 667

You can view the plans that you have installed or plans that you have permissions. To do this, log into your primary
server or client tools workstation and run one of the following commands to see information about your plan
inventory:

Command Definition

puppet plan show View a list of your permitted plans.

puppet plan show --all View a list of all installed plans.

puppet plan show <PLAN NAME> View plan metadata. The output includes the plan's
required command format and available parameters.

For example, this plan allows a $nodes parameter and a $version parameter, specified as data types
TargetSpec and Integer.

plan infra::upgrade_apache (
 TargetSpec $nodes,
 Integer $version,
){
run_task(‘package’, $nodes, name => ‘apache’, action => ‘upgrade’, version
 => $version)
}

To get information about specific plan events, try the Plan jobs endpoints on page 752.

Running plans alongside code deployments
The orchestrator's file sync client has a built-in locking mechanism that ensures your plans run in a consistent
environment state. The locking mechanism prevents plans from starting while a code deployment is in progress, and it
prevents new code deployments from synchronizing while a plan is running. You can disable this locking mechanism
if you want to run plans and deploy code simultaneously. Consider the tradeoffs before deciding whether to disable
the file sync locking mechanism.

Before you begin
Plans in Puppet Enterprise (PE) require Managing code with Code Manager on page 790.

You might want to disable the file sync locking mechanism if:

• You want to allow code deployments to complete while plans are running.
• You want to allow plans to start while code deployments are in progress.
• Your code deployments don't frequently or substantially change the environment state that plans run in.
• You aren't concerned if the environment state changes (due to a concurrent code deployment) during a plan run.

CAUTION:

When you disable the file sync locking mechanism, the environment states your plans run in might be
inconsistent or change while the plans are starting, running, or finishing. This depends on when your code
deployments happen and whether they happen while a plan is running. Puppet functions and plans that call
other plans might behave unexpectedly if a code deployment occurs while a plan is running.

If it is important to you that your plans always run in a consistent environment state, you probably don't want
to disable the file sync locking mechanism.

1. In the PE console, go to Node groups > PE Infrastructure > PE Orchestrator.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 668

2. On the Classes tab, locate (or add) the puppet_enterprise::profile::plan_executor class, and set
the versioned_deploys parameter to true. The full declaration is:

puppet_enterprise::profile::plan_executor::versioned_deploys: true

Important: Setting this parameter to true disables the file sync client's locking mechanism that usually
enforces a consistent environment state for your plans. The locking mechanism prevents plans from starting while
a code deployment occurs and forces code deployments to wait while a plan is in progress.

Tasks, scripts, and apply block compilations always use the latest synced version of your code, regardless of this
setting. However, after you set versioned_deploys to true, Puppet functions and plans that call other plans
also use the latest synced version of your code, instead of the version of the code that was present when the plan
started. Due to the possibility for the code to change during the plan run, Puppet functions and plans that call other
plans might behave unexpectedly if a code deployment occurs while a plan is running.

If you want to enforce a consistent environment state for plans, set versioned_deploys to false. If Code
deployments time out on page 825 while waiting for long-running plans to finish, adjust the timeouts_sync
setting in your Code Manager parameters on page 809.

3. Commit your changes.

4. The orchestrator server doesn't automatically restart after setting this parameter, so you must restart the pe-
orchestration-services service to finish applying the change. To do this, run the following command on
the primary server:

service pe-orchestration-services reload

Plans and code deployments now start and finish without blocking each other.
Related information
Declare classes on page 457
Classes are blocks of Puppet code that configure nodes and assign resources to nodes.

Lockless code deploys on page 801
The lockless code deploys feature within Code Manager allows deployment of Puppet code without interrupting other
Puppet operations. When this feature is disabled, requests to Puppet Server are blocked during code deployments
until the file sync client has finished updating the live Puppet code directory, However, when lockless code deploys
are enabled, the file sync client saves newly deployed code into versioned directories, ensuring that the live code
directory is not overwritten. This process allows Puppet operations to continue without interruption during code
deployments.

Running plans with pe-plan-runner
The pe-plan-runner service improves scalability and performance compared to the existing Puppet orchestrator
service. Disabled by default, the pe-plan-runner service runs on the primary server, allowing concurrent
execution of up to 100 plans, with potential for further scaling based on available primary server memory.

With pe-plan-runner enabled, you can continue to schedule and run plans using existing PE console workflows
or orchestrator APIs, and any previously scheduled plans are automatically executed by pe-plan-runner.

To start running plans with pe-plan-runner instead of the orchestrator service:

1. Click Node groups > PE Infrastructure > PE Orchestrator.
2. Select the Classes tab and locate the puppet_enterprise::profile::orchestrator class.
3. From the Parameter name dropdown, select plan_runner_active and enter true as the value.
4. Click Add to node group and commit your changes.

Tip: After enabling pe-plan-runner, monitor memory usage on the primary server, as poorly optimized plans
may adversely affect performance.

Important: When pe-plan-runner is active:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 669

• Plans run from a Ruby process directly on the primary server (i.e. not in the JVM or inside Puppet orchestrator).
This is the pe-plan-runner service.

• When an individual plan starts, the Ruby process controlling plans perform a fork() to isolate that plan’s
runtime environment.

• When a plan runs an action on targets, such as a task, it makes a request to the orchestrator, which spawns
execution of that action on each target’s agent. The results of every single target are returned to the plan’s Ruby
process and the plan loads the full result for each target into memory all at the same time. The results stay in
memory for the lifetime of the plan.

• Once the plan finishes, the Ruby process joins the plan’s individual fork() and Ruby cleans up all the objects
from the plan run, including all the target action results stored in memory.

Writing plans
Plans allow you to run more than one task with a single command, compute values for the input to a task, and run
other complex workflows at the same time. They also allow you greater flexibility for creating custom RBAC
limitations by wrapping tasks and other workflows within plans.

• Writing plans in Puppet language on page 669
Writing plans in the Puppet language gives you better error handling and more sophisticated control than YAML
plans. Plans written in the Puppet language also allow you to apply blocks of Puppet code to remote targets.
• Writing plans in YAML on page 682
YAML plans run a list of steps in order, which allows you to define simple workflows. Steps can contain embedded
Puppet code expressions to add logic where necessary.

Writing plans in Puppet language
Writing plans in the Puppet language gives you better error handling and more sophisticated control than YAML
plans. Plans written in the Puppet language also allow you to apply blocks of Puppet code to remote targets.
Naming plans
Name plans according to the module name, file name, and path to ensure code readability.

Place plan files in your module's ./plans directory, using these file extensions:

• Puppet plans — .pp
• YAML plans — .yaml, not .yml

Plan names are composed of two or more name segments, indicating:

• The name of the module the plan is located in.
• The name of the plan file, without the extension.
• If the plan is in a subdirectory of ./plans, the path within the module.

For example, given a module called mymodule with a plan defined in ./mymodule/plans/myplan.pp, the
plan name is mymodule::myplan.

A plan defined in ./mymodule/plans/service/myplan.pp would be mymodule::service::myplan.
Use teh plan name to refer to the plan when you run commands.

The plan filename init is special because the plan it defines is referenced using the module name only. For
example, in a module called mymodule, the plan defined in init.pp is the mymodule plan.

Avoid giving plans the same names as constructs in the Puppet language. Although plans don't share their namespace
with other language constructs, giving plans these names makes your code difficult to read.

Each plan name segment:

• Must begin with a lowercase letter.
• Can include lowercase letters, digits, or underscores.
• Must not be a reserved word.
• Must not have the same name as any Puppet data types.
• Namespace segments must match the regular expression \A[a-z][a-z0-9_]*\Z

© 2024 Puppet, Inc., a Perforce company

https://docs.puppet.com/puppet/5.3/lang_reserved.html
https://puppet.com/docs/puppet/latest/lang_data.html#puppet's-data-types

pe | Orchestrating Puppet runs, tasks, and plans | 670

Defining plan permissions
RBAC for plans is distinct from RBAC for individual tasks. This distinction means that a user can be excluded from
running a certain task, but still have permission to run a plan that contains that task.

The RBAC structure for plans allows you to write plans with more robust, custom control over task permissions.
Instead of allowing a user free rein to run a task that can potentially damage your infrastructure, you can wrap a task
in a plan and only allow them to run it under circumstances you control.

For example, if you are configuring permissions for a new user to run plan infra::upgrade_git, you can
allow them to run the package task but limit it to the git package only.

plan infra::upgrade_git (
 TargetSpec $targets,
 Integer $version,
) {
 run_task(‘package’, $targets, name => ’git’, action => ‘upgrade’, version
 => $version)
}

Use parameter types to fine-tune access

Parameter types provide another layer of control over user permissions. In the upgrade_git example above, the
plan only provides access to the git package, but the user can choose whatever version of git they want. If there
are known vulnerabilities in some versions of the git package, you can use parameter types like Enum to restrict the
version parameter to versions that are safe enough for deployment.

For example, the Enum restricts the $version parameter to versions 1:2.17.0-1ubuntu1 and 1:2.17.1-1ubuntu0.4
only.

plan infra::upgrade_git (
 TargetSpec $targets,
 Enum['1:2.17.0-1ubuntu1', '1:2.17.1-1ubuntu0.4'] $version,
) {
 run_task(‘package’, $targets, name => ‘git’, action => ‘upgrade’, version
 => $version)
}

You can also use PuppetDB queries to select parameter types.

For example, if you need to restrict the targets that infra::upgrade_git can run on, use a PuppetDB query to
identify which targets are selected for the git upgrade.

plan infra::upgrade_git (
 Enum['1:2.17.0-1ubuntu1', '1:2.17.1-1ubuntu0.4'] $version,
) {
 # Use puppetdb to find the nodes from the “other” team's web cluster
 $query = [from, nodes, ['=', [fact, cluster], "other_team"]]
 $selected_nodes = puppetdb_query($query).map() |$target| {
 $target[certname]
 }
 run_task(‘package’, $selected_nodes, name => ‘git’, action => ‘upgrade’,
 version => $version)
}

Specifying plan parameters
Specify plan parameters to do things like determine which targets to run different parts of your plan on. You can pass
a parameter as a single target name, comma-separated list of target names, Target data type, or array. The target
names can be either certnames or inventory node names.

The example plan below shows the target parameters $load_balancers and $webservers specified as data
type TargetSpec. The plan then calls the run_task function to specify which targets to run the tasks on. The

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 671

Target names are collected and stored in $webserver_names by iterating over the list of Target objects
returned by get_targets. Task parameters are serialized to JSON format so that extracting the names into an
array of strings ensures that the webservers parameter is in a format that can be converted to JSON.

plan mymodule::my_plan(
 TargetSpec $load_balancer,
 TargetSpec $webservers,
) {

 # Extract the Target name from $webservers
 $webserver_names = get_targets($webservers).map |$n| { $n.name }

 # process webservers
 run_task('mymodule::lb_remove', $load_balancer, webservers =>
 $webserver_names)
 run_task('mymodule::update_frontend_app', $webservers, version => '1.2.3')
 run_task('mymodule::lb_add', $load_balancer, webservers =>
 $webserver_names)
 }

To execute this plan from the command line, pass the parameters as parameter=value. The Targetspec
accepts either an array as JSON or a comma separated string of target names.

puppet plan run mymodule::myplan
load_balancer=lb.myorg.com
webservers='["kermit.myorg.com","gonzo.myorg.com"]'

Alternatively, here is an example of the same plan, run on the same targets, using the Orchestrator API POST /
command/plan_run on page 711 endpoint:

curl -k -X POST -H "Content-Type: application/json" \
-H "X-Authentication:$TOKEN" \
-d '{ "environment": "$ENV", "plan_name": "mymodule::myplan", \
"params": {"targets": "$TARGET_NAME", "load_balancer": "lb.myorg.com", \
"webservers": ["kermit.myorg.com", "gonzo.myorg.com"]} }' \
"https://$PRIMARY_HOST:8143/orchestrator/v1/command/plan_run"

Parameters that are passed to the run_* plan functions are serialized to JSON. For example, in the plan below,
the default value of $example_nul is undef. The plan calls the test::demo_undef_bash with the
example_nul parameter.

plan test::parameter_passing (
 TargetSpec $targets,
 Optional[String[1]] $example_nul = undef,
) {
 return run_task('test::demo_undef_bash', $targets, example_nul =>
 $example_nul)
 }

The implementation of the demo_undef_bash.sh task is:

#!/bin/bash
example_env=$PT_example_nul
echo "Environment: $PT_example_nul"
echo "Stdin:"
 cat -

By default, the task expects parameters passed as a JSON string on stdin to be accessible in prefixed environment
variables.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 672

Additionally, you can use the Orchestrator API POST /command/plan_run on page 711 endpoint with token
authentication, such as:

curl -k -X POST -H "Content-Type: application/json" -H
"X-Authentication:$TOKEN" -d '{ "environment": "$ENV",
"plan_name": "test::parameter_passing", "params": {"targets":
"$TARGET_NAME"} }'
"https://$PRIMARY_HOST:8143/orchestrator/v1/command/plan_run"

Using Hiera data in plans
Use the lookup() function in plans to look up Hiera data. You can look up data inside or outside of apply blocks,
or use the plan_hierarchy key to look up data both inside and outside apply blocks within the same plan.

Inside apply blocks, PE compiles catalogs for each target and has unlimited access to your Hiera data. You can use
the same Hiera configuration, data, and lookup process as you do throughout PE.

Outside apply blocks, the plan executes a script, doesn't have a concept of a target or context, and cannot load per-
target data. These limitations make some common Hiera features, like interpolating target facts, incompatible with
plans in PE outside of apply blocks.

You can look up static Hiera data outside of apply blocks by adding a plan_hierarchy key to your Hiera
configuration at the same level as the hierarchy key. This allows you to look up data inside and outside apply blocks
in the same plan, enabling you to use your existing Hiera configuration in plans without encountering an error if per-
target interpolations exist and your plan tries to look up data outside an apply block.

Static Hiera data is also useful for user-specific data that you want the plan to look up.

For example, consider the Hiera configuration below at <ENV_DIR>/hiera.yaml.

version: 5
hierarchy:
 - name: "Target specific data"
 path: "targets/%{trusted.certname}.yaml"
 - name: "Per-OS defaults"
 path: "os/%{facts.os.family}.yaml"
 - name: Common
 path: hierarchy.yaml

plan_hierarchy:
 - name: Common
 path: plan_hierarchy.yaml

You can set a user-specific API key in the plan_hierarchy.yaml data file, as well as use Hiera to look up a per-
target filepath inside an apply block by using the following pieces of data:

Use the following data located at <ENV_DIR>/data/plan_hierarchy.yaml:

api_key: 12345

Use this data located at <ENV_DIR>/data/targets/myhost.com:

confpath: "C:\Program Files\Common Files\mytool.conf"

As a result, the plan looks up the API key in the first lookup() call, and the target-specific data inside the apply block:

plan plan_lookup(
 TargetSpec $targets
) {
 $outside_apply = lookup('api_key')
 run_task("make_request", $targets, 'api_key' => $outside_apply)
 $in_apply = apply($targets) {
 file { ${confpath}:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 673

 ensure => file,
 content => "setting: false"
 }
 }
}

Target objects
The Target object represents a target and its specific connection options.

The state of a target is stored in the code for the duration of a plan, allowing you to collect facts or set variables for
a target and retrieve them later. Target objects must reference a target in the PE inventory. This includes targets
connected via the PCP protocol that have puppet-agent installed, or targets in the PE inventory added with either
SSH or WinRM credentials or as network devices. Target objects in PE do not have control over their connection
information, and the connection info cannot be changed from within a plan.

Because target objects in PE are references, and cannot control their own configuration, accessing target connection
info will return empty data.

TargetSpec

The TargetSpec type is a wrapper for defining targets that allows you to pass a target, or multiple targets, into a
plan. Use TargetSpec for plans that accept a set of targets as a parameter to ensure clean interaction with the CLI
and other plans.

TargetSpec accepts strings allowed by --targets, a single target object, or an array of targets and target
patterns. To operate on an individual target, resolve the target to a list via get_targets.

For example, to loop over each target in a plan, accept a TargetSpec argument, but call get_targets on it
before looping.

plan loop(TargetSpec $targets) {
 get_targets($targets).each |$target| {
 run_task('my_task', $target)
 }
}

Set variables and facts on targets

You can use the $target.facts() and $target.vars() functions to set transport configuration values,
variables, and facts from a plan. Facts come from running facter or another fact collection application on the
target, or from a fact store like PuppetDB. Variables are computed externally or assigned directly.

For example, set variables in a plan using $target.set_var:

plan vars(String $host) {
 $target = get_targets($host)[0]
 $target.set_var('newly_provisioned', true)
 $targetvars = $target.vars
 run_command("echo 'Vars for ${host}: ${$targetvars}'", $host)
}

Or set variables in the inventory file using the vars key at the group level.

groups:
 - name: my_targets
 targets:
 - localhost
 vars:
 operatingsystem: windows
 config:
 transport: ssh

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 674

Collect facts from targets

The facts plan connects to targets,discovers facts, and stores these facts on the targets.

The plan uses these methods to collect facts:

• On ssh targets, it runs a Bash script.
• On winrm targets, it runs a PowerShell script.
• On pcp or targets where the Puppet agent is present, it runs Facter.

For example, use the facts plan to collect facts and then uses those facts to decide which task to run on the targets.

plan run_with_facts(TargetSpec $targets) {
 # This collects facts on targets and update the inventory
 run_plan(facts, targets => $targets)

 $centos_targets = get_targets($targets).filter |$n| { $n.facts['os']
['name'] == 'CentOS' }
 $ubuntu_targets = get_targets($targets).filter |$n| { $n.facts['os']
['name'] == 'Ubuntu' }
 run_task(centos_task, $centos_targets)
 run_task(ubuntu_task, $ubuntu_targets)
}

Collect facts from PuppetDB

You can use the puppetdb_fact plan to collect facts for targets when they are running a Puppet agent and sending
facts to PuppetDB.

For example, use the puppetdb_fact plan to collect facts, and then use those facts to decide which task to run on
the targets.

plan run_with_facts(TargetSpec $targets) {
 # This collects facts on targets and update the inventory
 run_plan(puppetdb_fact, targets => $targets)

 $centos_targets = get_targets($targets).filter |$n| { $n.facts['os']
['name'] == 'CentOS' }
 $ubuntu_targets = get_targets($targets).filter |$n| { $n.facts['os']
['name'] == 'Ubuntu' }
 run_task(centos_task, $centos_targets)
 run_task(ubuntu_task, $ubuntu_targets)
}

Collect general data from PuppetDB

You can use the puppetdb_query function in plans to make direct queries to PuppetDB.

For example, you can discover targets from PuppetDB and then run tasks on them. You must configure the PuppetDB
client before running it. See the PQL tutorial to learn how to structure pql queries and see the PQL reference guide for
query examples.

plan pdb_discover {
 $result = puppetdb_query("inventory[certname] { app_role ==
 'web_server' }")
 # extract the certnames into an array
 $names = $result.map |$r| { $r["certname"] }
 # wrap in url. You can skip this if the default transport is pcp
 $targets = $names.map |$n| { "pcp://${n}" }
 run_task('my_task', $targets)
}

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/latest/api/query/tutorial-pql.html
https://puppet.com/docs/puppetdb/latest/api/query/v4/pql.html

pe | Orchestrating Puppet runs, tasks, and plans | 675

Returning results from plans
Use the return function to return results that you can use in other plans or save for other uses.

Any plan that does not call the return function returns undef.

For example,

plan return_result(
 $targets
) {
 return run_task('mytask', $targets)
}

The result of a plan must match the PlanResult type alias. This includes JSON types as well as the plan language
types, which have well defined JSON.

• Undef

• String

• Numeric

• Boolean

• Target

• ApplyResult

• Result

• ResultSet

• Error

• Array with only PlanResult
• Hash with String keys and PlanResult values

or

Variant[Data, String, Numeric, Boolean, Error, Result, ResultSet, Target,
 Array[Boltlib::PlanResult], Hash[String, Boltlib::PlanResult]]

Plan errors and failure
Any plan that completes execution without an error is considered successful. There are some specific scenarios that
always cause a plan failure, such as calling the fail_plan function.

Plan failure due to absent catch_errors option

If you call some functions without the _catch_errors option and they fail on any target, the plan itself fails.
These functions include:

• upload_file

• run_command

• run_script

• run_task

• run_plan

If there is a plan failure due to an absent _catch_errors option when using run_plan, any calling plans also
halt until a run_plan call with _catch_errors or a catch_errors block is reached.

Failing a plan

If you are writing a plan and think it's failing, you can fail the plan with the fail_plan function. This
function fails the plan and prevents calling plans from executing any further, unless run_plan was called with
_catch_errors or in a catch_errors block.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 676

For example, use the fail_plan function to pass an existing error or create a new error with a message that
includes the kind, details, or issue code.

fail_plan('The plan is failing', 'mymodules/pear-shaped', {'failednodes' =>
 $result.error_set.names})
or
fail_plan($errorobject)

Catching errors in plans

When you use the catch_errors function, it executes a block of code and returns any errors, or returns the result
of the block if no errors are raised.

Here is an example of the catch_errors function.

plan test (String[1] $role) {
 $result_or_error = catch_errors(['pe/puppetdb-error']) || {
 puppetdb_query("inventory[certname] { app_role == ${role} }")
 }
 $targets = if $result_or_error =~ Error {
 # If the PuppetDB query fails
 warning("Could not fetch from puppet. Using defaults instead")
 # TargetSpec string
 "all"
 } else {
 $result_or_error
 }
}

If there is an error in a plan, it returns the Error data type, which includes:

• msg: The error message string.
• kind: A string that defines the kind of error similar to an error class.
• details: A hash with details about the error from a task or from information about the state of a plan when it

fails, for example, exit_code or stack_trace.
• issue_code: A unique code for the message that can be used for translation.

Use the Error data type in a case expression to match against different kinds of errors. To recover from certain
errors and fail on others, set up your plan to include conditionals based on errors that occur while your plan runs. For
example, you can set up a plan to retry a task when a timeout error occurs, but fail when there is an authentication
error.

The first plan below continues whether it succeeds or fails with a mymodule/not-serious error. Other errors
cause the plan to fail.

plan mymodule::handle_errors {
 $result = run_plan('mymodule::myplan', '_catch_errors' => true)
 case $result {
 Error['mymodule/not-serious'] : {
 notice("${result.message}")
 }
 Error : { fail_plan($result) } }
 run_plan('mymodule::plan2')
}

Puppet and Ruby functions in plans
You can package some common general logic in plans using Puppet language and Ruby functions; however, some
functions are not allowed. You can also call plan functions, such as run_task or run_plan, from within a
function.

These Puppet language constructs are not allowed in plans:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 677

• Defined types.
• Classes.
• Resource expressions, such as file { title: mode => '0777' }
• Resource default expressions, such as File { mode => '0666' }
• Resource overrides, such as File['/tmp/foo'] { mode => '0444' }
• Relationship operators: -> <- ~> <~
• Functions that operate on a catalog: include, require, contain, create_resources.
• Collector expressions, such as SomeType <| |>, SomeType <<| |>>
• ERB templates.

Additionally, there are some nuances of the Puppet language to keep in mind when writing plans:

• The --strict_variables option is on, so if you reference a variable that is not set, you get an error.
• The --strict=error option is on, so minor language issues generate errors. For example { a => 10, a

=> 20 } is an error because there is a duplicate key in the hash.
• Most Puppet settings are empty and not configurable when using plans in PE.
• Logs include "source location" (file, line) instead of resource type or name.

Handling plan function results
Each execution function, or a function you use to operate on one or more targets, returns a ResultSet. Each target
you executed on returns a Result. The apply action returns a ResultSet containing ApplyResult objects.

You can iterate on an instance of ResultSet as if it were an Array[Variant[Result, ApplyResult]].
This means iterative functions like each, map, reduce, or filter work directly on the ResultSet returning
each result.

A ResultSet may contain these functions:

Function Definition

names() Names all targets in the set as an Array.

empty() Returns Boolean if the execution result set is empty.

count() Returns an Integer count of targets.

first() Specifies the first Result object, useful to unwrap
single results.

find(String $target_name) Specifies the Result for a specific target.

error_set() Returns a ResultSet containing only the results of
failed targets.

ok_set() Returns a ResultSet containing only the successful
results.

filter_set(block) Filters a ResultSet with the given block and returns a
ResultSet object (where the filter function returns an
array or hash).

targets() Specifies an array of all the Target objects from every
Result in the set.

ok() Specifies a Boolean that is the same as
error_set.empty.

to_data() Returns an array of hashes representing either Result
or ApplyResults.

A Result may contain these functions:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/function.html#filter

pe | Orchestrating Puppet runs, tasks, and plans | 678

Function Definition

value() Specifies the hash containing the value of the Result.

target() Specifies the Target object that the Result is from.

error() Returns an Error object constructed from the _error
in the value.

message() Specifies the _output key from the value.

ok() Returns true if the Result was successful.

[] Accesses the value hash directly.

to_data() Returns a hash representation of Result.

action() Returns a string representation of result type (task,
command, etc.).

An ApplyResult may contain these functions.

Function Definition

report() Returns the hash containing the Puppet report from the
application.

target() Returns the Target object that the Result is from.

error() Returnsn Error object constructed from the _error in
the value.

ok() Returns true if the Result was successful.

to_data() Returns a hash representation of ApplyResult.

action() Returns a string representation of result type (apply).

For example, to check if a task ran correctly on all targets, and the check fails if the task fails:

$r = run_task('sometask', ..., '_catch_errors' => true)
unless $r.ok {
 fail("Running sometask failed on the targets ${r.error_set.names}")
}

You can do iteration and check if the result is an error. This example outputs feedback about the result of a task.

$r = run_task('sometask', ..., '_catch_errors' => true)
$r.each |$result| {
 $target = $result.target.name
 if $result.ok {
 out::message("${target} returned a value: ${result.value}")
 } else {
 out::message("${target} errored with a message:
 ${result.error.message}")
 }
}

Similarly, you can iterate over the array of hashes returned by calling to_data on a ResultSet and access hash
values. For example,

$r = run_command('whoami')
$r.to_data.each |$result_hash| { notice($result_hash['result']['stdout']) }

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 679

You can also use filter_set to filter a ResultSet and apply a ResultSet function such as targets to the
output:

$filtered = $result.filter_set |$r| {
 $r['tag'] == "you're it"
}.targets

Applying manifest blocks from a plan
You can apply manifest blocks, or chunks of Puppet code, to remote systems during plan execution using the apply
and apply_prep functions.

You can create manifest blocks that use existing content from the Forge, or use a plan to mix procedural orchestration
and action with declarative resource configuration from a block. Most features of the Puppet language are available in
a manifest block.

If your plan includes a manifest block, use the apply_prep function in your plan before your manifest block. The
apply_prep function syncs and caches plugins and gathers facts by running Facter, making the facts available to
the manifest block.

For example:

apply_prep($target)
apply($target) { notify { foo: } }

Note: You can use apply and apply_prep only on targets connected via PCP.

apply options

The apply function supports these options:

Option Default value Description

_catch_errors true Returns a ResultSet, including failed
results, rather than failing the plan.
Boolean.

_description none Adds a description to the apply
block. String.

_noop true Applies the manifest block in no-
operation mode, returning a report of
changes it would make but does not
take action. Boolean.

For example,

Preview installing docker as root on $targets.
apply($targets, _catch_errors => true, _noop => true) {
 include 'docker'
}

How manifest blocks are applied

When you apply a manifest code from a plan, the manifest code and any facts generated for each target are sent to
Puppet Server for compilation. During code compilation, variables are generated in the following order:

1. Facts gathered from the targets set in your inventory.
2. Local variables from the plan.
3. Variables set in your inventory.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/facter/latest/

pe | Orchestrating Puppet runs, tasks, and plans | 680

After a successful compilation, PE copies custom module content from the module path and applies the catalog to
each target. After the catalog is executed on each target, apply generates and returns a report about each target.

Return value

The apply function returns a ResultSet object that contains an ApplyResult object for each target.

For example:

$results = apply($targets) { ... }
$results.each |$result| {
 out::message($result.report)
}

Using Hiera data in a manifest block

Hiera is a key-value configuration data look up system, used for separating data from Puppet code. Use Hiera data to
implicitly override default class parameters. You can also explicitly look up data from Hiera via the lookup function.

Note: Plans in PE currently only support Hiera version 5.

For example:

plan do_thing() {
 apply('node1.example.com') {
 notice("Some data in Hiera: ${lookup('mydata')}")
 }
}

Plan logging
You can view plan run information in log files or printed to a terminal session using the out::message function or
built-in Puppet logging functions.

Outputting to the CLI or console

Use out::message to display output from plans. This function always prints message strings to STDOUT
regardless of the log level and doesn't log them to the log file. When using out::message in a plan, the messages
are visible on the Plan details page in the console.

Puppet log functions

In addition to out::message, you can use Puppet logging functions. Puppet logs messages to /var/log/
puppetlabs/orchestration-services/orchestration-services.log

When using Puppet logging, each command's usual logging level is downgraded by one level except for warn and
error.

For example, here are the Puppet logging commands with their actual level when used in plans.

```
  warning('logging text') - logs at warn level
  err('logging text') - logs at error level

  notice('logging text') - logs at info level
  info('logging text') - logs at debug level
  debug('logging text') - logs at trace level
```

The log level for orchestration-services.log is configured with normal levels. for more information about
log levels for Bolt, see Puppet log functions in Bolt.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt_types_reference.html#resultset
https://puppet.com/docs/bolt/latest/bolt_types_reference.html#applyresult
https://puppet.com/docs/bolt/latest/writing_plans.html#puppet-log-functions-in-bolt

pe | Orchestrating Puppet runs, tasks, and plans | 681

Default action logging

PE logs plan actions through the upload_file, run_command, run_script, or run_task functions. By
default, it logs an info level message when an action starts and another when it completes. You can pass a description
to the function to replace the generic log message.

run_task(my_task, $targets, "Better description", param1 => "val")

If your plan contains many small actions, you might want to suppress these messages and use explicit calls to the
Puppet log functions instead. To do this, wrap actions in a without_default_logging block, which logs action
messages at info level instead of notice.

For example, you can loop over a series of targets without logging each action.

plan deploy(TargetSpec $targets) {
 without_default_logging() || {
 get_targets($targets).each |$target| {
 run_task(deploy, $target)
 }
 }
}

To avoid complications with parser ambiguity, always call without_default_loggingwith () and empty
block args ||.

Correct example

without_default_logging() || { run_command('echo hi', $targets) }

Incorrect example

without_default_logging { run_command('echo hi', $targets) }

Example plans
Check out some example plans for inspiration when writing your own.

Resource Description Level

facts module Contains tasks and plans to discover
facts about target systems.

Getting started

facts plan Gathers facts using the facts task and
sets the facts in inventory.

Getting started

facts::info plan Uses the facts task to discover facts
and map relevant fact values to
targets.

Getting started

reboot module Contains tasks and plans for
managing system reboots.

Intermediate

reboot plan Restarts a target system and waits for
it to become available again.

Intermediate

Introducing Masterless Puppet with
Bolt

Blog post explaining how plans can
be used to deploy a load-balanced
web server.

Advanced

profiles::nginx_install plan Shows an example plan for deploying
Nginx.

Advanced

• Getting started resources show simple use cases such as running a task and manipulating the results.

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/puppetlabs/facts
https://github.com/puppetlabs/puppetlabs-facts/blob/master/plans/init.pp
https://github.com/puppetlabs/puppetlabs-facts/blob/master/plans/info.pp
https://forge.puppet.com/puppetlabs/reboot
https://github.com/puppetlabs/puppetlabs-reboot/blob/master/plans/init.pp
https://puppet.com/blog/introducing-masterless-puppet-bolt
https://puppet.com/blog/introducing-masterless-puppet-bolt
https://puppet.com/docs/bolt/latest/applying_manifest_blocks.html#create-a-sample-manifest-for-nginx-on-linux

pe | Orchestrating Puppet runs, tasks, and plans | 682

• Intermediate resources show more advanced features in the plan language.
• Advanced resources show more complex use cases such as applying puppet code blocks and using external

modules.

Writing plans in YAML
YAML plans run a list of steps in order, which allows you to define simple workflows. Steps can contain embedded
Puppet code expressions to add logic where necessary.

Note: YAML plans are an experimental feature and might experience breaking changes in future minor releases.

Naming plans
Name plans according to the module name, file name, and path to ensure code readability.

Place plan files in your module's ./plans directory, using these file extensions:

• Puppet plans — .pp
• YAML plans — .yaml, not .yml

Plan names are composed of two or more name segments, indicating:

• The name of the module the plan is located in.
• The name of the plan file, without the extension.
• If the plan is in a subdirectory of ./plans, the path within the module.

For example, given a module called mymodule with a plan defined in ./mymodule/plans/myplan.pp, the
plan name is mymodule::myplan.

A plan defined in ./mymodule/plans/service/myplan.pp would be mymodule::service::myplan.
Use teh plan name to refer to the plan when you run commands.

The plan filename init is special because the plan it defines is referenced using the module name only. For
example, in a module called mymodule, the plan defined in init.pp is the mymodule plan.

Avoid giving plans the same names as constructs in the Puppet language. Although plans don't share their namespace
with other language constructs, giving plans these names makes your code difficult to read.

Each plan name segment:

• Must begin with a lowercase letter.
• Can include lowercase letters, digits, or underscores.
• Must not be a reserved word.
• Must not have the same name as any Puppet data types.
• Namespace segments must match the regular expression \A[a-z][a-z0-9_]*\Z

Defining plan permissions
RBAC for plans is distinct from RBAC for individual tasks. This distinction means that a user can be excluded from
running a certain task, but still have permission to run a plan that contains that task.

The RBAC structure for plans allows you to write plans with more robust, custom control over task permissions.
Instead of allowing a user free rein to run a task that can potentially damage your infrastructure, you can wrap a task
in a plan and only allow them to run it under circumstances you control.

For example, if you are configuring permissions for a new user to run plan infra::upgrade_git, you can
allow them to run the package task but limit it to the git package only.

plan infra::upgrade_git (
 TargetSpec $targets,
 Integer $version,
) {
 run_task(‘package’, $targets, name => ’git’, action => ‘upgrade’, version
 => $version)
}

© 2024 Puppet, Inc., a Perforce company

https://docs.puppet.com/puppet/5.3/lang_reserved.html
https://puppet.com/docs/puppet/latest/lang_data.html#puppet's-data-types

pe | Orchestrating Puppet runs, tasks, and plans | 683

Use parameter types to fine-tune access

Parameter types provide another layer of control over user permissions. In the upgrade_git example above, the
plan only provides access to the git package, but the user can choose whatever version of git they want. If there
are known vulnerabilities in some versions of the git package, you can use parameter types like Enum to restrict the
version parameter to versions that are safe enough for deployment.

For example, the Enum restricts the $version parameter to versions 1:2.17.0-1ubuntu1 and 1:2.17.1-1ubuntu0.4
only.

plan infra::upgrade_git (
 TargetSpec $targets,
 Enum['1:2.17.0-1ubuntu1', '1:2.17.1-1ubuntu0.4'] $version,
) {
 run_task(‘package’, $targets, name => ‘git’, action => ‘upgrade’, version
 => $version)
}

You can also use PuppetDB queries to select parameter types.

For example, if you need to restrict the targets that infra::upgrade_git can run on, use a PuppetDB query to
identify which targets are selected for the git upgrade.

plan infra::upgrade_git (
 Enum['1:2.17.0-1ubuntu1', '1:2.17.1-1ubuntu0.4'] $version,
) {
 # Use puppetdb to find the nodes from the “other” team's web cluster
 $query = [from, nodes, ['=', [fact, cluster], "other_team"]]
 $selected_nodes = puppetdb_query($query).map() |$target| {
 $target[certname]
 }
 run_task(‘package’, $selected_nodes, name => ‘git’, action => ‘upgrade’,
 version => $version)
}

Plan structure
YAML plans contain a list of steps with optional parameters and results.

YAML maps accept these keys:

• steps: The list of steps to perform
• parameters: (Optional) The parameters accepted by the plan
• return: (Optional) The value to return from the plan

Steps key
The steps key is an array of step objects, each of which corresponds to a specific action to take.

When the plan runs, each step is executed in order. If a step fails, the plan halts execution and raises an error
containing the result of the step that failed.

Steps use these fields:

• name: A unique name that can be used to refer to the result of the step later
• description: (Optional) An explanation of what the step is doing

Other available keys depend on the type of step.

Command step

Use a command step to run a single command on a list of targets and save the results, containing stdout, stderr, and
exit code.

The step fails if the exit code of any command is non-zero.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 684

Command steps use these fields:

• command: The command to run
• target: A target or list of targets to run the command on

For example:

steps:
 - command: hostname -f
 target:
 - web1.example.com
 - web2.example.com
 - web3.example.com
 description: "Get the webserver hostnames"

Task step

Use a task step to run a Bolt task on a list of targets and save the results.

Task steps use these fields:

• task: The task to run
• target: A target or list of targets to run the task on
• parameters: (Optional) A map of parameter values to pass to the task

For example:

steps:
 - task: package
 target:
 - web1.example.com
 - web2.example.com
 - web3.example.com
 description: "Check the version of the openssl package on the
 webservers"
 parameters:
 action: status
 name: openssl

Script step
Use a script step to run a script on a list of targets and save the results.

The script must be in the files/ directory of a module. The name of the script must be specified as
<modulename>/path/to/script, omitting the files directory from the path.

Script steps use these fields:

• script: The script to run
• target: A target or list of targets to run the script on
• arguments: (Optional) An array of command-line arguments to pass to the script

For example:

steps:
 - script: mymodule/check_server.sh
 target:
 - web1.example.com
 - web2.example.com
 - web3.example.com
 description: "Run mymodule/files/check_server.sh on the webservers"
 arguments:
 - "/index.html"

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 685

 - 60

File upload step

Use a file upload step to upload a file to a specific location on a list of targets.

The file to upload must be in the files/ directory of a Puppet module. The source for the file must be specified as
<modulename>/path/to/file, omitting the files directory from the path.

File upload steps use these fields:

• source: The location of the file to be uploaded
• destination: The location to upload the file to

For example:

steps:
 - source: mymodule/motd.txt
 destination: /etc/motd
 target:
 - web1.example.com
 - web2.example.com
 - web3.example.com
 description: "Upload motd to the webservers"

Plan step

Use a plan step to run another plan and save its result.

Plan steps use these fields:

• plan: The name of the plan to run
• parameters: (Optional) A map of parameter values to pass to the plan

For example:

steps:
 - plan: facts
 description: "Gather facts for the webservers using the built-in facts
 plan"
 parameters:
 nodes:
 - web1.example.com
 - web2.example.com
 - web3.example.com

Resources step

Use a resources step to apply a list of Puppet resources. A resource defines the desired state for part of a target.
Bolt ensures each resource is in its desired state. Like the steps in a plan, if any resource in the list fails, the rest are
skipped.

For each resources step, Bolt executes the apply_prep plan function against the targets specified with the
targets field. For more information about apply_prep see the Applying manifest block section.

Resources steps use these fields:

• resouces: An array of resources to apply
• target: A target or list of targets to apply the resources on

Each resource is a YAML map with a type and title, and optionally a parameters key. The resource type and title
can either be specified separately with the type and title keys, or can be specified in a single line by using the
type name as a key with the title as its value.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 686

For example:

steps:
 - resources:
 # This resource is type 'package' and title 'nginx'
 - package: nginx
 parameters:
 ensure: latest
 # This resource is type 'service' and title 'nginx'
 - type: service
 title: nginx
 parameters:
 ensure: running
 target:
 - web1.example.com
 - web2.example.com
 - web3.example.com
 description: "Set up nginx on the webservers"

Parameters key
Plans accept parameters in the parameters key. The value of parameters is a map, where each key is the name
of a parameter and the value is a map describing the parameter.

Parameter values can be referenced from steps as variables.

Parameters use these fields, which are all optional:

• type: Specify a valid Puppet data type. The plan fails if the value supplied to the parameter does not match the
defined type. If you do not specify a data type, this field defaults to Any.

• default: Specify a default value to use if no specific value is supplied to the parameter. This can be empty.
• description: A description of the parameter. This can be empty.

For example, this plan accepts a load_balancer name as a string, two sets of nodes called frontends and
backends, and a version string:

parameters:
 # A simple parameter definition doesn't need a type or description
 load_balancer:
 frontends:
 type: TargetSpec
 description: "The frontend web servers"
 backends:
 type: TargetSpec
 description: "The backend application servers"
 version:
 type: String
 description: "The new application version to deploy"

How strings are evaluated
The behavior of strings is defined by how they're written in the plan.

'single-quoted strings' are treated as string literals without any interpolation.

"double-quoted strings" are treated as Puppet language double-quoted strings with variable interpolation.

| block-style strings are treated as expressions of arbitrary Puppet code. Note the string itself must be on a
new line after the | character.

bare strings are treated dynamically based on their content. If they begin with a $, they're treated as Puppet
code expressions. Otherwise, they're treated as YAML literals.

Here's an example of different kinds of strings in use:

parameters:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/lang_data.html#puppet-data-types

pe | Orchestrating Puppet runs, tasks, and plans | 687

 message:
 type: String
 default: "hello"

steps:
 - eval: hello
 description: 'This will evaluate to: hello'
 - eval: $message
 description: 'This will evaluate to: hello'
 - eval: '$message'
 description: 'This will evaluate to: $message'
 - eval: "${message} world"
 description: 'This will evaluate to: hello world'
 - eval: |
 [$message, $message, $message].join(" ")
 description: 'This will evaluate to: hello hello hello'

Using variables and simple expressions

The simplest way to use a variable is to reference it directly by name. For example, this plan takes a parameter called
nodes and passes it as the target list to a step:

parameters:
 nodes:
 type: TargetSpec

steps:
 - command: hostname -f
 target: $nodes

Variables can also be interpolated into string values. The string must be double-quoted to allow interpolation. For
example:

parameters:
 username:
 type: String

steps:
 - task: echo
 message: "hello ${username}"
 target: $nodes

Many operations can be performed on variables to compute new values for step parameters or other fields.

Indexing arrays or hashes

You can retrieve a value from an Array or a Hash using the [] operator. This operator can also be used when
interpolating a value inside a string.

parameters:
 users:
 # Array[String] is a Puppet data type representing an array of strings
 type: Array[String]

steps:
 - task: user::add
 target: 'host.example.com'
 parameters:
 name: $users[0]
 - task: echo
 target: 'host.example.com'
 parameters:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 688

 message: "hello ${users[0]}"

Calling functions

You can call a built-in Bolt function or Puppet function to compute a value.

parameters:
 users:
 type: Array[String]

steps:
 - task: user::add
 parameters:
 name: $users.first
 - task: echo
 message: "hello ${users.join(',')}"

Using code blocks

Some Puppet functions take a block of code as an argument. For instance, you can filter an array of items based on
the result of a block of code.

The result of the filter function is an array here, not a string, because the expression isn't inside quotes

parameters:
 numbers:
 type: Array[Integer]

steps:
 - task: sum
 description: "add up the numbers > 5"
 parameters:
 indexes: $numbers.filter |$num| { $num > 5 }

Connecting steps
You can connect multiple steps by using the result of one step to compute the parameters for another step.

name key

The name key makes its results available to later steps in a variable with that name.

This example uses the map function to get the value of stdout from each command result and then joins them into
a single string separated by commas.

parameters:
 nodes:
 type: TargetSpec

steps:
 - name: hostnames
 command: hostname -f
 target: $nodes
 - task: echo
 parameters:
 message: $hostnames.map |$hostname_result|
 { $hostname_result['stdout'] }.join(',')

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/plan_functions.html#bolt-functions
https://puppet.com/docs/puppet/latest/function.html

pe | Orchestrating Puppet runs, tasks, and plans | 689

eval step

The eval step evaluates an expression and saves the result in a variable. This is useful to compute a variable to use
multiple times later.

parameters:
 count:
 type: Integer

steps:
 - name: double_count
 eval: $count * 2
 - task: echo
 target: web1.example.com
 parameters:
 message: "The count is ${count}, and twice the count is
 ${double_count}"

Returning results
You can return a result from a plan by setting the return key at the top level of the plan. When the plan finishes, the
return key is evaluated and returned as the result of the plan. If no return key is set, the plan returns undef

steps:
 - name: hostnames
 command: hostname -f
 target: $nodes

return: $hostnames.map |$hostname_result| { $hostname_result['stdout'] }

Applying manifest blocks from a plan
You can apply manifest blocks, or chunks of Puppet code, to remote systems during plan execution using the apply
and apply_prep functions.

You can create manifest blocks that use existing content from the Forge, or use a plan to mix procedural orchestration
and action with declarative resource configuration from a block. Most features of the Puppet language are available in
a manifest block.

If your plan includes a manifest block, use the apply_prep function in your plan before your manifest block. The
apply_prep function syncs and caches plugins and gathers facts by running Facter, making the facts available to
the manifest block.

For example:

apply_prep($target)
apply($target) { notify { foo: } }

Note: You can use apply and apply_prep only on targets connected via PCP.

apply options

The apply function supports these options:

Option Default value Description

_catch_errors true Returns a ResultSet, including failed
results, rather than failing the plan.
Boolean.

_description none Adds a description to the apply
block. String.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/facter/latest/

pe | Orchestrating Puppet runs, tasks, and plans | 690

Option Default value Description

_noop true Applies the manifest block in no-
operation mode, returning a report of
changes it would make but does not
take action. Boolean.

For example,

Preview installing docker as root on $targets.
apply($targets, _catch_errors => true, _noop => true) {
 include 'docker'
}

How manifest blocks are applied

When you apply a manifest code from a plan, the manifest code and any facts generated for each target are sent to
Puppet Server for compilation. During code compilation, variables are generated in the following order:

1. Facts gathered from the targets set in your inventory.
2. Local variables from the plan.
3. Variables set in your inventory.

After a successful compilation, PE copies custom module content from the module path and applies the catalog to
each target. After the catalog is executed on each target, apply generates and returns a report about each target.

Return value

The apply function returns a ResultSet object that contains an ApplyResult object for each target.

For example:

$results = apply($targets) { ... }
$results.each |$result| {
 out::message($result.report)
}

Using Hiera data in a manifest block

Hiera is a key-value configuration data look up system, used for separating data from Puppet code. Use Hiera data to
implicitly override default class parameters. You can also explicitly look up data from Hiera via the lookup function.

Note: Plans in PE currently only support Hiera version 5.

For example:

plan do_thing() {
 apply('node1.example.com') {
 notice("Some data in Hiera: ${lookup('mydata')}")
 }
}

Computing complex values
To compute complex values, you can use a Puppet code expression as the value of any field of a step except the
name.

Bolt loads the plan as a YAML data structure. As it executes each step, it evaluates any expressions embedded in the
step. Each plan parameter and the values of every previous named step are available in scope.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt_types_reference.html#resultset
https://puppet.com/docs/bolt/latest/bolt_types_reference.html#applyresult

pe | Orchestrating Puppet runs, tasks, and plans | 691

This lets you take advantage of the power of Puppet language in the places it's necessary, while keeping the rest of
your plan simple.

When your plans need more sophisticated control flow or error handling beyond running a list of steps in order, it's
time to convert them to Puppet Language plans.

Converting YAML plans to Puppet language plans
You can convert a YAML plan to a Puppet language plan with the bolt plan convert command.

bolt plan convert path/to/my/plan.yaml

This command takes the relative or absolute path to the YAML plan to be converted and prints the converted Puppet
language plan to stdout.

Note: Converting a YAML plan might result in a Puppet plan which is syntactically correct, but behaves differently.
Always manually verify a converted Puppet language plan's functionality. There are some constructs that do not
translate from YAML plans to Puppet language plans. These are listed [TODO: insert link to section below!] below.
If you convert a YAML plan to Puppet and it changes behavior, file an issue in Bolt's Git repo.

For example, with this YAML plan:

site-modules/mymodule/plans/yamlplan.yaml
parameters:
 nodes:
 type: TargetSpec
steps:
 - name: run_task
 task: sample
 target: $nodes
 parameters:
 message: "hello world"
return: $run_task

Run the following conversion:

$ bolt plan convert site-modules/mymodule/plans/yamlplan.yaml
WARNING: This is an autogenerated plan. It may not behave as expected.
plan mymodule::yamlplan(
 TargetSpec $nodes
) {
 $run_task = run_task('sample', $nodes, {'message' => "hello world"})
 return $run_task
}

Quirks when converting YAML plans to Puppet language
There are some quirks and limitations associated with converting a plan expressed in YAML to a plan expressed in
the Puppet language. In some cases it is impossible to accurately translate from YAML to Puppet. In others, code that
is generated from the conversion is syntactically correct but not idiomatic Puppet code.

Named eval step

The eval step allows snippets of Puppet code to be expressed in YAML plans. When converting a multi-line eval
step to Puppet code and storing the result in a variable, use the with lambda.

For example, here is a YAML plan with a multi-line eval step:

parameters:
 foo:
 type: Optional[Integer]
 description: foo
 default: 0

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/bolt/issues

pe | Orchestrating Puppet runs, tasks, and plans | 692

steps:
 - eval: |
 $x = $foo + 1
 $x * 2
 name: eval_step

return: $eval_step

And here is the same plan, converted to the Puppet language:

plan yaml_plans::with_lambda(
 Optional[Integer] $foo = 0
) {
 $eval_step = with() || {
 $x = $foo + 1
 $x * 2
 }

 return $eval_step
}

Writing this plan from scratch using the Puppet language, you would probably not use the lambda. In this example the
converted Puppet code is correct, but not as natural or readable as it could be.

Resource step variable interpolation

When applying Puppet resources in a resource step, variable interpolation behaves differently in YAML plans and
Puppet language plans. To illustrate this difference, consider this YAML plan:

steps:
 - target: localhost
 description: Apply a file resource
 resources:
 - type: file
 title: '/tmp/foo'
 parameters:
 content: $facts['os']['family']
 ensure: present
 - name: file_contents
 description: Read contents of file managed with file resource
 eval: >
 file::read('/tmp/foo')

return: $file_contents

This plan performs apply_prep on a localhost target. Then it uses a Puppet file resource to write the OS family
discovered from the Puppet $facts hash to a temporary file. Finally, it reads the value written to the file and returns
it. Running bolt plan convert on this plan produces this Puppet code:

plan yaml_plans::interpolation_pp() {
 apply_prep('localhost')
 $interpolation = apply('localhost') {
 file { '/tmp/foo':
 content => $facts['os']['family'],
 ensure => 'present',
 }
 }
 $file_contents = file::read('/tmp/foo')

 return $file_contents

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 693

}

This Puppet language plan works as expected, whereas the YAML plan it was converted from fails. The failure stems
from the $factsvariable being resolved as a plan variable, instead of being evaluated as part of compiling the
manifest code in an applyblock.

Dependency order

The resources in a resources list are applied in order. It is possible to set dependencies explicitly, but when doing
so you must refer to them in a particular way. Consider the following YAML plan:

parameters:
 nodes:
 type: TargetSpec
steps:
 - name: pkg
 target: $nodes
 resources:
 - title: openssh-server
 type: package
 parameters:
 ensure: present
 before: File['/etc/ssh/sshd_config']
 - title: /etc/ssh/sshd_config
 type: file
 parameters:
 ensure: file
 mode: '0600'
 content: ''
 require: Package['openssh-server']

Executing this plan fails during catalog compilation because of how Bolt parses the resources referenced in the
before and require parameters. You will see the error message Could not find resource 'File['/
etc/ssh/sshd_config']' in parameter 'before'. The solution is to not quote the resource titles:

parameters:
 nodes:
 type: TargetSpec
steps:
 - name: pkg
 target: $nodes
 resources:
 - title: openssh-server
 type: package
 parameters:
 ensure: present
 before: File[/etc/ssh/sshd_config]
 - title: /etc/ssh/sshd_config
 type: file
 parameters:
 ensure: file
 mode: '0600'
 content: ''
 require: Package[openssh-server]

In general, declare resources in order. This is an unusual example to illustrate a case where parameter parsing leads to
non-intuitive results.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 694

Orchestrator API v1
You can use the orchestrator API to run jobs and plans on demand; schedule tasks and plans; get information about
jobs, plans, and events; track node usage; and more.

• Forming orchestrator API requests on page 694
The orchestrator API accepts well-formed HTTPS requests and requires authentication.
• Root endpoints on page 695
Use the orchestrator endpoint to get orchestrator API metadata.
• Command endpoints on page 697
Use the command endpoints to run Puppet, jobs, and plans on demand or stop in-progress jobs. You can also create
task-targets, which provide privilege escalation for users who would otherwise not be able to run certain tasks or run
tasks on certain nodes or node groups.
• Inventory endpoints on page 716
Use the inventory endpoints to check whether the orchestrator can reach a node.
• Jobs endpoints on page 719
Use the jobs endpoints to examine jobs and their details.
• Scheduled jobs endpoints on page 733
Use the scheduled_jobs endpoints to query, edit, and delete scheduled orchestrator jobs.
• Plans endpoints on page 748
Use the plans endpoints to get information about plans.
• Plan jobs endpoints on page 752
Use the plan_jobs endpoints to examine plan jobs and their details.
• Tasks endpoints on page 765
Use the tasks endpoints to get information about tasks you've installed and tasks included with Puppet Enterprise
(PE).
• Usage endpoints on page 769
Use the usage endpoint to view details about your deployment's active nodes.
• Scopes endpoints on page 771
Use the scopes endpoints to retrieve information about task-targets.
• Orchestrator API error responses on page 774
Orchestrator API error responses are formatted as JSON objects.

Related information
API index on page 30
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Forming orchestrator API requests
The orchestrator API accepts well-formed HTTPS requests and requires authentication.

Orchestrator API requests must include a URI path following the pattern:

https://<DNS>:8143/orchestrator/v1/<ENDPOINT>

The variable path components derive from:

• DNS: Your PE console host's DNS name. You can use localhost, manually enter the DNS name, or use a
puppet command (as explained in Using example commands on page 25).

• ENDPOINT: One or more sections specifying the endpoint, such as command or jobs. Some endpoints require
additional sections, such as POST /command/deploy on page 697.

For example, you could use any of these paths to call the GET /inventory on page 716 endpoint:

https://$(puppet config print server):8143/orchestrator/v1/inventory
https://localhost:8143/orchestrator/v1/inventory

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 695

https://puppet.example.dns:8143/orchestrator/v1/inventory

To form a complete curl command, you need to provide appropriate curl arguments, authentication, and you might
need to supply the content type and/or additional parameters specific to the endpoint you are calling.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Orchestrator API authentication

You must authenticate orchestrator API requests with user authentication tokens. For instructions on generating,
configuring, revoking, and deleting authentication tokens in PE, go to Token-based authentication on page 308.

To use a token in an orchestrator API request, you can use puppet-access show, such as:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/jobs"

curl --insecure --header "$auth_header" "$uri"

Or you can use the actual token, such as:

auth_header="X-Authentication: <TOKEN>"
uri="https://$(puppet config print server):8143/orchestrator/v1/jobs"

curl --insecure --header "$auth_header" "$uri"

Related information
Token-based authentication on page 308
Authentication tokens allow a user to enter their credentials once, then receive an alphanumeric token to use to access
different services or parts of the system infrastructure. Authentication tokens are tied to the permissions granted to
the user through role-based access control (RBAC), and they provide the user with the appropriate access to HTTP
requests.

Root endpoints
Use the orchestrator endpoint to get orchestrator API metadata.

GET /orchestrator
Returns metadata about the orchestrator API, along with a list of links to application management resources.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the request is a basic call, such as:

GET https://orchestrator.example.com:8143/orchestrator

The GET /orchestrator endpoint does not support any parameters; however, as with other orchestrator API
endpoints, you must provide authentication.

Response format

The response is a JSON object using these keys:

Key Definition

info Contains the API title, description, version compatibility
warnings, the current version, and license information.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 696

Key Definition

status A URI path you can call to check the orchestrator API
status. To check the status of orchestrator services, use
the Status API on page 429.

collections URI paths you can use to call various endpoints,
such as the Jobs endpoints on page 719 and the
environments endpoint.

The environments endpoint response tells you either
which environments are available or whether a named
environment exists.

commands URI paths for the Command endpoints on page 697.

For example:

{
 "info" : {
 "title" : "Application Management API (EXPERIMENTAL)",
 "description" : "Multi-purpose API for performing application management
 operations",
 "warning" : "This version of the API is experimental, and might change
 in backwards-incompatible ways in the future",
 "version" : "0.1",
 "license" : {
 "name" : "Puppet Enterprise License",
 "url" : "https://puppetlabs.com/puppet-enterprise-components-licenses"
 }
 },
 "status" : {
 "name" : "status",
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/status"
 },
 "collections" : [{
 "name" : "environments",
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/
environments"
 }, {
 "name" : "jobs",
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/jobs"
 }],
 "commands" : [{
 "name" : "deploy",
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/command/
deploy"
 }, {
 "name" : "stop",
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/command/
stop"
 }]
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. The
endpoint returns a 500 response if the orchestrator API can't be reached.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 697

Command endpoints
Use the command endpoints to run Puppet, jobs, and plans on demand or stop in-progress jobs. You can also create
task-targets, which provide privilege escalation for users who would otherwise not be able to run certain tasks or run
tasks on certain nodes or node groups.

You can:

• POST /command/deploy on page 697: Run Puppet on demand.
• POST /command/stop on page 701: Stop an orchestrator job that is currently running.
• POST /command/stop_plan on page 702: Stop an orchestrator plan job that is currently running.
• POST /command/task on page 704: Run a task on a set of nodes.
• POST /command/task_target on page 707: Define a set of tasks and nodes/node groups you can use to escalate

privileges for users who would otherwise not be able to run those tasks or run tasks on those nodes or node
groups.

• POST /command/plan_run on page 711: Run a plan.
• POST /command/environment_plan_run on page 712: Run a plan in a specified environment.

The schedule_deploy, schedule_task, and schedule_plan endpoints are deprecated. Instead, use
POST /scheduled_jobs/environment_jobs on page 740.

POST /command/deploy
Run Puppet on demand – run the orchestrator across all nodes in an environment.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object using keys described in the following table. The environment key is always
required. Additional keys might be required depending on the values of other keys.

Key Format Definition

environment String Required: The name of the
environment to deploy or an
empty string. If you supply
an empty string, you must set
enforce_environment to
false.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 698

Key Format Definition

scope JSON object Contains exactly one key defining the
deployment target:

• nodes: A list of node names to
target.

• query: A PuppetDB or
PQL query to use to discover
nodes. The target is built from
certname values collected at
the top level of the query.

• node_group: The ID of a
classifier node group that has
defined rules. The node group
itself must have defined rules –
It is not sufficient for only the
node group's parent groups to
define rules. The user submitting
the request must also have
permissions to view the specified
node group.

Required if environment is an
empty string.

concurrency Integer or range The maximum number of nodes
to run at one time. The default is a
range between 1 and the value of the
global_concurrent_compiles
parameter.

For information about
global_concurrent_compiles,
refer to Orchestrator and pe-
orchestration-services parameters on
page 238.

debug Boolean Whether to use the --debug flag on
Puppet agent runs.

description String A description of the job.

enforce_environment Boolean Whether to force agents to run in the
specified environment. This key must
be false if environment is an
empty string.

evaltrace Boolean Whether to use the --evaltrace
flag on Puppet agent runs.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 699

Key Format Definition

filetimeout Integer The value for the --filetimeout
flag on Puppet agent runs.

http_connect_timeout Integer The value for the --
http_connect_timeout flag on
Puppet agent runs.

http_keepalive_timeout Integer The value for the --
http_keepalive_timeout flag
on Puppet agent runs.

http_read_timeout Integer The value for the --
http_read_timeout flag on
Puppet agent runs.

noop Boolean Whether to run the agent in no-op
mode. The default is false.

no_noop Boolean Whether to run the agent in
enforcement mode. The default
is false. This flag overrides
noop = true if set in the agent's
puppet.conf file. This flag can't
be set to true if the noop flag is
also set to true.

ordering String Sets the --ordering flag on
Puppet agent runs.

skip_tags String Sets the --skip_tags flag on
Puppet agent runs.

tags String Sets the --tags flag on Puppet
agent runs.

timeout Integer The maximum number of seconds a
deploy job can take to execute on any
individual node. Job execution on a
node is forcibly ended if the timeout
limit is reached. If unspecified, this
key takes the value of default-
deploy-node-timeout, which
is one of the Orchestrator and pe-
orchestration-services parameters.

trace Boolean Whether to use the --trace flag on
Puppet agent runs.

use_cached_catalog Boolean Whether to use the --
use_cached_catalog flag on
Puppet agent runs.

usecacheonfailure Boolean Whether to use the --
usecacheonfailure flag on
Puppet agent runs.

userdata JSON object Arbitrary key/value data supplied to
the job.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/latest/config_orchestration.html#configure_the_orchestrator_and_pe_orchestration_services
https://www.puppet.com/docs/pe/latest/config_orchestration.html#configure_the_orchestrator_and_pe_orchestration_services

pe | Orchestrating Puppet runs, tasks, and plans | 700

Here is an example of a complete curl command for the /command/deploy endpoint. This request targets nodes in
the All Nodes node group in the production environment:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
deploy"
data='{"environment": "production", "scope" : { "node_group" :
 "00000000-0000-4000-8000-000000000000" }}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

The following are additional examples of valid JSON bodies for the /command/deploy endpoint.

This body deploys two specific nodes in the production environment:

{
 "environment" : "production",
 "scope" : {
 "nodes" : ["node1.example.com", "node2.example.com"]
 }
}

This body deploys the node1.example.com node in no-op mode:

{
 "environment" : "",
 "enforce_environment": false,
 "noop" : true,
 "scope" : {
 "nodes" : ["node1.example.com"]
 },
 "userdata": {
 "servicenow_ticket": "INC0011211"
 }
}

This body deploys any node in the production environment with a certname value matching a regex:

{
 "environment" : "production",
 "scope" : {
 "query" : ["from", "nodes", ["~", "certname", ".*"]]
 }
}

Response format

If all node runs succeed and the environment is successfully deployed, the server returns 202 and a JSON object
using these keys:

• id: An absolute URL that links to the newly created job.
• name: A stringified number identifying the newly created job. You can use this with other endpoints, such as

GET /jobs/<job-id> on page 724 (retrieve information about the status of the job) and POST /command/stop on
page 701.

For example:

{
 "job" : {

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 701

 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/jobs/81"
 "name" : "81"
 }
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Value Definition

404 puppetlabs.orchestrator/
unknown-environment

The specified environment does
not exist.

400 puppetlabs.orchestrator/
empty-environment

The specified environment
contains no applications or no nodes.

400 puppetlabs.orchestrator/
empty-target

The specified scope resolves to an
empty list of nodes.

400 puppetlabs.orchestrator/
puppetdb-error

If the request specified a query for
the scope, the orchestrator is unable
to make a query to PuppetDB.

400 puppetlabs.orchestrator/
query-error

If the request specified a query for
the scope, the query is invalid or
the user submitting the request does
not have permission to run the query.

POST /command/stop
Stop an orchestrator job that is currently in progress.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object containing the job key, which specifies the job ID of the job to stop, such as:

{
 "job": "1234"
}

Job IDs are returned in responses from POST /command/deploy on page 697 and GET /jobs on page 720.

By default, this request halts the specified job. This prevents the job from starting new Puppet agent runs but allows
any in-progress runs to finish. While in-progress runs are finishing, the server continues to produce events for the job.
The job's status changes to stopped once all in-progress runs finish.

Tip: If you want to completely stop the job (to stop in-progress runs and prevent new runs from starting), add the
force key to the request, such as:

{
 "job": "1234"
 "force": true
}

You can force, for example, to stop a task that is hanging. Be aware that force immediately ends the job. This can
result in an inconsistent or undesirable state due to job components (tasks, plans, Puppet runs, and so on) being ended
prematurely.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 702

Here is an example of a complete curl command:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
stop"
data='{"job": "1234"}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

POST /command/stop is idempotent – you can use it against the same job any number of times.

Response format

If the job is stopped successfully, the server returns a 202 response and a JSON object containing these keys:

• id: An absolute URL that links to the stopped job. This is based on the job key in the request.
• name: A stringified number identifying the stopped job.
• nodes: A hash showing all possible node statuses, and how many nodes are currently in each status.

For example:

{
 "job" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/
jobs/1234",
 "name" : "1234",
 "nodes" : {
 "new" : 5,
 "running" : 8,
 "failed" : 3,
 "errored" : 1,
 "skipped" : 2,
 "finished": 5
 }
 }
}

Important: When a job is successfully stopped, any in-progress Puppet agent runs finish, but no new agent runs
start. While agents are finishing, the server continues to produce events for the job, and the job itself transitions to
stopped status when all in-progress agent runs have finished.

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Definition

400 puppetlabs.orchestrator/
validation-error

The specified job ID is not formatted
correctly or is otherwise not valid.

404 puppetlabs.orchestrator/
unknown-job

The specified job ID does not exist.

POST /command/stop_plan
Stop an orchestrator plan job that is currently in progress.

This command interrupts the thread that is running the plan.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 703

If the plan doesn't have code to explicitly handle the interrupt, the plan finishes with an error. If the plan can handle
the interrupt, whether or not the plan stops depends on the plan's interruption handling.

If the plan is running a task (or otherwise) when interrupted, an error occurs and the plan stops, but the underlying in-
progress task job finishes. If you need to force stop an in-progress job, use POST /command/stop on page 701.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object containing the plan_job key, which specifies the string-formatted ID of the plan
job to stop, such as:

{
 "plan_job": "1234"
}

The plan_job ID is the name value that is returned from POST /command/plan_run on page 711 and GET /
plan_jobs on page 752.

Here is an example of a complete curl command:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
stop_plan"
data='{"plan_job": "1234"}'

curl --insecure --header "$type_header" --header "$auth_header" -X POST
 "$uri" --data "$data"

POST /command/stop_plan is idempotent – you can use it against the same plan job any number of times.

Response format

If the specified plan job exists, the server returns a 202 response containing the name key, which is the same as the
plan_job key in the request. For example:

{
 "name": "1234"
}

Important:

If the plan is running a task (or otherwise) when interrupted, the plan stops, but the underlying in-progress task job
finishes. If you need to force stop an in-progress job, use POST /command/stop on page 701.

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Definition

400 puppetlabs.orchestrator/
validation-error

The specified plan job ID is not
formatted correctly or is otherwise
not valid.

404 puppetlabs.orchestrator/
unknown-job

The specified plan job ID does not
exist.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 704

POST /command/task
Run a task on a set of nodes. The task does not run on any nodes in the defined scope that you do not have
permission to run tasks on.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object using keys described in the following table. Most keys are required, some keys are
optional, and some required keys can be empty.

Key Format Definition

environment String Required: The name of the
environment to load the task from.
The default is production.

scope JSON object Required: Contains exactly one key
defining the nodes to run the task on:

• nodes: An array of node names
to target.

• query: A PuppetDB or
PQL query to use to discover
nodes. The target is built from
certname values collected at
the top level of the query.

• node_group: The ID of a
classifier node group that has
defined rules. The node group
itself must have defined rules –
It is not sufficient for only the
node group's parent groups to
define rules. The user submitting
the request must also have
permissions to view the specified
node group.

The task does not run on any nodes
specified in the scope that the user
does not have permission to run the
task on.

description String A optional description of the job.

noop Boolean Whether to run the job in no-op
mode. The default is false.

params JSON object Required: Parameters to pass to the
task. Can be an empty object.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 705

Key Format Definition

targets Array of JSON objects Required: A collection of keys used
to run the task on nodes through SSH
or WinRM via Bolt server, such as
user account information, run-
as specifications, or a designated
temporary directory. Refer to
the Targets section, below, for
information about optional and
required keys to use in targets.

task String Required: The task to run on the
target nodes. Use the GET /tasks
on page 765 endpoint to get task
names.

timeout Integer The maximum number of seconds
a task can take to execute on any
individual node. Task execution on a
node is forcibly ended if the timeout
limit is reached. If unspecified, this
key takes the value of default-
task-node-timeout, which
is one of the Orchestrator and pe-
orchestration-services parameters on
page 238.

userdata JSON object Optional arbitrary key/value data
supplied to the job.

For example, this body runs the package task on the node1.example.com node in the test-env-1
environment. It passes action and name parameters to the task.

{
 "environment" : "test-env-1",
 "task" : "package",
 "params" : {
 "action" : "install",
 "name" : "httpd"
 },
 "scope" : {
 "nodes" : ["node1.example.com"]
 }
}

A complete curl request using this body might look like:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
task"
data='{"environment": "test-env-1", "task" : "package", "params" :
 { "action": "install", "name" : "httpd" }, "scope" : { "nodes" :
 ["node1.example.com"] }}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

For additional scope examples, refer to the POST /command/deploy on page 697 request format examples.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 706

Targets

The targets key contains an array of JSON objects, where each object contains the following keys:

Key Format Definition

hostnames Array Required: An array of hostnames
sharing the same target attributes.
Each hostname must match an entry
in the tasks' node list scope.

user String Required: Specify the user on the
remote system to use to run the task.

transport String Required: Specify ssh or winrm.

password String Conditionally required: Specify the
password associated with the user
key. You must specify either this key
or private-key-content.

private-key-content String Conditionally required: Specify
the content of the SSH key used to
ssh to the remote node to run on.
You must specify either this key or
password.

port Integer Specifies the port, on the remote
node, to use to connect.

run-as String When using SSH, specify an optional
user to use to run commands.

sudo-password String If you specify run-as, specify
a password to use when changing
users.

run-as-command String If you specify run-as, specify
a command to use to elevate
permissions.

connect-timeout Integer How long, in seconds, you want
Bolt to wait when establishing
connections.

tty Boolean Whether Bolt uses pseudo tty to meet
sudoer restrictions.

tmpdir String Specify the directory the task can use
to upload and execute temporary files
on the target.

extensions String A list of file extensions that are
accepted for scripts or tasks.

For example, this target array contains two JSON objects:

[
 {
 "hostnames": ["sshnode1.example.com", "sshnode2.example.com"],
 "private-key-content": "<SSH_KEY>",
 "port": 4444,
 "user": "<USER_NAME>",

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 707

 "transport": "ssh"
 },
 {
 "hostnames": ["winrmnode.example.com"],
 "password": "<PASSWORD>",
 "port": 4444,
 "user": "<USER_NAME>",
 "transport": "winrm"
 }
]

Response format

If the task starts successfully, the server returns 202 and a JSON object using these keys:

• id: An absolute URL that links to the newly created job. You can use it with the GET /jobs/<job-id> on page
724 endpoint to retrieve information about the status of the job.

• name: A stringified number identifying the newly created job.

For example:

{
 "job" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/jobs/81"
 "name" : "81"
 }
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Value Definition

404 puppetlabs.orchestrator/
unknown-environment

The specified environment does
not exist.

400 puppetlabs.orchestrator/
empty-target

There is a problem with the target
entry in the request body, such as
the hostnamesdo not match nodes
defined by the scope.

400 puppetlabs.orchestrator/
puppetdb-error

If the request specified a query for
the scope, the orchestrator is unable
to make a query to PuppetDB.

400 puppetlabs.orchestrator/
query-error

If the request specified a query for
the scope, the query is invalid or
the user submitting the request does
not have permission to run the query.

403 puppetlabs.orchestrator/
not-permitted

This error occurs when a user does
not have permission to run the task
on the requested nodes.

POST /command/task_target
Create a task-target, which is a set of tasks and nodes/node groups you can use to provide specific privilege escalation
for users who would otherwise not be able to run certain tasks or run tasks on certain nodes or node groups. When
you grant a user permission to use a task-target, the user can run the task(s) in the task-target on the set of nodes
defined in the task-target.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 708

Important: After using the POST /command/task_target endpoint to create a task-target, you must use
the POST /roles on page 337 endpoint to create a role controlling the permission to use the task-target. For an
overview of the task-target workflow, read about Puppet Enterprise RBAC API, or how to manage access to tasks on
the Puppet blog.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object using these keys:

Key Format Definition

display_name String Required: The task-target name. There are no uniqueness
requirements.

tasks Array of strings Conditionally required: You must specify either tasks
or all_tasks.

If you want to include specific tasks in the task-target, use
tasks to supply an array of relevant task names. This key
can be empty. If tasks is omitted or empty, you must set
all_tasks to true. This key is required if all_tasks
is omitted.

Important: The endpoint does not check if the specified
tasks correspond to existing tasks. This means you can
create task-targets that include tasks you have not yet
created, and that you must manually confirm the task names
are spelled correctly.

all_tasks Boolean Conditionally required: You must specify either tasks
or all_tasks.

all_tasks indicates whether any tasks can be run on
designated node targets. The default is false and expects
you to define specific tasks in the tasks key. However:

• If tasks is omitted or empty, you must set
all_tasks to true.

• If all_tasks is omitted, you must provide a valid
tasks key.

• If all_tasks is true, omit tasks. If you specify
tasks and set all_tasks to true, the endpoint
ignores tasks and takes the all_tasks value.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/blog/puppet-enterprise-rbac-api-or-how-to-manage-access-to-tasks/

pe | Orchestrating Puppet runs, tasks, and plans | 709

Key Format Definition

nodes Array of strings Required: Use nodes, node_groups, and pql_query
to identify nodes users can run tasks against when using
this task-target. The endpoint combines these keys to form
a total node pool. If you specified tasks, the user can run
only those specific tasks against the specified nodes.

nodes must be either empty array or an array of certnames
identifying specific agent nodes or agentless nodes to
associate with this task-target.

Important: The endpoint does not check if the nodes
certnames correspond to existing nodes. This means you can
create task-targets that include individual nodes you have
not yet configured, and that you must manually confirm the
node certnames are specified correctly.

node_groups Array of strings Required: Use nodes, node_groups, and pql_query
to identify nodes users can run tasks against when using
this task-target. The endpoint combines these keys to form
a total node pool. If you specified tasks, the user can run
only those specific tasks against the specified nodes.

node_groups must be either an empty array or an array
of node group IDs describing node groups associated with
this task-target.

pql_query String Use nodes, node_groups, and pql_query to identify
nodes users can run tasks against when using this task-
target. The endpoint combines these keys to form a total
node pool. If you specified tasks, the user can run only
those specific tasks against the specified nodes.

pql_query is an optional string specifying a single PQL
query to use to fetch nodes for this task-target. Query results
must contain the certnames key to identify the nodes.

Important: While pql_query is optional, if you only
use pql_query to define the nodes in the task-target, you
must supply nodes and node_groups as empty arrays.

For example, this body creates a task target that allows users to run task_1 and task_2 on node1, node2, and
all nodes a specific node group.

{
 "display_name": "task_target_example_1",

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 710

 "tasks": ["task_1", "task_2"],
 "nodes": ["node1" "node2"],
 "node_groups": ["00000000-0000-4000-8000-000000000000"]
}

This body allows users to run any task against node1 and node2.

{
 "display_name": "task_target_example_2",
 "all_tasks": "true",
 "nodes": ["node1" "node2"],
 "node_groups": []
}

A complete curl request for the command/task_target endpoint might look like:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
task_target"
data='{"display_name": "task_target_example_2", "all_tasks": "true",
 "nodes": ["node1" "node2"], "node_groups": []}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

Response format

If the task-target is successfully created, the server returns a 200 response and a JSON object using these keys:

• id: An absolute URL that links to the task-target. You can use it with the GET /scopes/task_targets/<task-target-
id> on page 773 endpoint to retrieve information about the task-target.

• name: The task-target's unique identifier.

For example:

{
 "task_target": {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/scopes/
task_targets/1",
 "name": "1"
 }
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. There
are several reasons this endpoint might return a 400 puppetlabs.orchetrator/validation-error
response, including:

• display_name is missing or empty.
• tasks is missing or empty when all_tasks is false or omitted.
• Task names in tasks are not supplied as strings.
• If all_tasks is defined, the value is not a Boolean.
• tasks is missing or empty and all_tasks is not true.
• Node names in nodes are not supplied as strings.
• Node group IDs in node_groups are not supplied as strings.
• The value of pql_query is not a string.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 711

Related information
POST /roles on page 337
Create a role. Authentication is required.

POST /command/plan_run
Use the plan executor to run a plan.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object using these keys:

Key Format Definition

plan_name String Required: The name of the plan to
run.

Tip: Use the GET /plans on page
748 endpoint to find plan names.

params JSON object The parameters you want the plan to
use.

environment String The environment to load the plan
from. The default is production.

description String A description of the job.

timeout Integer The maximum number of seconds
allowed for the plan to run. Reaching
the timeout limit cancels queued
plan actions and attempts to
interrupt in-progress actions. If
unspecified, this key takes the value
of default-plan-timeout,
which is one of the Orchestrator and
pe-orchestration-services parameters
on page 238.

userdata JSON object Arbitrary key/value data supplied to
the job.

For example, this body starts the canary plan on two specific nodes:

{
 "plan_name" : "canary",
 "description" : "Start the canary plan on node1 and node2",
 "params" : {
 "nodes" : ["node1.example.com", "node2.example.com"],
 "command" : "whoami",
 "canary" : 1
 }
}

A complete curl request using this body might look like:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
plan_run"

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 712

data='{"plan_name" : "canary", "description" : "Start the canary plan
 on node1 and node2", "params" : { "nodes" : ["node1.example.com",
 "node2.example.com"], "command" : "whoami", "canary" : 1}}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

Response format

If the plan starts successfully, the server returns 202 and a JSON object containing the name of the newly created
plan job. For example:

{
 "name" : "1234"
}

If you need to stop this plan while it is running, use the name ID with POST /command/stop_plan on page 702.

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The plan_name is not valid. Most
likely, it is not a properly-formatted
string.

403 puppetlabs.orchestrator/
not-permitted

This error occurs when a user does
not have permission to run the plan,
cannot run the plan on the specified
nodes, or otherwise lacks permission
to complete the request.

POST /command/environment_plan_run
Use parameters to run a plan on specific nodes in a specific environment.

Request format

This endpoint is similar to the POST /command/plan_run on page 711 endpoint. You must define nodes to run the
plan on by supplying parameters in your request.

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object using these keys:

Key Format Definition

plan_name String Required: The name of the plan to
run.

Tip: Use the GET /plans on page
748 endpoint to find plan names.

params JSON object containing objects Required: The parameters you want
the plan to use. Use the type key
to identify whether a parameter is a
query or a node group.

environment String The environment to load the plan
from. The default is production.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 713

Key Format Definition

description String A description of the job.

timeout Integer The maximum number of seconds
allowed for the plan to run. Reaching
the timeout limit cancels queued
plan actions and attempts to
interrupt in-progress actions. If
unspecified, this key takes the value
of default-plan-timeout,
which is one of the Orchestrator and
pe-orchestration-services parameters
on page 238.

userdata JSON object Arbitrary key/value data supplied to
the job.

For example, this body runs the example_plan on nodes specified in the targets and more_targets
parameters:

{
 "plan_name" : "example_plan",
 "description" : "Output 'message' on the targets contained in 'targets'
 and 'more targets'",
 "params": {
 "message": {
 "value": "hello"
 },
 "example_object_param": {
 "value": {
 "value": "xyz"
 }
 },
 "targets": {
 "type": "query",
 "value": "nodes[certname] { }"
 },
 "more_targets": {
 "type": "node_group",
 "value": "<UUID>"
 }
 }
}

In this example, the parameters follow the format {<PARAM_NAME>: {"value": "<PARAM_VALUE>"}},
such as {"message": {"value": "hello"}}. The orchestrator passes <PARAM_VALUE> to the plan as the
parameter's value. For object parameters, such as example_object_param, the object {"value": "xyz"} is
passed to the plan as the value for example_object_param.

You can use the optional type key to give the orchestrator additional information about the parameter. This tells the
orchestrator how to interpret the parameter's value. It has no relationship to the parameter's type in the plan metadata.
The type key accepts these values:

• query: The parameter's value in the request is interpreted as a PuppetDB query. Orchestrator executes the query
and passes the resulting list of nodes to the plan as the parameter's value. For example, if the targets parameter
is set to nodes[certname] { } and resolves to ["node1", "node2"], orchestrator passes ["node1",
"node2"] into the plan as the parameter's value.

• node_group: The parameter's value in the request is interpreted as a node group UUID. Orchestrator
fetches all the nodes in the node group and passes them to the plan as the parameter's value. For example,

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 714

if the more_targets parameter is set to a specific UUID and resolves to ["node_group1",
"node_group2"], orchestrator passes that array into the plan as the parameter's value.

Refer to POST /command/plan_run on page 711 for curl command examples you can modify to use with this
endpoint.

Response format

If the plan starts successfully, the server returns 202 and a JSON object containing the name of the newly created
plan job. For example:

{
 "name" : "1234"
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

Any of various possible validation
errors, such as the plan_name not
being a properly-formatted string or
an error in the params.

403 puppetlabs.orchestrator/
not-permitted

This error occurs when a user does
not have permission to run the plan,
cannot run the plan on the specified
nodes, or otherwise lacks permission
to complete the request.

POST /command/schedule_deploy (deprecated)
Prior to deprecation, this endpoint scheduled a Puppet run on a set of nodes.

Important: This endpoint is deprecated. Instead, use POST /scheduled_jobs/environment_jobs on page 740.

Request format

Prior to deprecation, requests to this endpoint:

• Specified the content type as application/json
• Contained a JSON object body
• Included these required keys: environment, scope, scheduled_time
• Could include several optional keys.

For example, this request scheduled a deployment targeting nodes in the All Nodes node group in the
production environment:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
schedule_deploy"
data='{"environment": "production", "scope" : { "node_group" :
 "00000000-0000-4000-8000-000000000000" }, "scheduled_time":
 "2027-05-05T19:50:08Z"}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 715

Response format

Prior to deprecation, if the deployment was successfully scheduled, the server returned 202 and a JSON object
containing the job's id and name. For example:

{
 "job" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/jobs/81"
 "name" : "81"
 }
}

POST /command/schedule_task (deprecated)
Prior to deprecation, this endpoint scheduled a task to run at a future date and time.

Important: This endpoint is deprecated. Instead, use POST /scheduled_jobs/environment_jobs on page 740.

Request format

Prior to deprecation, requests to this endpoint:

• Specified the content type as application/json
• Contained a JSON object body
• Included these required keys: environment, params, scope, scheduled_time, and task
• Could include several optional keys.

For example, this request scheduled the package task to run on nodes in the All Nodes node group in the
production environment and passed no parameters to the task:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
schedule_task"
data='{"environment" : "production", "task" : "package", "params" : {},
 "scope" : { "node_group" : "00000000-0000-4000-8000-000000000000" },
 "scheduled_time": "2027-05-05T19:50:08Z"}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

Response format

Prior to deprecation, if the task was successfully scheduled, the server returned 202 and a JSON object containing the
job's id and name. For example:

{
 "scheduled_job" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/
scheduled_jobs/81"
 "name" : "81"
 }
}

POST /command/schedule_plan (deprecated)
Schedule a plan to run at a later time.

Important: This endpoint is deprecated. Instead, use POST /scheduled_jobs/environment_jobs on page 740.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 716

Request format

Prior to deprecation, requests to this endpoint:

• Specified the content type as application/json
• Contained a JSON object body
• Included these required keys: plan_name and scheduled_time
• Could include some optional keys.

For example, this request scheduled the canary plan to run on two specific nodes:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/command/
schedule_plan"
data='{"plan_name" : "canary", "params" : { "nodes" : ["node1.example.com",
 "node2.example.com"]}, "scheduled_time" : "2027-05-05T19:50:08Z"}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

Response format

Prior to deprecation, if the plan was successfully scheduled, the server returned 202 and a JSON object containing
the job's id and name. For example:

{
 "scheduled_job" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/
scheduled_jobs/81",
 "name" : "81"
 }
}

Inventory endpoints
Use the inventory endpoints to check whether the orchestrator can reach a node.

These endpoints are based on nodes being connected to the Puppet Communications Protocol (PCP) broker, which is
part of the Puppet orchestrator architecture.

GET /inventory
Retrieve a list of all nodes connected to the Puppet Communications Protocol (PCP) broker.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the request is a basic call, such as:

GET https://orchestrator.example.com:8143/orchestrator/v1/inventory

The GET /inventory endpoint does not support any parameters; however, as with other orchestrator API
endpoints, you must provide authentication.

Response format

A successful response is a JSON object containing an array of nodes. The response uses the following keys to provide
information about each node's PCP broker connection:

Key Definition

name The node's name.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 717

Key Definition

connected The status of the connection between the node and
the PCP broker, either true (connected) or false
(disconnected).

broker The PCP broker the node is connected to. If
connected is false, this key is empty or omitted.

timestamp The time when the node connected to the PCP broker. If
connected is false, this key is empty or omitted.

For example, this response provides details about three nodes, one of which is currently disconnected:

{
 "items" : [
 {
 "name" : "node1.example.com",
 "connected" : true,
 "broker" : "pcp://broker1.example.com/server",
 "timestamp": "2016-010-22T13:36:41.449Z"
 },
 {
 "name" : "node2.example.com",
 "connected" : true,
 "broker" : "pcp://broker2.example.com/server",
 "timestamp" : "2016-010-22T13:39:16.377Z"
 },
 {
 "name" : "node3.example.com",
 "connected" : false
 }
]
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. The
endpoint returns a 500 response if the PCP broker can't be reached.

GET /inventory/<node>
Retrieve information about a single node's connection to the Puppet Communications Protocol (PCP) broker.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include a specific node
name, such as:

GET "https://orchestrator.example.com:8143/orchestrator/v1/inventory/
<NODE_NAME>"

If you do not know the node's name, you can use the GET /inventory on page 716 endpoint to query all nodes. If
you want to query multiple specific nodes at once, use POST /inventory on page 718.

The GET /inventory/<node> endpoint does not support any additional parameters; however, as with other
orchestrator API endpoints, you must provide authentication.

Response format

A successful response is a JSON object that uses these keys to provide information about the specified node's PCP
broker connection:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 718

Key Definition

name The node's name.

connected The status of the connection between the node and
the PCP broker, either true (connected) or false
(disconnected).

broker The PCP broker the node is connected to. If
connected is false, this key is empty or omitted.

timestamp The time when the node connected to the PCP broker. If
connected is false, this key is empty or omitted.

For example:

{
 "name" : "node1.example.com",
 "connected" : true,
 "broker" : "pcp://broker.example.com/server",
 "timestamp" : "2017-03-29T21:48:09.633Z"
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. The
endpoint returns a 500 response if the PCP broker can't be reached.

POST /inventory
Returns information about multiple nodes' connections to the Puppet Communications Protocol (PCP) broker.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object specifying an array node names, such as:

{
 "nodes" : [
 "node1.example.com",
 "node2.example.com",
 "node3.example.com"
]
}

A complete curl request using this body might look like:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/inventory"
data='{"nodes" : ["node1.example.com", "node2.example.com",
 "node3.example.com"]}'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

Response format

A successful response is a JSON object that uses these keys to provide information about each node's PCP broker
connection:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 719

Key Definition

name The node's name.

connected The status of the connection between the node and
the PCP broker, either true (connected) or false
(disconnected).

broker The PCP broker the node is connected to. If
connected is false, this key is empty or omitted.

timestamp The time when the node connected to the PCP broker. If
connected is false, this key is empty or omitted.

For example, this is a response to a query about three specific nodes:

{
 "items" : [
 {
 "name" : "node1.example.com",
 "connected" : true,
 "broker" : "pcp://broker.example.com/server",
 "timestamp" : "2017-07-14T15:57:33.640Z"
 },
 {
 "name" : "node2.example.com",
 "connected" : false
 },
 {
 "name" : "node3.example.com",
 "connected" : true,
 "broker" : "pcp://broker.example.com/server",
 "timestamp" : "2017-07-14T15:41:19.242Z"
 }
]
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. The
endpoint returns a 500 response if the PCP broker can't be reached.

Jobs endpoints
Use the jobs endpoints to examine jobs and their details.

You can:

• GET /jobs on page 720: Retrieve details about all known jobs.
• GET /jobs/<job-id> on page 724: Retrieve details about a specific job.
• GET /jobs/<job-id>/nodes on page 727: Retrieve information about nodes associated with a specific job.
• GET /jobs/<job-id>/report on page 730: Retrieve a summary of a specific job.
• GET /jobs/<job-id>/events on page 731: Retrieve a list of events that occurred during a specific job.

For details about plan jobs, use the Plan jobs endpoints on page 752.

To stop an in-progress job, use POST /command/stop on page 701.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 720

GET /jobs
Retrieve details about all jobs that the orchestrator knows about.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, you can append parameters to the end of
the URI path, such as:

https://orchestrator.example.com:8143/orchestrator/v1/jobs?
limit=20&offset=20

These parameters are available:

Parameter Definition

limit Set the maximum number of jobs to include in the
response. The point at which the limit count starts is
determined by offset, and the job record sort order is
determined by order_by and order.

offset Specify a zero-indexed integer at which to start returning
results. For example, if you set this to 12, the response
returns jobs starting with the 13th record. The default is
0.

order_by Specify one of the following categories to use to sort the
results: owner, timestamp, environment, name,
or state.

Sorting by owner uses the login subfield of owner
records.

order Indicate whether results are returned in ascending (asc)
or descending (desc) order. The default is asc.

type Specify a job type to query, either deploy, task, or
plan_task.

task Specify a task name to match. Partial matches are
supported. If you specified type=deploy, you can't
use task.

min_finish_timestamp Returns only the jobs that finished at or after the supplied
UTC timestamp.

max_finish_timestamp Returns only the jobs that finished at or before the
supplied UTC timestamp.

Response format

The response is a JSON object containing an array, called items, and an object, called pagination.

The items array contains a JSON object for each job. Each object uses these keys to provide job details:

Key Definition

id An absolute URL that links to the newly created job.

name A stringified number identifying the newly created job.
You can use this with other endpoints, such as GET /
jobs/<job-id> on page 724 (retrieve information about
the status of the job) and POST /command/stop on page
701.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 721

Key Definition

state The job's current state: new, ready, running,
stopping, stopped, finished, or failed

Tip: If you want to know when a job entered and exited
each state, use the GET /jobs/<job-id> on page 724
endpoint.

command The command that created the job.

type The job type: deploy, task, plan_task,
plan_script, plan_upload, plan_command,
plan_wait, plan_apply, plan_apply_prep

options Options used to create the job (based on the command),
a description of the job, and the environment
the job operated in.

Previously, the description and environment
key were separate from options. However, these are
deprecated. Refer to the keys in options instead.

owner The subject ID, login, and other details of the user that
requested the job.

timestamp The time when the job's state last changed.

started_timestamp The time the job was created and started.

finished_timestamp The time the job finished.

duration If the job is finished, this is the number of seconds the
job took to run. If the job is still running, this is the
number of seconds the job has been running.

node_count The number of nodes the job ran on.

node_states A JSON map containing the number of nodes involved
with the job categorized by current node state. States
with no nodes are omitted. If there were no nodes
associated with the job, this value is null.

nodes A link to get more information about the nodes
participating in a given job. You can use this with the
GET /jobs/<job-id>/nodes on page 727 endpoint.

report A link to the report for a given job. You can use this with
the GET /jobs/<job-id>/report on page 730 endpoint.

events A link to the events for a given job. You can use this
with the GET /jobs/<job-id>/events on page 731
endpoint.

userdata An object of arbitrary key/value data supplied to the job.

The pagination object uses these keys:

• total: The total number of job records in the collection, regardless of limit and offset.
• limit, offset, order_by, order, and type: Reflects values supplied in the request. If you specified a

value, these key shows the value you specified. If you did not specify a value, the key shows the default value.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 722

Here is an example response describing two jobs and pagination information:

{
 "items": [
 {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/
jobs/1234",
 "name": "1234",
 "state": "finished",
 "command": "deploy",
 "type": "deploy",
 "node_count": 5,
 "node_states": {
 "finished": 2,
 "errored": 1,
 "failed": 1,
 "running": 1
 },
 "options": {
 "concurrency": null,
 "noop": false,
 "trace": false,
 "debug": false,
 "scope": {},
 "enforce_environment": true,
 "environment": "production",
 "evaltrace": false,
 "target": null,
 "description": "deploy the web app"
 },
 "owner" : {
 "email" : "admin@example.com",
 "is_revoked" : false,
 "last_login" : "2020-05-05T14:03:06.226Z",
 "is_remote" : true,
 "login" : "admin",
 "inherited_role_ids" : [2],
 "group_ids" : ["9a588fd8-3daa-4fc2-a396-bf88945def1e"],
 "is_superuser" : false,
 "id" : "751a8f7e-b53a-4ccd-9f4f-e93db6aa38ec",
 "role_ids" : [1],
 "display_name" : "Admin",
 "is_group" : false
 },
 "description": "deploy the web app",
 "timestamp": "2016-05-20T16:45:31Z",
 "started_timestamp": "2016-05-20T16:41:15Z",
 "finished_timestamp": "2016-05-20T16:45:31Z",
 "duration": "256.0",
 "environment": {
 "name": "production"
 },
 "report": {
 "id": "https://localhost:8143/orchestrator/v1/jobs/375/report"
 },
 "events": {
 "id": "https://localhost:8143/orchestrator/v1/jobs/375/events"
 },
 "nodes": {
 "id": "https://localhost:8143/orchestrator/v1/jobs/375/nodes"
 },
 "userdata": {
 "servicenow_ticket": "INC0011211"

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 723

 }
 },
 {
 "description": "",
 "report": {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/
jobs/1235/report"
 },
 "name": "1235",
 "events": {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/
jobs/1235/events"
 },
 "command": "plan_task",
 "type": "plan_task",
 "state": "finished",
 "nodes": {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/
jobs/1235/nodes"
 },
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/
jobs/1235",
 "environment": {
 "name": ""
 },
 "options": {
 "description": "",
 "plan_job": 197,
 "noop": null,
 "task": "facts",
 "sensitive": [],
 "scheduled-job-id": null,
 "params": {},
 "scope": {
 "nodes": [
 "orchestrator.example.com"
]
 },
 "project": {
 "project_id": "foo_id",
 "ref": "524df30f58002d30a3549c52c34a1cce29da2981"
 }
 },
 "timestamp": "2020-09-14T18:00:12Z",
 "started_timestamp": "2020-09-14T17:59:05Z",
 "finished_timestamp": "2020-09-14T18:00:12Z",
 "duration": "67.34",
 "owner": {
 "email": "",
 "is_revoked": false,
 "last_login": "2020-08-05T17:54:07.045Z",
 "is_remote": false,
 "login": "admin",
 "is_superuser": true,
 "id": "42bf351c-f9ec-40af-84ad-e976fec7f4bd",
 "role_ids": [
 1
],
 "display_name": "Administrator",
 "is_group": false
 },
 "node_count": 1,
 "node_states": {
 "finished": 1

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 724

 },
 "userdata": {}
 }
],
 "pagination": {
 "limit": 20,
 "offset": 0,
 "order": "asc",
 "order_by": "timestamp",
 "total": 2,
 "type": ""
 }
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. The
endpoint returns a 400 puppetlabs.orchestrator/validation-error response if there is a problem
with a supplied parameter, such as the limit parameter not being formatted as an integer.

GET /jobs/<job-id>
Retrieve details of a specific job, including the start and end times for each job state.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include an integer job
ID identifying a specific task or deployment. For example, this request queries a job with ID 375:

https://orchestrator.example.com:8143/orchestrator/v1/jobs/375

Job IDs are returned in responses from some Command endpoints on page 697 and GET /jobs on page 720.

A complete request might look like:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/jobs/81"

curl --insecure --header "$auth_header" "$uri"

Response format

The response is a JSON object that uses these keys to provide job details:

Key Definition

id The URI path from the request.

name A stringified number identifying the job.

state The job's current state: new, ready, running,
stopping, stopped, finished, or failed

Tip: The status key shows when the job entered and
exited each state.

command The command that created the job.

type The job type: deploy, task, plan_task,
plan_script, plan_upload, plan_command,
plan_wait, plan_apply, plan_apply_prep

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 725

Key Definition

options Options used to create the job (specific options depend
on the command), a description of the job, and the
environment the job operated in.

Previously, the description and environment
key were separate from options. However, these are
deprecated. Refer to the keys in options instead.

owner The subject ID and login of the user that requested the
job.

timestamp The time when the job's state last changed.

started_timestamp The time the job was created and started.

finished_timestamp The time the job finished.

duration If the job is finished, this is the number of seconds the
job took to run. If the job is still running, this is the
number of seconds the job has been running.

node_count The number of nodes the job ran on.

nodes A link to get more information about the nodes
participating in a given job. You can use this with the
GET /jobs/<job-id>/nodes on page 727 endpoint.

report A link to the report for a given job. You can use this with
the GET /jobs/<job-id>/report on page 730 endpoint.

events A link to the events for a given job. You can use this
with the GET /jobs/<job-id>/events on page 731
endpoint.

status The start and end times for each state the job was in.

userdata An object of arbitrary key/value data supplied to the job.

Here is an example response:

{
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/jobs/1234",
 "name" : "1234",
 "command" : "deploy",
 "type": "deploy",
 "state": "finished",
 "options" : {
 "concurrency" : null,
 "noop" : false,
 "trace" : false,
 "debug" : false,
 "scope" : {
 "nodes" : ["node1.example.com", "node2.example.com"] },
 "enforce_environment" : true,
 "environment" : "production",
 "evaltrace" : false,
 "target" : null
 },
 "node_count" : 2,

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 726

 "owner" : {
 "email" : "admin@example.com",
 "is_revoked" : false,
 "last_login" : "2020-05-05T14:03:06.226Z",
 "is_remote" : true,
 "login" : "admin",
 "inherited_role_ids" : [2],
 "group_ids" : ["9a588fd8-3daa-4fc2-a396-bf88945def1e"],
 "is_superuser" : false,
 "id" : "751a8f7e-b53a-4ccd-9f4f-e93db6aa38ec",
 "role_ids" : [1],
 "display_name" : "Admin",
 "is_group" : false
 },
 "description" : "deploy the web app",
 "timestamp": "2016-05-20T16:45:31Z",
 "started_timestamp": "2016-05-20T16:41:15Z",
 "finished_timestamp": "2016-05-20T16:45:31Z",
 "duration": "256.0",
 "environment" : {
 "name" : "production"
 },
 "status" : [{
 "state" : "new",
 "enter_time" : "2016-04-11T18:44:31Z",
 "exit_time" : "2016-04-11T18:44:31Z"
 }, {
 "state" : "ready",
 "enter_time" : "2016-04-11T18:44:31Z",
 "exit_time" : "2016-04-11T18:44:31Z"
 }, {
 "state" : "running",
 "enter_time" : "2016-04-11T18:44:31Z",
 "exit_time" : "2016-04-11T18:45:31Z"
 }, {
 "state" : "finished",
 "enter_time" : "2016-04-11T18:45:31Z",
 "exit_time" : null
 }],
 "nodes" : { "id" : "https://orchestrator.example.com:8143/orchestrator/v1/
jobs/1234/nodes" },
 "report" : { "id" : "https://orchestrator.example.com:8143/orchestrator/
v1/jobs/1234/report" },
 "userdata": {}
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The job ID in the request is not an
integer.

404 puppetlabs.orchestrator/
unknown-job

No job exists that matches the
specified job ID.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 727

GET /jobs/<job-id>/nodes
Retrieve information about nodes associated with a specific job.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include an integer job
ID identifying a specific task or deployment. Job IDs are returned in responses from some Command endpoints on
page 697 and GET /jobs on page 720.

You can also append these optional parameters:

Key Definition

limit Set the maximum number of nodes to include in the
response. The point at which the limit count starts is
determined by offset, and the node record sort order
is determined by order_by and order.

offset Specify a zero-indexed integer at which to start returning
results. For example, if you set this to 12, the response
returns nodes starting with the 13th record. The default is
0.

order_by Specify one of the following categories to use
to sort the results: name, duration, state,
start_timestamp, or finish_timestamp.

order Indicate whether results are returned in ascending (asc)
or descending (desc) order. The default is asc.

state Specify a specific node state to query: new, ready,
running, stopping, stopped, finished, or
failed.

For example, this URI queries up to 20 nodes in failed status:

https://orchestrator.example.com:8143/orchestrator/v1/jobs/375/nodes?
limit=20&state=failed

Response format

The response is a JSON object containing an object, called next-events, and an array, called items.

The next-events object contains these keys:

• id: A URI path you can use with the GET /jobs/<job-id>/events on page 731 endpoint to get information about
events associated with the job specified in the request.

• event: An event ID.

The items array contains a JSON object for each node associated with the job. Each object uses these keys to
provide node details:

Key Definition

timestamp The time of the most recent activity on the node.
This is deprecated; use start_timestamp and
finish_timestamp instead.

start_timestamp The time the node starting running. If the node hasn't
started running, or if it was skipped, the value is nil.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 728

Key Definition

finish_timestamp The time the node finished running. If the node hasn't
finished running, or if it was skipped, the value is nil.

duration • If the node has finished running, this value is the
duration, in seconds, of the Puppet run.

• If the node is currently running, this value is the time,
in seconds, that has elapsed since the node started
running.

• If the node hasn't started or was skipped, the value is
nil.

state The node's current state.

transaction_uuid The ID of the nodes last report. This field is deprecated.

name The node's hostname.

details A JSON object containing a message and other
information about the node's last event and the node's
current state. It can be empty, and it might duplicate
information from the results for historical reasons.
For example:

• If the node's state is finished or failed, the
details include a report-url.

• If the node's state is errored or skipped, check
the message for information about the problem.

• If the node's state is running, the details
include the run-time in seconds.

result A JSON object describing the outcome and event
information from the last node run. Exact contents
depends on the job type (task job or a Puppet run) and
whether the run succeeded, failed, or encountered an
error. The node run must have ended to report results.
For a task job, the results reflect the outcome of
executing the task. For a Puppet run, the results
reflect metrics from the Puppet run.

For example, this response describes one node:

{
 "next-events": {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/jobs/3/
events?start=10",
 "event": "10"
 },
 "items" : [{
 "timestamp" : "2015-07-13T20:37:01Z",
 "start_timestamp" : "2015-07-13T20:36:13Z",

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 729

 "finish_timestamp" : "2015-07-13T20:37:01Z",
 "duration" : 48.0,
 "state" : "finished",
 "transaction_uuid" : <UUID>,
 "name" : "node1.example.com",
 "details" : {
 "message": "Message from latest event"
 },
 "result": {
 "output_1": "success",
 "output_2": [1, 1, 2, 3,]
 }
 }]
}

Here are some examples of various results objects:

Errors when running tasks

"result" : {
 "msg" : "Running tasks is not supported for agents older than version
 5.1.0",
 "kind" : "puppetlabs.orchestrator/execution-failure",
 "details" : {
 "node" : "copper-6"
 }
}

"result" : {
 "error" : "Invalid task name 'package::status'"
}

Raw, standard task run output

"result" : {
 "output" : "test\n"
}

Structured task run output

"result" : {
 "status" : "up to date",
 "version" : "5.0.0.201.g879fc5a-1.el7"
}

Puppet run results

"result" : {
 "hash" : "d7ec44e176bb4b2e8a816157ebbae23b065b68cc",
 "noop" : {
 "noop" : false,
 "no_noop" : false
 },
 "status" : "unchanged",
 "metrics" : {
 "corrective_change" : 0,
 "out_of_sync" : 0,
 "restarted" : 0,
 "skipped" : 0,
 "total" : 347,
 "changed" : 0,
 "scheduled" : 0,

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 730

 "failed_to_restart" : 0,
 "failed" : 0
 },
 "environment" : "production",
 "configuration_version" : "1502024081"
}

puppet-apply ran as part of a plan

"result" : {
 "noop": false,
 "status" : "unchanged",
 "metrics" : {
 "corrective_change" : 0,
 "out_of_sync" : 0,
 "restarted" : 0,
 "skipped" : 0,
 "total" : 347,
 "changed" : 0,
 "scheduled" : 0,
 "failed_to_restart" : 0,
 "failed" : 0
 }
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The job ID in the request is not an
integer.

404 puppetlabs.orchestrator/
unknown-job

No job exists that matches the
specified job ID.

GET /jobs/<job-id>/report
Returns a report that summarizes a specific job.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include an integer job
ID identifying a specific task or deployment. For example, this request queries a job with ID 375:

https://orchestrator.example.com:8143/orchestrator/v1/jobs/375/report

Job IDs are returned in responses from some Command endpoints on page 697 and GET /jobs on page 720.

Response format

The response is a JSON object containing an array called items. The array contains one or more JSON objects
summarizing the job's status on each node it ran (or is currently running) on. These keys are used:

Key Definition

node The hostname of a node that the job ran on.

state The job's current state on a specific node: new, ready,
running, stopping, stopped, finished, or
failed

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 731

Key Definition

timestamp The time when the job's state last changed.

events IDs of events associated with the particular job and node.

For example, this response contains one summary report:

{
 "items" : [{
 "node" : "node1.example.com",
 "state" : "running",
 "timestamp" : "2015-07-13T20:37:01Z",
 "events" : []
 }, {
 ...
 }]
}

If you want more details about the job, use the GET /jobs/<job-id> on page 724 endpoint.

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The job ID in the request is not an
integer.

404 puppetlabs.orchestrator/
unknown-job

No job exists that matches the
specified job ID.

GET /jobs/<job-id>/events
Retrieve a list of events that occurred during a specific job.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include an integer job
ID identifying a specific task or deployment. Job IDs are returned in responses from some Command endpoints on
page 697 and GET /jobs on page 720.

You can use the optional start parameter to start the list of events from a specific event ID number.

For example, this request queries events associated with the 352 job, starting with event number 1272:

GET https://orchestrator.example.com:8143/orchestrator/v1/jobs/352/events?
start=1272

Response format

A successful response is a JSON object that uses these keys to detail the events in the job:

Key Definition

next-events Contains the id subkey, which has the URI supplied in
the request as its value.

id An event's ID.

items An array of JSON objects where each object is an event.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 732

Key Definition

type Each event has one event type, determined by the event's
status or circumstances that cause it to occur:

• node_errored: There was an error running
Puppet on a node.

• node_failed: The Puppet run failed.
• node_finished: Puppet ran successfully.
• node_running: Puppet has started running on a

node.
• node_skipped: A Puppet run was skipped on a

node (for example, when a dependency fails).
• job_aborted: A job ended without completing.
• job_stopping: The job received a stop request,

but it is still running (in the process of stopping).
• job_finished: The job is no longer running. The

details describe the final outcome. In the absence
of errors, job_finished is always the last event
for any job.

timestamp The time when the event was created.

details A JSON object containing information about the event.

message A message about the event.

Here is an example response body:

{
 "next-events" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/jobs/352/
events?start=1272"
 },
 "items" : [{
 "id" : "1272",
 "type" : "node_running",
 "timestamp" : "2016-05-05T19:50:08Z",
 "details" : {
 "node" : "puppet-agent.example.com",
 "detail" : {
 "noop" : false
 }
 },
 "message" : "Started puppet run on puppet-agent.example.com ..."
 }]
}

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 733

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The job ID or the start parameter
in the request are not supplied as
integers.

404 puppetlabs.orchestrator/
unknown-job

No job exists that matches the
specified job ID.

Scheduled jobs endpoints
Use the scheduled_jobs endpoints to query, edit, and delete scheduled orchestrator jobs.

You can:

• GET /scheduled_jobs/environment_jobs on page 733: Retrieve information about all scheduled environment
jobs.

• GET /scheduled_jobs/environment_jobs/<job-id> on page 737: Retrieve information about a single scheduled
environment job.

• POST /scheduled_jobs/environment_jobs on page 740: Create an environment job to run in the future.
• PUT /scheduled_jobs/environment_jobs/<job-id> on page 746: Edit or delete an existing scheduled

environment job.

Tip: An environment job is a deployment, task, or plan that runs in a specific environment, such as your
production environment.

GET /scheduled_jobs/environment_jobs
Retrieve information about scheduled environment jobs, which are deployments, tasks, or plans that run in a specific
environment. Use parameters to narrow the response scope.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, you can append optional parameters to the
end of the URI path, such as:

https://orchestrator.example.com:8143/orchestrator/v1/scheduled_jobs/
environment_jobs?limit=50&type=task

These parameters are available:

Parameter Definition

limit Set the maximum number of scheduled jobs to include in
the response. The point at which the limit count starts
is determined by offset, and the job record sort order
is determined by order_by and order.

offset Specify a zero-indexed integer at which to start returning
results. For example, if you set this to 12, the response
returns scheduled jobs starting with the 13th record. The
default is 0.

order_by Specify one of the following categories to use to sort the
results: next_run_time, environment, owner,
name, or type. The default is next_run_time.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 734

Parameter Definition

order Indicate whether results are returned in ascending (asc)
or descending (desc) order. The default is asc.

type Specify a job type to query, either deploy, task, or
plan.

Response format

The response is a JSON object containing an items array and a pagination object.

The items array contains a JSON object for each scheduled job. Each object can use these keys to provide job
details:

Key Definition

id The job's absolute URL, which includes the job's
numerical ID.

name The job's numerical ID as a stringified number.

enabled A Boolean indicating whether the job is enabled.

environment The environment that the job operates in.

owner The subject ID, email, and other details of the user that
requested the job.

description A user-provided description of the job. This can be
empty.

type The job's type, either plan, task, or deploy.

input An object describing options supplied to the job,
including:

• name: String-formatted project name of the task or
plan.

• parameters: An object containing key-value pairs
of non-sensitive parameters and values supplied to
the job.

• sensitive_parameters: An array of names of
sensitive parameters supplied to the job.

userdata An object containing arbitrary key-value pairs supplied
by the initiating user, if any were supplied.

schedule An object describing the job's schedule, including:

• start_time: An ISO-8601 timestamp indicating
the first time the job ran (or will run).

• interval: An object representing the frequency at
which the job runs, such as every 1300 seconds.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 735

Key Definition

next_run An object containing an ISO-8601 timestamp indicating
the scheduled job's next run time.

last_run If the job has not yet run, this is null. If the job has
run, this is an object containing an ISO-8601 timestamp
of the scheduled job's most recent run time and a job
object.

The job object can contains the submitted job's id or
name if the job succeeded. If the job failed, it contains
a submission_errorobject describing why the job
failed.

The pagination object includes these keys:

• total: The total number of job records in the collection, regardless of limit and offset.
• limit, offset, order_by, order, and type: Reflects values supplied in the request. If you specified a

value, these key shows the value you specified. If you did not specify a value, the key shows the default value, if
there is one.

This sample response describes two scheduled jobs and the pagination information:

{
 "items": [
 {
 "id": "https://host.example.com:8143/orchestrator/v1/scheduled_jobs/
environment_jobs/2",
 "name": "2",
 "environment": "plan_testing_env",
 "owner": {
 "email": "fred@example.com",
 "login": "fred",
 "display_name": "Fred",
 "id": "784beba4-8cc8-414f-aab0-e9a29c9b65c2",
 "is_revoked": false,
 "last_login": "2020-05-08T15:57:28.444Z",
 "is_remote": true,
 "is_group": false,
 "is_superuser": false,
 "role_ids": [
 1
],
 "inherited_role_ids": [
 2
],
 "group_ids": [
 "9a588fd8-3daa-4fc2-a396-bf88945def1e"
]
 },
 "description": "Fred's scheduled environment plan",
 "type": "plan",
 "next_run": {
 "time": "2021-12-12T19:50:08Z"
 },
 "last_run": {
 "time": "2021-11-12T19:50:08Z",
 "job": {
 "id": "https://host.example.com:8143/orchestrator/v1/
plan_jobs/42",

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 736

 "name": 42
 }
 },
 "schedule": {
 "start_time": "2018-10-05T19:50:08Z",
 "interval": {
 "value": 3600,
 "units": "seconds"
 }
 },
 "input": {
 "name": "plan_testing_env::example_plan",
 "parameters": {
 "param_1": "foo"
 },
 "sensitive_parameters" : ["password"]
 },
 "userdata": {
 "ticket": "TICKET-123"
 }
 },
 {
 "id": "https://host.example.com:8143/orchestrator/v1/scheduled_jobs/
environment_jobs/1",
 "name": "1",
 "environment": "plan_testing_env",
 "owner": {
 "email": "user@example.com",
 "login": "user",
 "display_name": "User",
 "id": "06990bb9-df3a-4150-964f-88b9cf0f8eec",
 "last_login": "2019-07-08T15:57:28.444Z",
 "is_revoked": false,
 "is_remote": true,
 "is_group": false,
 "is_superuser": false,
 "role_ids": [
 1
],
 "inherited_role_ids": [
 2
],
 "group_ids": [
 "9a588fd8-3daa-4fc2-a396-bf88945def1e"
]
 },
 "description": "",
 "type": "plan",
 "schedule": {
 "start_time": "2018-10-05T19:50:08Z",
 "interval": null
 },
 "input": {
 "name": "plan_testing_env::example_plan",
 "parameters": {
 "param_1": "foo"
 },
 "sensitive_parameters" : []
 },
 "userdata": {
 "approval_reference": "442"
 },
 "start_time": "2020-10-05T19:50:08Z",
 "next_run": {

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 737

 "time": "2021-12-12T19:50:08Z"
 },
 "last_run": {
 "time": "2021-11-12T19:50:08Z",
 "job": {
 "submission_error": {
 "kind" : "puppetlabs.orchestrator/unknown-environment",
 "msg" : "Unknown environment doesnotexist",
 "details" : {
 "environment" : "doesnotexist"
 }
 },
 "name": 33
 }
 }
 }
],
 "pagination": {
 "limit": 50,
 "offset": 0,
 "order": "asc",
 "order_by": "next_run_time",
 "total": 2,
 }
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774.

The endpoint returns a 400 puppetlabs.orchestrator/query-error response if you don't have
permission to run queries or there is a problem with a supplied parameter, such as the limit or offset parameters
not being formatted as integers.

GET /scheduled_jobs/environment_jobs/<job-id>
Retrieve information about a specific scheduled environment job, which is deployment, task, or plan that runs in a
specific environment.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include the ID of the
scheduled job you want to query. For example, this request queries a scheduled job with ID 81:

https://orchestrator.example.com:8143/orchestrator/v1/scheduled_jobs/
environment_jobs/81

You can use the GET /scheduled_jobs/environment_jobs on page 733 endpoint to get scheduled job IDs.

Response format

The response is a JSON object that uses these keys to provide the scheduled job's details:

Key Definition

id The job's absolute URL.

name A stringified number identifying the job.

enabled A Boolean indicating whether the job is enabled.

environment The environment that the job operates in.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 738

Key Definition

owner The subject ID, email, and other details of the user that
requested the job.

description A user-provided description of the job. This can be
empty.

type The job's type, such as plan, task, or deploy.

input An object describing options supplied to the job,
including:

• name: String-formatted project name of the task or
plan.

• parameters: An object containing key-value pairs
of non-sensitive parameters and values supplied to
the job.

• sensitive_parameters: An array of names of
sensitive parameters supplied to the job.

userdata An object containing arbitrary key-value pairs supplied
by the initiating user, if any were supplied.

schedule An object describing the job's schedule, including:

• start_time: An ISO-8601 timestamp indicating
the first time the job ran (or will run).

• interval: An object representing the frequency at
which the job runs, such as every 1300 seconds.

next_run An object containing an ISO-8601 timestamp indicating
the scheduled job's next run time.

last_run If the job has not yet run, this is null. If the job has
run, this is an object containing an ISO-8601 timestamp
of the scheduled job's most recent run time and a job
object.

The job object can contains the submitted job's id or
name if the job succeeded. If the job failed, it contains
a submission_errorobject describing why the job
failed.

For example:

{
 "name": "https://host.example.com:8143/orchestrator/v1/scheduled_jobs/
environment_jobs/2",
 "id": "2",
 "environment": "production",
 "owner": {
 "email": "fred@example.com",

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 739

 "login": "fred",
 "display_name": "Fred",
 "id": "784beba4-8cc8-414f-aab0-e9a29c9b65c2",
 "is_revoked": false,
 "last_login": "2020-05-08T15:57:28.444Z",
 "is_remote": true,
 "is_group": false,
 "is_superuser": false,
 "role_ids": [
 1
],
 "inherited_role_ids": [
 2
],
 "group_ids": [
 "9a588fd8-3daa-4fc2-a396-bf88945def1e"
]
 },
 "description": "Fred's scheduled environment plan",
 "type": "plan",
 "next_run": {
 "time": "2021-12-12T19:50:08Z"
 },
 "last_run": {
 "time": "2021-11-12T19:50:08Z",
 "job": {
 "id": "https://host.example.com:8143/orchestrator/v1/plan_jobs/42",
 "name": 42
 }
 },
 "schedule": {
 "start_time": "2018-10-05T19:50:08Z",
 "interval": {
 "value": 3600,
 "units": "seconds"
 }
 },
 "input": {
 "name": "example_module::example_plan",
 "parameters": {
 "param_1": "foo"
 },
 "sensitive_parameters" : ["password"]
 },
 "userdata": {
 "ticket": "TICKET-123"
 }
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774.

The endpoint returns a 400 puppetlabs.orchestrator/query-error response if you don't have
permission to run queries or the job ID is invalid.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 740

POST /scheduled_jobs/environment_jobs
Create an environment job to run in the future. An environment job is a deployment, task, or plan that runs in a
specific environment, such as a Puppet run on nodes in your production environment.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/json.
The body must be a JSON object using these required keys:

Key Definition

type Enumerated value indicating the type of action you want
to schedule, either plan, task, or deploy.

input An object describing job parameters, scope, or targets.
The contents depends on the type, as described in the
input object section, below.

environment A string specifying the name of the relevant
environment.

For task and plan jobs, this is the environment from
which to load the task or plan.

For deploy jobs, this can be an empty string or the
name of the environment to deploy.

schedule An object that uses the start_time and interval
keys to describe the job's schedule.

The start_time key accepts an ISO-8601 timestamp
indicating the first time that you want the job to run.

The interval key accepts either an object or null.
To only run the job once, use null. To schedule a
recurring job, supply an object containing value and
units. The units key is an enum that must be set to
seconds. The value key is an integer representing
the number of units to wait between job runs. For
example:

"interval": {
 "units": "seconds",
 "value": 86400
 }

description A string describing the job. You can supply an empty
string.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 741

Key Definition

userdata An object containing arbitrary key-value pairs supplied
to the job, such as a support ticket number. You can
supply an empty object.

For example, this request schedules the facts plan to run once on the node called node1.example.com in an
environment called my_environment:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/
scheduled_jobs/environment_jobs"
data='
 {
 "description": "run facts plan once on node1 in my_environment",
 "input": {
 "name": "sensitive_params::scheduled_jobs_storage",
 "parameters": {
 "primary": {
 "value": "example.delivery.puppetlabs.net"
 },
 "param_one": {
 "value": "first_value"
 }
 }
 },
 "environment": "my_environment",
 "schedule": {
 "start_time": "2022-01-28T09:35:56-08:00",
 "interval": null
 },
 "userdata": {
 "snow_ticket": "INC0011211"
 },
 "type": "plan"
 }
'

curl --insecure --header "$type_header" --header "$auth_header" --request
 POST "$uri" --data "$data"

The input object

The contents of the input object depends on the job's type (either plan, deploy, or task). The keys you can use
in the input object for each job type are described below. Not all keys are required, but the input object itself is a
required key.

The input object for plan jobs can contain:

• name: String-formatted name of the plan to run.
• parameters:An object containing a series of key-value pairs representing parameter inputs for the plan to use.

Parameters either specify standard parameter inputs or node targets.

Standard parameter inputs are represented as a parameter name key with the value in an object. The value key
accepts any data type as long as it is valid JSON. For example:

"parameters": {
 "param_one": {
 "value": "some_value"
 }

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 742

 }

The plan's node targets can be declared in the targets object. You can declare specific nodes in the value key,
much like a standard parameter input, or you can declare a variable group of nodes by supply a PuppetDB query.
To do this, you must supply a targets object that contain your query statement in the value key and "type":
"query". For example:

"parameters": {
 "targets": {
 "type": "query",
 "value": "nodes[certname] { }"
 }
 }

Supplying "type": "query" instructs the orchestrator to interpret the value as a PuppetDB query and pass the
resulting node lists as the parameter's value.

Here is a complete example of an input object for a plan job:

"input": {
 "name": "sensitive_params::scheduled_jobs_storage",
 "parameters": {
 "primary": {
 "value": "convex-swath.delivery.puppetlabs.net"
 },
 "targets": {
 "type": "query",
 "value": "nodes[certname] { }"
 }
 }
 }

You can use these keys in the input object for task jobs:

Key Description

name String-formatted name of the task to run.

parameters An object that can be empty or contain key-value pairs
representing standard parameter inputs for the task to
use.

Supply parameter name keys along with their
corresponding values in a flat structure. The value key
accepts any data type as long as it is valid JSON. For
example:

"parameters": {
 "param_one": "some_value"
 }

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 743

Key Description

scope An object containing exactly one key defining the nodes
that you want the task to target:

• nodes: A list of node names to target.
• query: A PuppetDB query to use to generate a list

of targeted nodes.
• node_group: The ID of a classifier node group

containing nodes to target.

For scope examples, refer to the request body examples
in POST /command/deploy on page 697. Note that
application is not a valid scope for a scheduled job.

targets An object containing connection information for SSH/
WinRM targets.

noop A Boolean specifying whether to run the task in no-op
mode. The default is false.

concurrency An integer specifying the maximum number of nodes to
run at one time. The default, if unspecified, is unlimited.

timeout A positive integer specifying the maximum number
of seconds allowed for a task to execute on any one
node. Task execution on the node is forcibly ended if the
timeout limit is reached. If unspecified, this key takes
the value of default-plan-timeout, which is
one of the Orchestrator and pe-orchestration-services
parameters on page 238.

transport A string indicating the transport method over which to
run the task.

Here is an example of a complete input object for a task job:

"input": {
 "name": "my_task",
 "scope": { "nodes": ["my_primary"]},
 }

You can use these keys in the input object for deploy jobs:

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 744

Key Description

scope Required. An object containing exactly one key
defining the nodes that you want the deployment to
target:

• nodes: A list of node names to target.
• query: A PuppetDB query to use to generate a list

of targeted nodes.
• node_group: The ID of a classifier node group

containing nodes to target.

For scope examples, refer to the request body examples
in POST /command/deploy on page 697.

concurrency An integer specifying the maximum number of nodes to
run at one time. The default, if unspecified, is unlimited.

debug A Boolean specifying whether to use the --debug flag
on Puppet agent runs.

enforce_environment A Boolean specifying whether to force agents to run in
the specified environment. This key must be false if
environment is an empty string.

evaltrace A Boolean specifying whether to use the --
evaltrace flag on Puppet agent runs.

filetimeout An integer specifying the value of the --
filetimeout flag on Puppet agent runs.

http_connect_timeout An integer specifying the value for the --
http_connect_timeout flag on Puppet agent runs.

http_keepalive_timeout An integer specifying the value for the --
http_keepalive_timeout flag on Puppet agent
runs.

http_read_timeout An integer specifying the value for the --
http_read_timeout flag on Puppet agent runs.

noop A Boolean specifying whether to run the deployment in
no-op mode. The default is false.

no_noop A Boolean specifying whether to run the agent in
enforcement mode. The default is false. This
key overrides noop = true if set in the agent's
puppet.conf file. This key can't be set to true if the
noop key is also set to true in the same request.

ordering A string defining the value of the --ordering flag on
Puppet agent runs.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 745

Key Description

skip_tags A string defining the value of the --skip_tags flag
on Puppet agent runs.

tags A string defining the value of the --tags flag on
Puppet agent runs.

trace A Boolean specifying whether to use the --trace flag
on Puppet agent runs.

use_cached_catalog A Boolean specifying whether to use the --
use_cached_catalog flag on Puppet agent runs.

usecacheonfailure A Boolean specifying whether to use the --
usecacheonfailure flag on Puppet agent runs.

Here is an example of an input object for a deploy job:

"input": {
 "scope": { "nodes": ["my_primary"]},
 }

Response format

If the job is successfully scheduled, the server returns 200 and a JSON object containing these keys:

• id: An absolute URL that links to the newly created job. You can use it with GET /scheduled_jobs/
environment_jobs/<job-id> on page 737 to retrieve information about the job.

• name: A stringified number identifying the newly created job.

For example:

{
 "scheduled_job" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/
scheduled_jobs/environment_jobs/2",
 "name" : "2"
 }
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key.
Possible errors include:

Response code Value Definition

404 puppetlabs.orchestrator/
unknown-environment

The specified environment does
not exist.

400 puppetlabs.orchestrator/
empty-environment

The specified environment
contains no nodes.

400 puppetlabs.orchestrator/
empty-target

The specified scope or targets
query resolves to an empty list of
nodes.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 746

Response code Value Definition

400 puppetlabs.orchestrator/
puppetdb-error

The request specified a query for
the scope or targets, and the
orchestrator is unable to make a
query to PuppetDB.

400 puppetlabs.orchestrator/
query-error

The request specified a query
for the scope or targets, and
the query is invalid or the user
submitting the request does not have
permission to run the query.

400 puppetlabs.orchestrator/
invalid-time

The supplied start_time
timestamp is in the past.

PUT /scheduled_jobs/environment_jobs/<job-id>
Edit or delete scheduled environment jobs.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the content type is application/
json, the URI path must contain the ID of the job you want to edit, and the body must be a JSON object. The body
can contain any of these top-level keys: input, environment, schedule, description, userdata, and
enabled. Top-level keys specified in your request completely overwrite existing values for those keys. Omitted top-
level keys are unchanged.

CAUTION:

If you supply a top-level key, the supplied value completely replaces the key's existing value for the
scheduled job.

If you want to add new content to an existing value, such as adding a parameter to the input object, you
must supply the key's entire current value and your additional new content.

For descriptions of keys and their contents, refer to POST /scheduled_jobs/environment_jobs on page 740. Pay
particular attention to the input object, which can have a lot of nested values.

To make sure you aren't missing any values, you can use GET /scheduled_jobs/environment_jobs/<job-id> on page
737 to get the job's current configuration.

While you can't delete a scheduled job, you can disable the job as a form of soft deletion. To disable a job, supply the
following body in your request:

{
 "enabled": false
}

Response format

If the job is successfully edited, the server returns 200 and a JSON object containing the edited job's id and name.
For example:

{
 "scheduled_job" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/
scheduled_jobs/environment_jobs/2",
 "name" : "2"
 }

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 747

}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key.
Possible errors include errors described on POST /scheduled_jobs/environment_jobs on page 740 and 400
puppetlabs.orchestrator/disabled-scheduled-job if you try to edit a disabled job (where
"enabled": false).

GET /scheduled_jobs (deprecated)
Prior to deprecation, this endpoint retrieved information about scheduled jobs.

Important: This endpoint is deprecated. Instead, use GET /scheduled_jobs/environment_jobs on page 733 and
GET /scheduled_jobs/environment_jobs/<job-id> on page 737. Tools using this deprecated endpoint must be
upgraded to use the new endpoints.

While you can manually re-enable this endpoint, this is not recommended because this endpoint only returns an
empty array. If you need to re-enable this endpoint, insert the following code in orchestrator.conf:

{
 orchestrator: {
 scheduled-jobs-v1-api: true;
 }
}

This also re-enables DELETE /scheduled_jobs/<job-id> (deprecated) on page 747.

Request format

Prior to deprecation, when Forming orchestrator API requests on page 694 to this endpoint, you could append
parameters to the end of the URI path, such as:

https://orchestrator.example.com:8143/orchestrator/v1/scheduled_jobs?
limit=20&type=task

This endpoint accepted the same parameters as GET /scheduled_jobs/environment_jobs on page 733.

Response format

Because this endpoint is deprecated, the response is always a JSON object containing an empty items array.

 {
 "items": []
 }

DELETE /scheduled_jobs/<job-id> (deprecated)
Prior to deprecation, this endpoint deleted scheduled jobs.

Important: This endpoint is deprecated. Instead, use PUT /scheduled_jobs/environment_jobs/<job-id> on page
746. Tools using this deprecated endpoint must be upgraded to use the new endpoint.

While you can manually re-enable this endpoint, this is not recommended because this endpoint can't find jobs to
delete. If you need to re-enable this endpoint, insert the following code in orchestrator.conf:

{
 orchestrator: {
 scheduled-jobs-v1-api: true;
 }

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 748

}

This also re-enables GET /scheduled_jobs (deprecated) on page 747.

Request format

Prior to deprecation, when Forming orchestrator API requests on page 694 to this endpoint, the URI path must
have included the ID of the scheduled job you wanted to delete. For example, this request deleted a scheduled job
with ID 81:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/
scheduled_jobs/81"

curl --insecure --header "$auth_header" -X DELETE "$uri"

Response format

Because this endpoint is deprecated, the response is always 204 No Content.

Plans endpoints
Use the plans endpoints to get information about plans.

GET /plans
Lists all known plans in a specific environment.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, you can use the default URI path to query
plans in the production environment, such as:

https://orchestrator.example.com:8143/orchestrator/v1/plans

For any other environments, you must use the environment parameter to specify the environment whose plans you
want to query. For example, this request queries plans in the development environment:

https://orchestrator.example.com:8143/orchestrator/v1/plans?
environment=development

Response format

The response is a JSON object containing an environment object and a items array.

The environment object contains these keys:

• name: The environment specified in the request.
• code_id: Either null or a unique string. Puppet Server uses the code_id to retrieve the version of file

resources in an environment at the time when a catalog was compiled. You can learn more about code_id in the
Puppet Static catalogs documentation.

The items array contains one JSON object for each plan in the environment. Each plan object uses these keys:

Key Definition

id A URI path you can use with the GET /plans/<module>/
<plan-name> on page 750 endpoint to learn more
about the plan.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/static-catalogs.html

pe | Orchestrating Puppet runs, tasks, and plans | 749

Key Definition

name The plan's name. You can use this with, for example, the
POST /command/plan_run on page 711 endpoint.

permitted A Boolean indicating if you are permitted to run the
plan.

For example, this response describes three plans in the production environment:

{
 "environment": {
 "name": "production",
 "code_id": null
 },
 "items": [
 {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/plans/
profile/firewall",
 "name": "profile::firewall",
 "permitted": true
 },
 {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/plans/
profile/rolling_update",
 "name": "profile::rolling_update",
 "permitted": true
 },
 {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/plans/
canary/random",
 "name": "canary::random",
 "permitted": false
 }
]
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The environment parameter does
not supply a legal environment name.
For example, the name is not a string
or contains illegal characters.

404 puppetlabs.orchestrator/
unknown-environment

No environment exists that matches
the specified environment.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 750

GET /plans/<module>/<plan-name>
Get information about a specific plan, including metadata. This endpoint provides more information than the GET /
plans endpoint.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include a specific
module and plan name, such as:

GET "https://orchestrator.example.com:8143/orchestrator/v1/plans/profile/
firewall"

Use the GET /plans on page 748 endpoint to get module and plan names.

If a plan is available in multiple environments, you can append the environment parameter to retrieve details
about the plan in a specific environment. If you do not specify this parameter, the endpoint uses the default value,
which is production. For example, this request retrieves details about the firewall plan in the development
environment:

GET "https://orchestrator.example.com:8143/orchestrator/v1/plans/profile/
firewall?environment=development"

Response format

The response is a JSON object that uses these keys to provide information about the specified plan:

Key Definition

id The URI path identifying the module and plan, as
supplied in the request.

name The plan's name. You can use this with, for example, the
POST /command/plan_run on page 711 endpoint.

environment A JSON object containing the name of the environment
specified in the request and the code_id.

The code_id is either null or a unique string
that Puppet Server uses to retrieve the version of file
resources in an environment at the time when a catalog
was compiled. You can learn more about code_id in
the Puppet Static catalogs documentation.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/static-catalogs.html

pe | Orchestrating Puppet runs, tasks, and plans | 751

Key Definition

metadata A JSON object that can be empty or contain a
description of the plan and a parameters JSON
object.

The parameters object, if present, can use these keys:

• type: The required parameter type, as a valid
Puppet type. If the parameter has no defined type, the
value is Any.

• default_value: The parameter's default value.
Omitted if the parameter has no default value.

• description: The parameter's description.
Omitted if the parameter has no description.

Tip: The parameters are determined by the plan's
Parameters key on page 686.

permitted A Boolean indicating if you are permitted to run the
plan.

For example:

{
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/plans/
package/install",
 "name": "canary::random",
 "environment": {
 "name": "production",
 "code_id": null
 },
 "metadata": {},
 "permitted": true
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

There is a problem with the format
of the module name, plan name, or
environment parameter in the
request. For example, one of the
values contains illegal characters.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 752

Response code Key Description

404 puppetlabs.orchestrator/
unknown-environment

No environment exists that matches
the specified environment.

404 puppetlabs.orchestrator/
unknown-plan

The endpoint can't find a match for
the specified plan. There are several
possible reasons for this, including:

• The endpoint can't find a valid
relationship between the specified
module and plan.

• The plan name is well-formed but
doesn't match any existing plans.

• There is no such plan in the
specified environment.

For example, a plan that only exists
in the development environment
returns 404 if the request specified
a different environment or used the
default environment value.

Plan jobs endpoints
Use the plan_jobs endpoints to examine plan jobs and their details.

You can:

• GET /plan_jobs on page 752: Retrieve details about all known plan jobs.
• GET /plan_jobs/<job-id> on page 756: Retrieve details about a specific plan job.
• GET /plan_jobs/<job-id>/events on page 759: Retrieve a list of events that occurred during a specific plan job.
• GET /plan_jobs/<job-id>/event/<event-id> on page 762: Retrieve the details of a specific event for a specific

plan job.

For details about jobs that aren't plan jobs, use the Jobs endpoints on page 719.

To stop an in-progress plan job, use POST /command/stop_plan on page 702.

GET /plan_jobs
Retrieve details about all plan jobs that the orchestrator knows about.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, you can append parameters to the end of
the URI path, such as:

https://orchestrator.example.com:8143/orchestrator/v1/plan_jobs?
limit=20&order=desc

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 753

These parameters are available:

Parameter Definition

limit Set the maximum number of plan jobs to include in the
response. The point at which the limit count starts is
determined by offset, and the job record sort order is
determined by order_by and order.

offset Specify a zero-indexed integer at which to start returning
results. For example, if you set this to 12, the response
returns jobs starting with the 13th record. The default is
0.

order_by Specify one of the following categories to use to sort the
results: owner, timestamp, environment, name,
or state.

Sorting by owner uses the login subfield of owner
records.

order Indicate whether results are returned in ascending (asc)
or descending (desc) order. The default is asc.

results Whether you want the response to include or
exclude plan output. The default is include.

min_finish_timestamp Returns only the plan jobs that finished at or after the
supplied UTC timestamp.

max_finish_timestamp Returns only the plan jobs that finished at or before the
supplied UTC timestamp.

Response format

The response is a JSON object containing an array, called items, and an object, called pagination.

The items array contains a JSON object for each plan job. Each object uses these keys to provide plan job details:

Key Definition

id The plan job's absolute URL, which includes the plan
job's ID.

name A stringified number identifying the plan job.

state The plan job's current state: pending, running,
success, or failure

Tip: If you want to know when a plan job entered and
exited each state, use the GET /plan_jobs/<job-id> on
page 756 endpoint.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 754

Key Definition

options A JSON object containing plan job options, including:

• description: A user-provided description of the
plan job.

• plan_name: The name of the plan that ran.
• parameters: Parameters supplied to the plan job,

such as target nodes.
• scheduled_job_id: A job ID, if the plan ran as a

scheduled job. Otherwise, the value is null.
• environment: The environment the plan ran in.

Omitted if not applicable.
• sensitive: Password or SSH details supplied to

the plan. Empty if not applicable.
• project: Project information, such as a

project_id and ref. Omitted if not applicable.

result Plan output resulting from running the plan job. Omitted
if you supplied results=exclude in the request.

owner The subject ID, login, and other details of the user that
requested the plan job.

created_timestamp The time the plan job was created.

finished_timestamp The time the plan job finished, or null if the job is
currently running.

duration If the plan job is finished, this is the number of seconds
the job took to run. If the plan job is still running, this is
the number of seconds the job has been running.

events A link to the events associated with a plan job. You can
use this with the GET /plan_jobs/<job-id>/events on
page 759 endpoint.

userdata An object of arbitrary key/value data supplied to the job.

The pagination object uses these keys:

• total: The total number of job records in the collection, regardless of limit and offset.
• limit and offset: Reflects values supplied in the request. If you specified a value, these key shows the value

you specified. If you did not specify a value, the key shows the default value.

Here is an example response describing two plan jobs and pagination information:

{
 "items": [

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 755

 {
 "finished_timestamp": "2020-09-23T18:00:13Z",
 "name": "38",
 "events": {
 "id": "https://orchestrator.example.com:8143:8143/orchestrator/v1/
plan_jobs/38/events"
 },
 "state": "success",
 "result": [
 "orchestrator.example.com: CentOS 7.2.1511 (RedHat)"
],
 "id": "https://orchestrator.example.com:8143:8143/orchestrator/v1/
plan_jobs/38",
 "created_timestamp": "2020-09-23T18:00:08Z",
 "duration": 123.456,
 "options": {
 "description": "just the facts",
 "plan_name": "facts::info",
 "parameters": {
 "targets": "orchestrator.example.com"
 },
 "sensitive": [],
 "scheduled_job_id": "116",
 "project" : {
 "project_id": "myproject_id",
 "ref": "524df30f58002d30a3549c52c34a1cce29da2981"
 }
 },
 "owner": {
 "email": "",
 "is_revoked": false,
 "last_login": "2020-08-05T17:54:07.045Z",
 "is_remote": false,
 "login": "admin",
 "is_superuser": true,
 "id": "42bf351c-f9ec-40af-84ad-e976fec7f4bd",
 "role_ids": [
 1
],
 "display_name": "Administrator",
 "is_group": false
 },
 "userdata": {
 "servicenow_ticket": "INC0011211"
 }
 },
 {
 "finished_timestamp": null,
 "name": "37",
 "events": {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/
plan_jobs/37/events"
 },
 "state": "running",
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/
plan_jobs/37",
 "created_timestamp": "2018-06-06T20:22:08Z",
 "duration": 123.456,
 "options": {
 "description": "Testing myplan",
 "plan_name": "myplan",
 "parameters": {
 "nodes": [
 "orchestrator.example.com"

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 756

]
 },
 "sensitive": ["secret"],
 "environment": "production",
 "scheduled_job_id": null
 },
 "owner": {
 "email": "",
 "is_revoked": false,
 "last_login": "2018-06-06T20:22:06.327Z",
 "is_remote": false,
 "login": "admin",
 "is_superuser": true,
 "id": "42bf351c-f9ec-40af-84ad-e976fec7f4bd",
 "role_ids": [
 1
],
 "display_name": "Administrator",
 "is_group": false
 },
 "result": null,
 "userdata": {}
 },
],
 "pagination": {
 "limit": 6,
 "offset": 3,
 "total": 40
 }
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. The
endpoint returns a 400 puppetlabs.orchestrator/validation-error response if there is a problem
with a supplied parameter, such as the limit parameter not being formatted as an integer.

GET /plan_jobs/<job-id>
Retrieve details of a specific plan job, including the start and end times for each job state.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include an integer job
ID identifying a specific plan job. Plan job IDs are returned in responses from plan-related Command endpoints on
page 697 and the GET /plan_jobs on page 752 endpoint. For example, this request queries a plan job with ID
375:

https://orchestrator.example.com:8143/orchestrator/v1/plan_jobs/375

Job IDs are returned in responses from Command endpoints on page 697 and the GET /jobs on page 720
endpoint.

A complete request might look like:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8143/orchestrator/v1/
plan_jobs/81"

curl --insecure --header "$auth_header" "$uri"

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 757

Response format

The response is a JSON object that uses these keys to provide plan job details:

Key Definition

id The plan job's absolute URL, which includes the plan
job's ID.

name A stringified number identifying the plan job.

state The plan job's current state: pending, running,
success, or failure

options A JSON object containing plan job options, including:

• description: A user-provided description of the
plan job.

• plan_name: The name of the plan that ran.
• parameters: Parameters supplied to the plan job,

such as target nodes.
• scheduled_job_id: A job ID, if the plan ran as a

scheduled job. Otherwise, the value is null.
• environment: The environment the plan ran in.

Omitted if not applicable.
• sensitive: Password or SSH details supplied to

the plan. Empty if not applicable.
• project: Project information, such as a

project_id and ref. Omitted if not applicable.

result Plan output resulting from running the plan job.

owner The subject ID, login, and other details of the user that
requested the plan job.

timestamp The time when the plan job's state last changed.

events A link to the events associated with the plan job. You
can use this with the GET /plan_jobs/<job-id>/events on
page 759 endpoint.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 758

Key Definition

status A JSON object representing all jobs that ran as part of
the plan. For each job, there is an array detailing each
state the job was in while it ran, as well as the start
and end times for each state.

Job states are different from plan job states. Job
states include new, ready, running, stopping,
stopped, finished, and failed.

userdata An object of arbitrary key/value data supplied to the job.

In this example response, two jobs ran as part of the plan, and each job had two states:

{
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/
plan_jobs/1234",
 "name": "1234",
 "state": "success",
 "options": {
 "description": "This is a plan run",
 "plan_name": "package::install",
 "parameters": {
 "foo": "bar"
 }
 },
 "result": {
 "output": "test\n"
 },
 "owner": {
 "email": "",
 "is_revoked": false,
 "last_login": "YYYY-MM-DDT17:06:48.170Z",
 "is_remote": false,
 "login": "admin",
 "is_superuser": true,
 "id": "42bf351c-f9ec-40af-84ad-e976fec7f4bd",
 "role_ids": [
 1
],
 "display_name": "Administrator",
 "is_group": false
 },
 "timestamp": "YYYY-MM-DDT16:45:31Z",
 "status": {
 "1": [
 {
 "state": "running",
 "enter_time": "YYYY-MM-DDT18:44:31Z",
 "exit_time": "YYYY-MM-DDT18:45:31Z"
 },
 {
 "state": "finished",
 "enter_time": "YYYY-MM-DDT18:45:31Z",
 "exit_time": null
 }
],
 "2": [
 {
 "state": "running",

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 759

 "enter_time": "YYYY-MM-DDT18:44:31Z",
 "exit_time": "YYYY-MM-DDT18:45:31Z"
 },
 {
 "state": "failed",
 "enter_time": "YYYY-MM-DDT18:45:31Z",
 "exit_time": null
 }
]
 },
 "events": {
 "id": "https://localhost:8143/orchestrator/v1/plan_jobs/1234/events"
 },
 "userdata": {}
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The job ID in the request is not an
integer.

404 puppetlabs.orchestrator/
unknown-job

No plan job exists that matches the
specified job ID.

GET /plan_jobs/<job-id>/events
Retrieve a list of events that occurred during a specific plan job.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include an integer job
ID identifying a specific plan job. Plan job IDs are returned in responses from plan-related Command endpoints on
page 697 and the GET /plan_jobs on page 752 endpoint.

You can use the optional start parameter to start the list of events from a specific event ID number.

For example, this request queries events associated with the 352 plan job, starting with event number 1272:

GET https://orchestrator.example.com:8143/orchestrator/v1/plan_jobs/352/
events?start=1272

Response format

A successful response is a JSON object containing a next-events object and an items array.

The next-events object contains two subkeys:

• id: The URI supplied in the request.
• event: The ID of the first event returned or the start parameter, if supplied in the request.

The items array uses these keys to detail the plan job's events:

Key Definition

id An individual event's ID

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 760

Key Definition

type Each event has one event type, determined by the event's
status or circumstances that cause it to occur:

• task_start: A task run started.
• script_start: A script run starts as part of a

plan.
• command_start: A command run starts as part of

a plan.
• upload_start: A file upload starts as part of a

plan.
• wait_start: A wait_until_available()

call starts as part of a plan.
• out_message: As part of a plan, out::message

is called.
• apply_start: A puppet apply run started as

part of a plan.
• apply_prep_start: An apply_prep run starts

as part of a plan.
• plan_finished: The plan job successfully

finished.
• plan_failed: The plan job failed.

A plan containing the run_plan() function completes
the secondary plan during the primary plan job. Such
subplans do not have their own plan jobs – They are
included with, and completed as part of, the original job.
These event types indicate when a subplan started or
finished:

• plan_start: The run_plan() function started a
plan within the current plan job.

• plan_end: The subplan, triggered by the
run_plan() function, finished. This event
type is specific to subplans and different from
plan_finished.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 761

Key Definition

timestamp The time the event occurred or was created.

details A JSON object containing information about the event.
Specific contents depends on the event type:

• For any *_start events (except plan_start),
details include the job-id of the associated action
or task.

• For plan_finished and plan_failed events,
details include the plan-id and result.

• For out_message events, details include the
message contents, truncated to 1,024 bytes. You
can use the GET /plan_jobs/<job-id>/event/<event-
id> on page 762 endpoint to get the full message
content.

• For plan_start events, details include the plan,
which identifies the subplan that ran within the
original plan.

• For plan_end events, details include the plan
(which is the subplan that ran within the original
plan) and the duration (which is how long the
subplan ran).

Here is an example response body:

{
 "next-events" : {
 "id" : "https://orchestrator.example.com:8143/orchestrator/v1/
plan_jobs/352/events?start=1272",
 "event": "1272"
 },
 "items" : [{
 "id" : "1273",
 "type" : "task_start",
 "timestamp" : "2016-05-05T19:50:08Z",
 "details" : {
 "job-id" : "8765"
 }
 },
 {
 "id" : "1274",
 "type" : "plan_finished",

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 762

 "timestamp" : "2016-05-05T19:50:14Z",
 "details" : {
 "plan-id" : "1234",
 "result" : {
 "Plan output"
 },
 },
 }]
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The plan job ID or the start
parameter in the request are not
supplied as integers.

404 puppetlabs.orchestrator/
unknown-job

No plan job exists that matches the
specified plan job ID.

GET /plan_jobs/<job-id>/event/<event-id>
Retrieve the details of a specific event for a specific plan job.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include an integer plan
job ID and an integer event ID. You can get plan job IDs from plan-related Command endpoints on page 697 and
the GET /plan_jobs on page 752 endpoint. You can get event IDs from the GET /plan_jobs/<job-id>/events on
page 759 endpoint.

For example, this request queries event number 1272 for plan job number 352:

GET https://orchestrator.example.com:8143/orchestrator/v1/plan_jobs/352/
event/1272

Tip: The URI path uses the singular event, and not events, like the GET /plan_jobs/<job-id>/events on page
759 endpoint.

Response format

A successful response is a JSON object that uses these keys to provide the event details:

Key Definition

id The event's ID.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 763

Key Definition

type The event's type, determined by the event's status or
circumstances that cause it to occur:

• task_start: A task run started.
• script_start: A script run starts as part of a

plan.
• command_start: A command run starts as part of

a plan.
• upload_start: A file upload starts as part of a

plan.
• wait_start: A wait_until_available()

call starts as part of a plan.
• out_message: As part of a plan, out::message

is called.
• apply_start: A puppet apply run started as

part of a plan.
• apply_prep_start: An apply_prep run starts

as part of a plan.
• plan_finished: The plan job successfully

finished.
• plan_failed: The plan job failed.

A plan containing the run_plan() function completes
the secondary plan during the primary plan job. Such
subplans do not have their own plan jobs – They are
included with, and completed as part of, the original job.
These event types indicate when a subplan started or
finished:

• plan_start: The run_plan() function started a
plan within the current plan job.

• plan_end: The subplan, triggered by the
run_plan() function, finished. This event
type is specific to subplans and different from
plan_finished.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 764

Key Definition

timestamp The time the event occurred (or was created).

details A JSON object containing information about the event.
Specific contents depends on the event type:

• For any *_start events (except plan_start),
details include the job-id of the associated action
or task.

• For plan_finished and plan_failed events,
details include the plan-id and result.

• For out_message events, details include the
complete message contents.

• For plan_start events, details include the plan,
which identifies the subplan that ran within the
original plan.

• For plan_end events, detail include the plan
(which is the subplan that ran within the original
plan) and the duration (which is how long the
subplan ran).

Here is an example of a response body:

{
 "id": "1265",
 "type": "out_message",
 "timestamp": "2016-05-05T19:50:06Z",
 "details": {
 "message": "this is an output message"
 }
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The plan job ID or the event ID
in the request are not supplied as
integers.

404 puppetlabs.orchestrator/
unknown-job

No plan job exists that matches the
specified plan job ID.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 765

Response code Key Description

404 puppetlabs.orchestrator/
mismatched-job-event-id

The specified event ID does not
match any event ID associated with
the specified plan job ID.

Tasks endpoints
Use the tasks endpoints to get information about tasks you've installed and tasks included with Puppet Enterprise
(PE).

GET /tasks
Lists all tasks in a specific environment.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, you can use the default URI path to query
tasks in the production environment, such as:

https://orchestrator.example.com:8143/orchestrator/v1/tasks

For any other environments, you must use the environment parameter to specify the environment whose tasks you
want to query. For example, this request queries tasks in the development environment:

https://orchestrator.example.com:8143/orchestrator/v1/plans?
environment=development

Response format

The response is a JSON object containing an environment object and a items array.

The environment object contains these keys:

• name: The environment specified in the request.
• code_id: Either null or a unique string specifying where the environment's tasks are listed. Puppet Server uses

the code_id to retrieve the version of file resources in an environment at the time when a catalog was compiled.
You can learn more about code_id in the Puppet Static catalogs documentation.

The items array contains one JSON object for each task in the environment. Each task object uses these keys:

Key Definition

id A URI path you can use with the GET /tasks/<module>/
<task-name> on page 766 endpoint to learn more
about the task.

name A stringified number identifying the task. You can use
this with, for example, the POST /command/task on page
704 endpoint.

For example, this response describes three tasks in the production environment:

{
 "environment": {
 "name": "production",
 "code_id": "urn:puppet:code-
id:1:a86da166c30f871823f9b2ea224796e834840676;production"
 },
 "items": [
 {

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/static-catalogs.html

pe | Orchestrating Puppet runs, tasks, and plans | 766

 "id": "https://orchestrator.example.com:8143/orchestrator/v1/tasks/
package/install",
 "name": "package::install"
 },
 {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/tasks/
package/upgrade",
 "name": "package::upgrade"
 },
 {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/tasks/
exec/init",
 "name": "exec"
 }
]
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

The environment parameter does
not supply a legal environment name.
For example, the name is not a string
or contains illegal characters.

404 puppetlabs.orchestrator/
unknown-environment

No environment exists that matches
the specified environment.

GET /tasks/<module>/<task-name>
Get information about a specific task, including metadata and file information. This endpoint provides more
information than the GET /tasks endpoint.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include a specific
module and task name, such as:

GET "https://orchestrator.example.com:8143/orchestrator/v1/tasks/package/
install"

Use the GET /tasks on page 765 endpoint to get module and plan names.

To request a module's default task, use init as the task name, such as:

GET "https://orchestrator.example.com:8143/orchestrator/v1/tasks/package/
init"

If a task is available in multiple environments, you can append the environment parameter to retrieve details
about the task in a specific environment. If you do not specify this parameter, the endpoint uses the default value,
which is production. For example, this request retrieves details about the install task in the development
environment:

GET "https://orchestrator.example.com:8143/orchestrator/v1/tasks/package/
install?environment=development"

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 767

Response format

The response is a JSON object that uses these keys to provide information about the specified task:

Key Definition

id The URI path identifying the module and task, as
supplied in the request.

name A stringified number identifying the task. You can use
this with, for example, the POST /command/task on page
704 endpoint.

environment A JSON object containing the name of the environment
specified in the request and the code_id.

code_id is either null or a unique string specifying
where the environment's tasks are listed. Puppet Server
uses the code_id to retrieve the version of file
resources in an environment at the time when a catalog
was compiled. You can learn more about code_id in
the Puppet Static catalogs documentation.

metadata A JSON object containing the Task metadata on page
657.

files An array of JSON objects describing files used by the
task. Each file object can use these keys:

• filename: The base name of the file.
• uri: An object containing the path and params

you can use to locate the file and the version of the
file used (such as the version from the production
environment). The client determines which host to
download the file from.

• sha256: The SHA-256 hash of the file content, in
lowercase hexadecimal form.

• size_bytes: The size of the file content in bytes.

For example:

{
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/tasks/
package/install",
 "name": "package::install",
 "environment": {
 "name": "production",
 "code_id": "urn:puppet:code-
id:1:a86da166c30f871823f9b2ea224796e834840676;production"
 },
 "metadata": {
 "description": "Install a package",
 "supports_noop": true,
 "input_method": "stdin",
 "parameters": {
 "name": {
 "description": "The package to install",

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/static-catalogs.html

pe | Orchestrating Puppet runs, tasks, and plans | 768

 "type": "String[1]"
 },
 "provider": {
 "description": "The provider to use to install the package",
 "type": "Optional[String[1]]"
 },
 "version": {
 "description": "The version of the package to install, defaults to
 latest",
 "type": "Optional[String[1]]"
 }
 }
 },
 "files": [
 {
 "filename": "install",
 "uri": {
 "path": "/package/tasks/install",
 "params": {
 "environment": "production"
 }
 },
 "sha256":
 "a9089b5b9720dca38a49db6f164cf8a053a7ea528711325da1c23de94672980f",
 "size_bytes": 693
 }
]
}

Error responses

If there is an error, Orchestrator API error responses on page 774 provide error information in the kind key:

Response code Key Description

400 puppetlabs.orchestrator/
validation-error

There is a problem with the format
of the module name, task name, or
environment parameter in the
request. For example, one of the
values contains illegal characters.

404 puppetlabs.orchestrator/
unknown-environment

No environment exists that matches
the specified environment.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 769

Response code Key Description

404 puppetlabs.orchestrator/
unknown-task

The endpoint can't find a match for
the specified task. There are several
possible reasons for this, including:

• The endpoint can't find a valid
relationship between the specified
module and task.

• The task name is well-formed but
doesn't match any existing tasks.

• There is no such task in the
specified environment.

For example, a task that only exists
in the development environment
returns 404 if the request specified
a different environment or used the
default environment value.

Usage endpoints
Use the usage endpoint to view details about your deployment's active nodes.

For information about how nodes are counted, which nodes are counted, node usage limitations, and monthly busting
limits, refer to How nodes are counted on page 449.

GET /usage
Retrieves information about the orchestrator's daily node usage, Puppet events activity on nodes, and nodes that are
present in PuppetDB.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, you can append parameters to the end of
the URI path, such as:

https://orchestrator.example.com:8143/orchestrator/v1/usage?
start_date=2022-01-01&end_date=2022_04_30&events=exclude

These parameters are available:

Parameter Definition

start_date Specify the earliest date to query, in YYYY-MM-DD
format.

end_date Specify the latest date to query, in YYYY-MM-DD
format. If you also specified start_date, the
end_date must be greater than or equal to the
start_date.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 770

Parameter Definition

events Specifies whether you want the response to include
or exclude daily Puppet events activity. The default is
include.

If set to exclude, the response only contains node
counts (total nodes and the number of nodes with and
without agents). Specifically, the response omits the
number of corrective changes, the number of intentional
changes, the number of task runs, and the number of plan
runs.

Response format

The response is a JSON object containing an array, called items, and an object, called pagination.

The pagination object contains the start_date and end_date parameters as supplied in the request.

The items array contains one JSON object for each day. Each object uses these keys to provide details about daily
node usage:

Key Definition

date An ISO-8601 date representing the day in UTC.

total_nodes The total number of nodes used on a particular date,
starting from midnight UTC. Unused or inactive nodes
are not counted.

nodes_with_agent The number of unique nodes, out of the total_nodes,
that have an agent installed. This is the number of nodes
in PuppetDB on a particular date.

nodes_without_agent The number of unique nodes, out of the total_nodes,
that do not have an agent installed.

corrective_agent_changes The number of corrective changes made by agent runs on
a particular date.

Omitted if the request contained events=exclude.

intentional_agent_changes The number of intentional changes made by agent runs
on a particular date.

Omitted if the request contained events=exclude.

nodes_affected_by_task_runs The number of tasks run (counted per node that a task
runs on) on a particular date.

Omitted if the request contained events=exclude.

nodes_affected_by_plan_runs The number of plans run (counted per node that a plan
runs on) on a particular date.

Omitted if the request contained events=exclude.

For example, this is a response to a request that contained events=exclude:

{
 "items":[

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 771

 {
 "date": "2018-06-08",
 "total_nodes": 100,
 "nodes_with_agent": 95,
 "nodes_without_agent": 5
 }, {
 "date": "2018-06-07",
 "total_nodes": 100,
 "nodes_with_agent": 95,
 "nodes_without_agent": 5
 }, {
 "date": "2018-06-06",
 "total_nodes": 100,
 "nodes_with_agent": 95,
 "nodes_without_agent": 5
 }, {
 "date": "2018-06-05",
 "total_nodes": 100,
 "nodes_with_agent": 95,
 "nodes_without_agent": 5
 }
],
 "pagination":{
 "start_date": "2018-06-01",
 "end_date": "2018-06-30"
 }
}

Error Responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. The
endpoint returns a 400 puppetlabs.orchestrator/validation-error response if there is a problem
with a supplied parameter, such as the start_date parameter not having the proper date format.

Scopes endpoints
Use the scopes endpoints to retrieve information about task-targets.

A task-target is a set of tasks and nodes/node groups you can use to provide specific privilege escalation for users
who would otherwise not be able to run certain tasks or run tasks on certain nodes or node groups. When you grant
a user permission to use a task-target, the user can run the task(s) in the task-target on the set of nodes defined in the
task-target. Use the POST /command/task_target on page 707 endpoint to create task-targets.

GET /scopes/task_targets
Retrieve information about all orchestrator task-targets.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the request is a basic call, such as:

GET https://orchestrator.example.com:8143/orchestrator/v1/scopes/
task_targets

The GET /scopes/task_targets endpoint does not support any parameters; however, as with other
orchestrator API endpoints, you must provide authentication.

Tip: The GET /scopes/task_targets endpoint returns information about all known task-targets. When there
are many task-targets, the response body contains lots of data. For shorter responses, you can use the GET /scopes/
task_targets/<task-target-id> on page 773 endpoint to query a specific task-target, if you know the task-target's ID.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 772

Response format

A successful response is a JSON object containing an array of task-targets. The following keys are used to provide
information about each task-target:

Key Definition

id The task-target's absolute URL, which includes the task-target's numerical
ID.

name A stringified number identifying the task-target.

display_name The task-target's human-readable name. Multiple task-targets can have the
same display name.

tasks An array of tasks that the task-target can run. Omitted if all_tasks is
true.

all_tasks A Boolean indicating whether the task-target can run any tasks on designated
node targets. If tasks is specified, then all_tasks is false. If tasks
is omitted, then all_tasks is true.

nodes An array of certnames identifying nodes the task-target can run tasks on. It
can be empty. Combines with node_groups and pql_query to form a
total node pool.

node_groups An array of node group IDs identifying node groups the task-target can run
tasks on. It can be empty. Combines with nodes and pql_query to form
a total node pool.

pql_query A string specifying a single PQL query identifying nodes the task-target can
run tasks on. Omitted if empty. Combines with nodes and node_groups
to form a total node pool.

Tip: For information about how these keys are set and possible values for each key, refer to the POST /command/
task_target on page 707 endpoint.

For example, this response describes three task-targets:

{
 "items": [
 {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/scopes/
task_targets/1",
 "name": "1",
 "tasks": [
 "package::install",
 "exec"
],
 "all_tasks": "false",
 "nodes": [
 "wss6c3w9wngpycg",
 "jjj2h5w8gpycgwn"
],
 "node_groups":[
 "3c4df64f-7609-4d31-9c2d-acfa52ed66ec",
 "4932bfe7-69c4-412f-b15c-ac0a7c2883f1"
],
 "pql_query": "nodes[certname] { catalog_environment = \"production
\" }"
 },
 {

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 773

 "id": "https://orchestrator.example.com:8143/orchestrator/v1/scopes/
task_targets/2",
 "name": "2",
 "tasks": [
 "imaginary::task"
],
 "all_tasks": "false",
 "nodes": [
 "mynode"
],
 "node_groups":[
]
 },
 {
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/scopes/
task_targets/3",
 "name": "3",
 "all_tasks": true,
 "nodes": [
 "xxx6c3w9wngpycg",
 "bbb2h5w8gpycgwn"
],
 "node_groups":[
 "3c4df64f-7609-4d31-9c2d-acfa52ed66ec",
 "4932bfe7-69c4-412f-b15c-ac0a7c2883f1"
]
 }
]
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774.

GET /scopes/task_targets/<task-target-id>
Get information about a specific task-target.

Request format

When Forming orchestrator API requests on page 694 to this endpoint, the URI path must include an integer
identifying a specific task-target For example, this request queries a task-target with ID 375:

https://orchestrator.example.com:8143/orchestrator/v1/scopes/
task_targets/375

Task-target IDs are returned in responses from the POST /command/task_target on page 707 and GET /scopes/
task_targets on page 771 endpoints.

Response format

The response is a JSON object that uses the following keys to provide details about the task-target:

Key Definition

id The task-target's absolute URL, which includes the task-target's numerical
ID.

name A stringified number identifying the task-target.

display_name The task-target's human-readable name. Multiple task-targets can have the
same display name.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 774

Key Definition

tasks An array of tasks that the task-target can run. Omitted if all_tasks is
true.

all_tasks A Boolean indicating whether the task-target can run any tasks on designated
node targets. If tasks is specified, then all_tasks is false. If tasks
is omitted, then all_tasks is true.

nodes An array of certnames identifying nodes the task-target can run tasks on. It
can be empty. Combines with node_groups and pql_query to form a
total node pool.

node_groups An array of node group IDs identifying node groups the task-target can run
tasks on. It can be empty. Combines with nodes and pql_query to form
a total node pool.

pql_query A string specifying a single PQL query identifying nodes the task-target can
run tasks on. Omitted if empty. Combines with nodes and node_groups
to form a total node pool.

Tip: For information about how these keys are set and possible values for each key, refer to the POST /command/
task_target on page 707 endpoint.

For example:

{
 "id": "https://orchestrator.example.com:8143/orchestrator/v1/scopes/
task_targets/1",
 "name": "1",
 "tasks": [
 "package::install",
 "exec"
],
 "all_tasks": "false",
 "nodes": [
 "wss6c3w9wngpycg",
 "jjj2h5w8gpycgwn"
],
 "node_groups":[
 "3c4df64f-7609-4d31-9c2d-acfa52ed66ec",
 "4932bfe7-69c4-412f-b15c-ac0a7c2883f1"
],
 "pql_query": "nodes[certname] { catalog_environment = \"production\" }"
}

Error responses

This endpoint's error responses follow the usual format for Orchestrator API error responses on page 774. The
endpoint returns a 404 puppetlabs.orchestrator/unknown-task-target response if the specified
task-target ID doesn't match any existing task-target IDs.

Orchestrator API error responses
Orchestrator API error responses are formatted as JSON objects.

Error responses use these keys:

Key Definition

kind The kind of error encountered.

© 2024 Puppet, Inc., a Perforce company

pe | Orchestrating Puppet runs, tasks, and plans | 775

Key Definition

msg The message associated with the error.

details A hash with more information about the error.

For example, if an environment does not exist for a given request, you might get this error response:

{
 "kind" : "puppetlabs.orchestrator/unknown-environment",
 "msg" : "Unknown environment doesnotexist",
 "details" : {
 "environment" : "doesnotexist"
 }
}

Migrating Bolt tasks and plans to PE
If you use Bolt tasks and plans to automate parts of your configuration management, you can move that Bolt content
to a control repo and transform it into a Puppet Enterprise (PE) environment. This lets you manage and run tasks and
plans using PE and the console. Bolt projects have the same structure as Puppet modules, and they can be loaded from
the modules directory of a PE environment.

The control repo is a central Git repository from which PE fetches content. An environment is a space for PE authors
to write and install content, similar to a Bolt project.

There are two ways to get your Bolt content into an environment:

• Move your Bolt code to a new control repo. Do this if you have a Boltdir, or an embedded project directory, in
a repo that also contains other code that you do not want to migrate to PE.

• Configure PE to point to the Bolt project. Do this is if you have a dedicated repo for Bolt code, or a local project
directory, and don't want to duplicate it in PE.

Move Bolt content to a new PE repo
Move your Bolt project content out of your Boltdir and into a fresh PE control repo.

Before you begin

• Install PE on your machine. See Getting started with Puppet Enterprise on page 52.
• Set up your PE control repo and environments. See Managing environments with a control repository on page

779.

To move Bolt content to a repo:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/projects.html#embedded-project-directories
https://puppet.com/docs/bolt/latest/bolt_project_directories.html#local-project-directory
https://puppet.com/docs/bolt/latest/bolt_project_directories.html#local-project-directory

pe | Orchestrating Puppet runs, tasks, and plans | 776

1. Commit the contents of your Bolt project to a branch of your PE control repo. Place the Bolt project under the
modules directory. If you're using Bolt module workflows, make sure you run bolt module install and
commit the resulting Puppetfile to your control repo.

Your new structure is similar to a project directory in Bolt, for example:

test-environment/
Puppetfile
bolt-project.yaml
data
common.yaml
inventory.yaml
modules
 ### project
 ### manifests
 # ### my_class.pp
 ### plans
 # ### deploy.pp
 # ### diagnose.pp
 ### tasks
 ### init.json
 ### init.py

2. Create a configuration file called environment.conf and add it to the root directory of the branch. This file
configures the environment in PE.

3. Add the modulepath setting to the environment.conf file by adding the following line:

modulepath = modules:modules:$basemodulepath

Note: PE picks up modules only from the modules directory. It's important to add modules to the
modulepath setting so it matches the defaults for your Bolt project. If you have a modulepath setting in
bolt-project.yaml, match it to the modulepath setting in environment.conf.

4. Publish the branch to the PE control repo.

5. Deploy code using puppet code deploy --<ENVIRONMENT>, where <ENVIRONMENT> is the name of
your branch, to commit the new branch to Git.

Note: You can also deploy code using a webhook. See Triggering Code Manager with a webhook on page 820
for more information.

After you deploy code, modules (and the tasks and plans within them) listed in the new environment's Puppetfile are
available to use in PE.
Related information
Plans in PE versus Bolt plans on page 661
Some plan language functions, features, and behaviors are different in PE than they are in Bolt. If you are used to Bolt
plans, familiarize yourself with some of these key differences and limitations before you attempt to write or run plans
in PE.

Point PE to a Bolt project
Allow PE to manage content in your dedicated Bolt repo.

Before you begin

• Install PE on your machine. See Getting started with Puppet Enterprise on page 52.
• Ensure your Bolt project follows the local project directory structure.

To point PE to your Bolt content:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt_installing_modules.html
https://puppet.com/docs/bolt/latest/projects.html
https://puppet.com/docs/bolt/latest/bolt_project_directories.html#local-project-directory

pe | Orchestrating Puppet runs, tasks, and plans | 777

1. To allow access to the control repo, generate a private SSH key without a password:

a) To generate the key pair, run:

ssh-keygen -t ed25519 -P '' -f /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519

b) To allow the pe-puppet user to access the key, run:

puppet infrastructure configure

Your private key is located at /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519, and your public key is at /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519.pub.

c) Configure your Git host to use the SSH public key you generated. Usually, this involves creating a user or
service account and assigning the SSH public key to it, but the exact process varies for each Git host. For
instructions on adding SSH keys to your Git server, check your Git host's documentation (such as GitHub,
BitBucket Server, or GitLab).

Important: Code management needs read access to your control repository, as well as any module
repositories referenced in the Puppetfile.

2. Change the name of your branch to production. PE uses branches in Git as environments and the default
environment is production.

3. Create a configuration file called environment.conf and add it to the root directory of the branch. This file
configures the environment.

4. Add the modulepath setting to the environment.conf file by adding the following line:

modulepath = modules:modules:$basemodulepath

Note: PE picks up modules only from the modules directory. It's important to add modules to the
modulepath setting so it matches the defaults for your Bolt project. If you have a modulepath setting in
bolt-project.yaml, match it to the modulepath setting in environment.conf.

5. Publish the branch to the PE control repo.

6. Deploy code using puppet code deploy --<ENVIRONMENT>, where <ENVIRONMENT> is the name of
your branch, to commit the new branch to Git.

Note: You can also deploy code using a webhook. See Triggering Code Manager with a webhook on page 820
for more information.

After you deploy code, modules (and the tasks and plans within them) listed in the new environment's Puppetfile are
available to use in PE.
Related information
Plans in PE versus Bolt plans on page 661
Some plan language functions, features, and behaviors are different in PE than they are in Bolt. If you are used to Bolt
plans, familiarize yourself with some of these key differences and limitations before you attempt to write or run plans
in PE.

PE workflows for Bolt users
Understand the differences between PE and Bolt commands and workflows before you start running tasks and plans
in PE.

Connecting to nodes

You must connect PE to each node you want to run tasks on or include in a plan. See Add nodes to the inventory on
page 60 for instructions on adding agent or agentless nodes to your inventory.

© 2024 Puppet, Inc., a Perforce company

https://developer.github.com/v3/guides/managing-deploy-keys/#machine-users
https://confluence.atlassian.com/bitbucketserver/ssh-access-keys-for-system-use-776639781.html
https://docs.gitlab.com/ce/ssh/README.html#deploy-keys

pe | Managing and deploying Puppet code | 778

Installing tasks and plans

In PE, as in Bolt, you use the mod command to download modules. But instead of running the bolt puppetfile
install command to install them, you trigger Code Manager and deploy code using the puppet code deploy
command. See Triggering Code Manager on the command line on page 814.

Running tasks and plans

PE does not recognize the bolt command for running tasks and plans. Instead, use the puppet task run and
puppet plan run commands, or use the console.

To run tasks or plans from the command line, see:

• Running tasks from the command line on page 637
• Running plans from the command line on page 665

To run tasks or plans from the console, see:

• Running tasks from the console on page 628
• Running plans from the console on page 664

Limitations in PE

Not everything in Bolt works in PE. For example, many pre-installed Bolt modules are not included in PE and many
plan functions do not work, such as file::exists and set_feature. See Plans in PE versus Bolt plans on
page 661.

Managing and deploying Puppet code

Puppet Enterprise (PE) includes built-in tools for managing and deploying your Puppet code. Code Manager and r10k
are code management tools that automatically install modules, create and maintain environments, and deploy new
code to your primary server and compilers, all based on version control of your Puppet code and data.

You can use either Code Manager or r10k to manage and deploy Puppet code. Both tools are built into PE and do not
require separate installations.

Code Manager is the recommended tool for managing Puppet code in PE. Code Manager automates the deployment
of your Puppet code and data. You make code and data changes on your workstation, push changes to your Git
repository, and, from there, Code Manager creates environments, installs modules, and deploys the new code to your
primary server and compilers, without interrupting agent runs.

If you are unable to use Code Manager, you can use r10k to manage your code.

• Managing environments with a control repository on page 779
To manage your Puppet code and data with Code Manager or r10k, you need a Git version control repository. This
control repository is where code management stores code and data to deploy your environments.
• Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.
• Managing code with Code Manager on page 790
Code Manager automates the management and deployment of your Puppet code. When you push code updates to
your source control repository, Code Manager syncs the code to your primary server and compilers. This allows all
your servers to run the new code as soon as possible, without interrupting in-progress agent runs.
• Managing code with r10k on page 840
r10k is a code management tool that allows you to manage your environment configurations (such as production,
testing, and development) in a source control repository. Unlike Code Manager's automated deployments, r10k
requires you to manually deploy code changes from your control repository using the r10k command line tool on your
primary server and all compilers.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 779

Managing environments with a control repository
To manage your Puppet code and data with Code Manager or r10k, you need a Git version control repository. This
control repository is where code management stores code and data to deploy your environments.

How the control repository works
Code management relies on version control to track, maintain, and deploy your Puppet code and data. The control
repository (or control repo) is a Git repository that code management uses to manage environments in your
infrastructure. When you update code and data in your control repo, code management updates your environments
accordingly.

Code management creates and maintains environments based on the branches in your control repo. For example, if
your control repo has a production branch, a development branch, and a testing branch, code management
creates a production environment, a development environment, and a testing environment. Each environment has its
own version of your Puppet code and data based on the contents of the corresponding branch.

Environments are created on the primary server at /etc/puppetlabs/code/environments. You can learn
more About environments in the Puppet documentation.

CAUTION: When you enable code management, Puppet manages the environment directories and does not
preserve existing environments. Existing environments with the same names as new ones are overwritten,
and environments not represented in the control repo are erased. If you were already using environment
directories, make sure you commit those files or code to the corresponding branches of your control repo (or
back them up elsewhere) before you start configuring code management.

At minimum, a control repo includes:

• A Git remote repository. This is where your control repo is stored on your version control host.
• A default branch named production, rather than the usual Git default of master. You might have additional

branches for other environments, such as development or testing.
• A Puppetfile to manage your environment content.
• An environment.conf file that modifies the $modulepath setting to allow environment-specific modules

and settings.

There are two ways to create control repos. To ensure your control repo has the recommended structure, code
examples, and configuration scripts, Create a control repository from the Puppet template on page 61. This
template covers most customer situations. If you cannot access the internet or cannot download modules directly from
the Forge because of your organization's security rules, Create an empty control repo on page 781 and add the
necessary files to it.

Restriction: For Windows systems, make sure your version control is configured to use CRLF line endings. Check
your version control host's documentation for instructions on how to do this.

It is possible to have multiple control repos, and you can use separate repos to contain your module content or other
data. If you have multiple repos, you need to:

• Configure the repositories setting in your code management tool's Git settings:

• Configuring Code Manager Git settings
• Configuring r10k Git settings

• Map your sources.

• Configuring Code Manager sources
• Configuring r10k sources

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/environments_about.html

pe | Managing and deploying Puppet code | 780

Create a control repository from the Puppet template
To create a control repository (or control repo) that has the recommended structure, code examples, and configuration
scripts, base your control repo on the Puppet control repo template. This template covers most customer situations.

The Puppet control repo template contains the necessary files to configure a functioning code management control
repo plus helpful Puppet code examples, including:

• Basic code examples for setting up roles and profiles.
• A Puppetfile that references modules to manage content in your environments.
• An example Hiera configuration file and hieradata directory.
• A config_version script that tells you which version of code from your control repo was applied to your

agents.
• An environment.conf file that implements the config_version script and a site-modules directory

for roles, profiles, and custom modules.

In situations where you can't access the internet, or where organizational security policies prevent downloading
modules from the Forge, you can Create an empty control repo on page 781 and add the necessary files to it.

To use the template, you must set up a private SSH key, copy the control repo template to your development
workstation, set your own remote Git repository as the default source, and then push the template contents to that
source.

Important: The following steps assume you are using GitHub Enterprise with SSH. For more information and
instructions for other version control hosts, such as GitLab or BitBucket, go to the Puppet control-repo template
README.

1. To allow access to the control repo, generate a private SSH key without a password:

a) To generate the key pair, run:

ssh-keygen -t ed25519 -P '' -f /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519

b) To allow the pe-puppet user to access the key, run:

puppet infrastructure configure

Your private key is located at /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519, and your public key is at /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519.pub.

c) Configure your Git host to use the SSH public key you generated. Usually, this involves creating a user or
service account and assigning the SSH public key to it, but the exact process varies for each Git host. For
instructions on adding SSH keys to your Git server, check your Git host's documentation (such as GitHub,
BitBucket Server, or GitLab).

Important: Code management needs read access to your control repository, as well as any module
repositories referenced in the Puppetfile.

2. In your Git user account or organization, create a repository named control-repo, and make sure a README
is not automatically generated when you create the repo. Take note of the repo's SSH URL.

Important: Do not use an existing repo. The template requires a new, empty repo named control-repo.

3. If you haven't already installed Git, run yum install git.

4. To clone the Puppet control-repo template, run:

git clone https://github.com/puppetlabs/control-repo.git

5. Change to the control-repo directory: cd control-repo

6. Remove the template repo as the origin: git remote remove origin

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/control-repo
https://github.com/puppetlabs/control-repo
https://github.com/puppetlabs/control-repo
https://developer.github.com/v3/guides/managing-deploy-keys/#machine-users
https://confluence.atlassian.com/bitbucketserver/ssh-access-keys-for-system-use-776639781.html
https://docs.gitlab.com/ce/ssh/README.html#deploy-keys

pe | Managing and deploying Puppet code | 781

7. Set your control repo as the origin: git remote add origin
<SSH_URL_FOR_YOUR_CONTROL_REPO>

8. Push the contents of the production branch of the cloned control repo to your remote control repo: git push
origin production

You now have a control repository based on the Puppet control-repo template. After configuring Code Manager,
when you make changes to your control repo on your workstation and push the changes to the remote control repo on
your Git host, Code Manager detects and deploys your infrastructure changes.

By using the control-repo template, you now also have a Puppetfile to which you can add and manage content,
like module code.

Related information
Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.

Managing code with Code Manager on page 790
Code Manager automates the management and deployment of your Puppet code. When you push code updates to
your source control repository, Code Manager syncs the code to your primary server and compilers. This allows all
your servers to run the new code as soon as possible, without interrupting in-progress agent runs.

Add an environment on page 783
Create new environments by creating branches based on your control repo's production branch.

Create an empty control repo
In situations where you can't access the internet, or where organizational security policies prevent downloading
modules from the Forge, you can create an empty control repo and add the necessary files to it.

When you can't use the Puppet control repo template, you must create a new repo on your Git host, clone it to your
workstation, make changes to the repo (such as adding a configuration file to allow code management tools to find
modules in your module directories), and push your changes to the remote repo on your Git host.

1. To allow access to the control repo, generate a private SSH key without a password:

a) To generate the key pair, run:

ssh-keygen -t ed25519 -P '' -f /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519

b) To allow the pe-puppet user to access the key, run:

puppet infrastructure configure

Your private key is located at /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519, and your public key is at /etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519.pub.

c) Configure your Git host to use the SSH public key you generated. Usually, this involves creating a user or
service account and assigning the SSH public key to it, but the exact process varies for each Git host. For
instructions on adding SSH keys to your Git server, check your Git host's documentation (such as GitHub,
BitBucket Server, or GitLab).

Important: Code management needs read access to your control repository, as well as any module
repositories referenced in the Puppetfile.

© 2024 Puppet, Inc., a Perforce company

https://developer.github.com/v3/guides/managing-deploy-keys/#machine-users
https://confluence.atlassian.com/bitbucketserver/ssh-access-keys-for-system-use-776639781.html
https://docs.gitlab.com/ce/ssh/README.html#deploy-keys

pe | Managing and deploying Puppet code | 782

2. In your Git account, create a repository with the name you want your control repo to have (we recommend
control-repo), and take note of the repo's SSH URL.

Check your Git host's documentation for exact instructions, because this process varies for each host. For
example, to create a new repo on GitHub:

a. Click + at the top of the page, and choose New repository.
b. Select the account Owner for the repository.
c. Name the repository (for example, control-repo).
d. Note the repository's SSH URL for later use.

Tip: While you can use an existing repo as your control repo, we recommend starting with a new repo to avoid
possible unexpected changes to existing files and directories once you enable code management.

3. Clone the new repo to your workstation: git clone <REPOSITORY_URL>

4. In the control repo's main directory, create a configuration file named environment.

The environment.conf file allows code management tools to find modules in your site- and environment-
specific module directories. You can learn more about this file and its contents in the Puppet environment.conf
documentation.

5. To set the module path, open the environment.conf file in a text editor, add the following line, and then save
and close the file.

modulepath=site-modules:modules:$basemodulepath

6. Add the new file to the index and commit your change by running git add environment.conf and then
git commit -m "add environment.conf"

7. Rename the master branch to production by running git branch -m master production

Important: Puppet Enterprise requires the control repo's default branch to be production.

8. Push your repository's production branch from your workstation to your Git host by running: git push -u
origin production

After configuring the Puppetfile and code management, when you make changes to your control repo on your
workstation and push the changes to the remote control repo on your Git host, code management detects and deploys
your infrastructure changes.

After creating your control repo, you must create a Puppetfile to manage your environment content with code
management. Then, you must configure either Code Manager (recommended) or r10k.

Related information
Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.

Managing code with Code Manager on page 790
Code Manager automates the management and deployment of your Puppet code. When you push code updates to
your source control repository, Code Manager syncs the code to your primary server and compilers. This allows all
your servers to run the new code as soon as possible, without interrupting in-progress agent runs.

Managing code with r10k on page 840
r10k is a code management tool that allows you to manage your environment configurations (such as production,
testing, and development) in a source control repository. Unlike Code Manager's automated deployments, r10k
requires you to manually deploy code changes from your control repository using the r10k command line tool on your
primary server and all compilers.

Add an environment on page 783

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/config_file_environment.html

pe | Managing and deploying Puppet code | 783

Create new environments by creating branches based on your control repo's production branch.

Add an environment
Create new environments by creating branches based on your control repo's production branch.

Before you begin
You must have:

• A control repository.
• A Puppetfile in your control repo's production branch.
• Configured Code Manager or r10k.
• Selected a code management deployment method (either the puppet-code command or a webhook).

Restriction: If you have multiple control repos, you can't repeat branch names unless you use a source prefix. Go to
Configuring sources on page 808 for more information.

1. In your control repo, create a new branch based on the production branch: git branch
<NEW_BRANCH_NAME>

2. Check out the new branch: git checkout <NEW_BRANCH_NAME>

3. Edit the Puppetfile to track the necessary modules and data for your new environment, and then save your
changes.

4. Commit your changes: git commit -m "prepare Puppetfile for new environment"

5. Push your changes: git push origin <NEW_BRANCH_NAME>

6. Deploy your environments as you normally would, either on the command line or with a webhook.

Code management detects the new environment in your control repo and begins managing it, as explained in How the
control repository works on page 779.

Delete an environment from code management
To delete an environment that is being managed by Code Manager or r10k, delete the corresponding branch from
your control repository.

1. On your control repo's production branch, delete the environment's corresponding remote branch by running
git push origin --delete <BRANCH_TO_DELETE>

2. Delete the local branch by running git branch -d <BRANCH_TO_DELETE>

3. Deploy your environments as you normally would, either on the command line or with a webhook.

Important: If you use webhooks to deploy environments, Code Manager deletes the environment from the
primary server's live code directories the next time it deploys changes to any other environment. If you want
to immediately delete the environment from the primary server's live code directories, deploy all environments
manually by running puppet-code deploy --all --wait

Managing environment content with a Puppetfile
A Puppetfile specifies detailed information about each environment's Puppet code and data.

The Puppetfile also specifies where to locate each environment's Puppet code and data, where to install it, and
whether to update it. Both Code Manager and r10k use a Puppetfile to install and manage your environments' content.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 784

The Puppetfile
Your control repository's branches represent environments, and each environment might have different modules or
data. To manage each environment's content, you need a Puppetfile. In the Puppetfile, you specify which modules and
data you want in each environment.

A Puppetfile is a formatted text file that specifies the modules and data you want in your control repository (where
each branch of the control repo represents an environment). The Puppetfile can specify desired module versions,
how to load modules and data, and where to place modules and data in the environment. In your Puppetfile you can
declare:

• Modules from the Forge.
• Modules from Git repositories.
• Data and other non-module content (such as Hiera data) from Git repositories.

You can declare as much or as little of this content as needed for each environment. In the Puppetfile, each module
or repository is specified by a mod directive, along with the name of the content and other information code
management needs to correctly install and maintain the declared modules and data.

Related information
Managing environments with a control repository on page 779
To manage your Puppet code and data with Code Manager or r10k, you need a Git version control repository. This
control repository is where code management stores code and data to deploy your environments.

Create a Puppetfile on page 785
The Puppetfile manages an environment's content. When you create a Puppetfile, use the mod directive to declare an
environment's content.

Managing modules with a Puppetfile
Almost all Puppet manifests are kept in modules, which are collections of Puppet code and data that have a specific
directory structure. With Puppet Enterprise (PE) code management, you only use the Puppetfile to install and manage
modules.

To learn more about modules in general, refer to the Modules overview in the Puppet documentation.

By default, Code Manager and r10k install module content in a modules directory in the same directory the
Puppetfile is in. For example, with the default settings, declaring the puppetlabs-apache module in your
Puppetfile installs the apache module into the ./modules/apache directory. However, you can Change the
module installation directory on page 790.

Important: Code management purges any content in your control repo's module directory that is not listed in your
Puppetfile. For this reason, if you use Code Manager or r10k, you must not use the puppet module command to
install or manage modules. Instead, you must declare modules in each environment's Puppetfile. Code management
uses the Puppetfile to install, update, and manage your modules. If you use puppet module install to install a
module to the live code directory, code management deletes the module when it is not found in the Puppetfile.

Declaring your own modules

If you develop your own modules that you maintain in source control, you can declare them in your Puppetfile, just
like you would declare any module from a Git repository. If your modules aren't maintained in source control, you'll
need to move them to source control so you can declare then in your Puppetfile and allow code management to install
and manage your module in your environments.

Related information

• Declare Git repositories in the Puppetfile on page 787

© 2024 Puppet, Inc., a Perforce company

https://forge.puppet.com/
https://puppet.com/docs/puppet/8/modules_fundamentals.html

pe | Managing and deploying Puppet code | 785

Deploying module code

When you change your Puppetfile to install or update a module (or when you update a module that you wrote that
you've declared in your Puppetfile), you must trigger Code Manager or r10k to deploy the new or updated code to
your environments.

Tip: Code Manager does not automatically deploy modules' spec directories. These directories are for testing
only, and they are not useful in a production environment. If you want to deploy a module's spec directory, add
exclude_spec: false to the module declaration in your Puppetfile.

Related information

• Triggering Code Manager on the command line on page 814
• Triggering Code Manager with a webhook on page 820
• Deploying environments with r10k on page 851

Create a Puppetfile
The Puppetfile manages an environment's content. When you create a Puppetfile, use the mod directive to declare an
environment's content.

Before you begin
You must be Managing environments with a control repository on page 779. These steps assume you have set up a
control repository that has the production branch as the default branch.

These steps explain how to create an initial Puppetfile in your production environment (which is usually the
default environment). This initial Puppetfile becomes a template for your other environments. When you Add an
environment on page 783 (by creating a branch based on the default branch), the new environment inherits a
copy of the default environment's Puppetfile, which you can then modify on the new branch to declare the new
environment's content.

1. On your production branch, in the root directory, create a text file named Puppetfile.

2. Open the new Puppetfile in a text editor, such as VS Code.

3. Declare the production environment's content in the Puppetfile.

Use a mod directive to specify each module or repository. Additionally, you need to define the name of the
content and any other information code management needs to correctly install and maintain the declared modules
and data. For information and examples of Puppetfile declarations, refer to:

• Declare Forge modules in the Puppetfile on page 786
• Declare Git repositories in the Puppetfile on page 787

Tip: Puppet has a VS Code extension that supports syntax highlighting for the Puppet language.

4. Optional: If you want code management to install modules somewhere other than the default directory (./
modules), use the moduledir directive to Change the module installation directory on page 790.

5. Save and commit your changes.

If you already have multiple branches (environments) in your control repo, you might need to copy the Puppetfile to
the other branches, and then edit each copy according to each environment's module and data requirements. When
you Add an environment on page 783, the new branch automatically gets a copy of the Puppetfile that you can then
edit accordingly for the new environment.

Creating a Puppetfile is a requirement for Managing code with Code Manager on page 790 or Managing code with
r10k on page 840.

© 2024 Puppet, Inc., a Perforce company

https://puppet-vscode.github.io/docs/getting-started/

pe | Managing and deploying Puppet code | 786

Declare Forge modules in the Puppetfile
When you declare a Forge module in your Puppetfile, you can specify a particular version to track and whether you
want code management to automatically update the module.

Important:

The Puppetfile does not automatically resolve dependencies for Forge modules. When you declare a module in your
Puppetfile, you must also declare any required dependent modules.

Forge module symlinks are not supported. When you install modules with r10k or Code Manager, by declaring them
in your Puppetfile, symlinks are not installed.

If you have Puppetfiles you used before you started using code management, these files might contain a forge
setting that provides legacy compatibility with librarian-puppet. However, this setting is non-operational
for Code Manager and r10k. If you need to configure how Forge modules are downloaded, you must specify
forge_settings in Hiera. For instructions, refer to Configuring Forge settings on page 805 for Code Manager
or Configuring Forge settings on page 844 for r10k.

1. In your Puppetfile, use the mod directive to specify Forge modules you want to install. Specify the module's full
name as a string. For example, this declaration is for the apache module:

mod 'puppetlabs/apache'

Tip: This basic declaration installs the current version of the module that is available during the next
code deployment, but it doesn't update the module on future runs. If you want to keep the module updated
automatically, you need to specify :latest, as described in the next step.

2. Optional: Specify whether you want to maintain a specific version of the module or if you want code management
to automatically update the module when a new version is available.

• To continuously keep the module current with the newest version, specify :latest after the module name.
For example:

mod 'puppetlabs/ntp', :latest

• To install a specific version, and maintain that version, specify the desired version number, as a string, after
the module name. For example:

mod 'puppetlabs/stdlib', '0.10.0'

• To install whichever version is current during the next code deployment, and stay with that version, do not
specify any options after the module name. For example:

mod 'puppetlabs/apache'

3. Save and commit your changes.

Edit the Puppetfile any time you need to install a module or update a module that is not automatically updated.

With code management, you must not use the puppet module command to install or manage modules. Because
code management uses the Puppetfile to install, update, and manage your modules, if you use puppet module
install to install a module to the live code directory, code management deletes the module based on the Puppetfile
contents.

Related information
Managing modules with a Puppetfile on page 784

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 787

Almost all Puppet manifests are kept in modules, which are collections of Puppet code and data that have a specific
directory structure. With Puppet Enterprise (PE) code management, you only use the Puppetfile to install and manage
modules.

Declare Git repositories in the Puppetfile
You can declare your own modules, modules that aren't from the Forge, data, or other non-module content that you
want to install from Git repositories.

1. To specify environment content from a Git repository, use the mod directive and specify the content name as a
string. Then and use :git to specify the repository location, and :branch to reference a branch. For example:

mod 'apache',
 :git => 'https://github.com/puppetlabs/puppetlabs-apache'
 :branch => '<BRANCH_NAME>'

2. Optional: Specify additional options or alternative configurations, if needed:

• For non-module content, you must Specify installation paths for repositories on page 787.

Important: Content is installed in the modules directory and treated as a module, unless you use the
:install_path option. You must use :install_path for non-module content to keep your data
separate from your modules.

• If the content requires SSH authentication, read about how to Declare module or data content with SSH private
key authentication on page 788.

• By default, content from Git repositories stays updated with the repository's main branch, but you can Keep
repository content at a specific version on page 788 and Declare content from a relative control repo branch
on page 789.

3. Save and commit your changes.

Related information
Managing modules with a Puppetfile on page 784
Almost all Puppet manifests are kept in modules, which are collections of Puppet code and data that have a specific
directory structure. With Puppet Enterprise (PE) code management, you only use the Puppetfile to install and manage
modules.

Specify installation paths for repositories
You can set individual installation paths for any Git repositories you declare in a Puppetfile.

The :install_path option allows you to separate non-module content in your directory structure or to set
specific installation paths for individual modules. When you set this option for a specific repository, it overrides the
moduledir setting (which is either the default modules directory or a custom path if you Change the module
installation directory on page 790).

In your Puppetfile, under the Git repository's mod directive, use the :install_path option to declare the location
where you want to install the content. The path must a string and it must be relative to the Puppetfile's location. To
install in the root directory, specify an empty value.

Content is installed into a subdirectory named after to the content's mod directive. For example, this declaration
installs site data content from a Git repository into the ./hieradata directory:

mod 'site_data',
 :git => 'git@git.example.com:site_data.git',
 :install_path => 'hieradata'

The final file path for this content is ./hieradata/site_data.

As another example, this declaration installs site data content from a different Git repository into a site_data
directory at the root:

mod 'site_data_2',

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 788

 :git => 'git@git.example.com:site_data_2.git',
 :install_path => ''

The final file path for this content is ./site_data.

Declare module or data content with SSH private key authentication
To declare content protected by SSH private keys, declare the content as a Git repository, and then configure the
private key setting in your code management tool.

1. Declare the Git repository in your Puppetfile, using the Git repo's SSH URL. For example:

mod 'myco/privatemod',
 :git => 'git@git.example.com:myco/privatemod.git'

Note: If modifying the Puppetfile triggers a code deployment, expect the code deployment to fail. You must
complete the next step to get a successful code deployment.

2. Configure the private key settings by modifying the following Code Manager or r10k parameters in Hiera:

• To set a key for all Git operations, use the private key setting under git-settings.
• To set a private key for an individual remote repository, set the private key in the repositories hash in

git-settings for each specific remote.

For more information about these parameters, refer to Configuring Git settings on page 806 for Code Manager
or Configuring Git settings on page 845 for r10k.

To make these changes, you must follow the steps described in Customize Code Manager configuration in Hiera
on page 803 and Customizing r10k configuration on page 842.

After completing both steps, you might need to manually trigger a code deployment.

• Triggering Code Manager on the command line on page 814
• Triggering Code Manager with a webhook on page 820
• Triggering Code Manager with custom scripts on page 822
• Deploying environments with r10k on page 851

Keep repository content at a specific version
By default, content from Git repositories stays updated with the repository's main branch, but you can configure the
Puppetfile to maintain repository content at a specific version.

To specify a particular repository version you want to track, use one of the following options in the Git repository's
declaration in your Puppetfile. Setting one of these options maintains the repository at the specified version and
deploys any updates made to that particular version.

• ref: Specifies the Git reference to check out. This option can reference either a tag, a commit, or a branch.
• tag: Specifies a certain tag associated with the repo. For example:

mod 'apache',
 :git => 'https://github.com/puppetlabs/puppetlabs-apache',
 :tag => '0.9.0'

• commit: Specifies a certain commit in the repo. For example:

mod 'apache',
 :git => 'https://github.com/puppetlabs/puppetlabs-apache',
 :commit => '8df51aa'

• branch: Specifies a certain branch of the Git repo or Declare content from a relative control repo branch on page
789. For example:

mod 'apache',
 :git => 'https://github.com/puppetlabs/puppetlabs-apache',

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 789

 :branch => 'proxy_match'

In addition to one of the above options, you can also Set a default branch for content deployment on page 789.

Declare content from a relative control repo branch
If you declare a Git repository to track a specific branch, you can also specify the :control_branch option,
which allows you to deploy content from a control repo branch relative to the location of the Puppetfile.

Before you begin
The :control_branch option is a modification of the :branch option, which you can use to Keep repository
content at a specific version on page 788.

Normally, :branch tracks a specifically-named repository branch, such as testing, or a specific feature
branch. If you specify :branch => :control_branch, it locates and tracks a branch in the Git repository that
has the same name as the control repo branch where the Puppetfile is located.

For example, if your Puppetfile is in the production branch, content from the Git repo's production branch is
deployed. Similarly, if you copy this Puppetfile to your testing branch, the tracking from that branch follows the
Git repo's testing branch.

Important: With :control_branch, when you create new branches, you don't have to edit the inherited
Puppetfile as extensively, because the tracked branches remain relative. However, your Git repository branch names
must match your control repo's branch names for the :control_branch option to work successfully. You might
want to Set a default branch for content deployment on page 789 as a backup in case no matching branch is found.

Here is an example of a declaration using :control_branch:

mod 'hieradata',
 :git => 'git@git.example.com:organization/hieradata.git',
 :branch => :control_branch

Set a default branch for content deployment
You can specify a default branch that code management can use if it can't deploy the specified ref, tag, commit,
or branch.

Before you begin
You can't use :default_branch by itself. This option can only be used in conjunction with :ref, :tag,
:commit, or :branch, which are used to Keep repository content at a specific version on page 788.

In the Puppetfile, in the content declaration, set the :default_branch option to the branch you want to deploy if
your specified option fails. For example, this declaration tracks the :control_branch and uses the main branch
as a backup if no matching branch is found.

mod 'hieradata',
 :git => 'git@git.example.com:organization/hieradata.git',
 :branch => :control_branch,
 :default_branch => 'main'

Tip: Specifying a :default_branch is recommended when you Declare content from a relative control repo
branch on page 789, in case code management can't find a matching branch.

If code management can't parse the default branch specification or no such named branch exists, it logs an error and
does not deploy or update the content.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 790

Change the module installation directory
If needed, you can change the directory to where code management installs modules declared in your Puppetfile.

By default, Code Manager and r10k install module content in a modules directory in the same directory the
Puppetfile is in, such as: ./modules/<MODULE_NAME>

To change the module installation path, at the top of your Puppetfile before any module declarations, add the
moduledir directive, and specify the path to the desired module installation directory relative to the Puppetfile's
location. For example:

moduledir 'thirdparty'

Important: This directive applies to all content declared in the Puppetfile.

If you need to change the installation paths for only some modules or data, declare those content sources as Git
repositories, and use the install_path option to Specify installation paths for repositories on page 787. This
option overrides the moduledir directive.

Managing code with Code Manager
Code Manager automates the management and deployment of your Puppet code. When you push code updates to
your source control repository, Code Manager syncs the code to your primary server and compilers. This allows all
your servers to run the new code as soon as possible, without interrupting in-progress agent runs.

• How Code Manager works on page 791
To automatically manage your environments and modules, Code Manager uses r10k and the file sync service to stage,
commit, and sync your code.
• Set up Code Manager on page 794
You must set up Code Manager to use it as your code management tool.
• Configure Code Manager on page 794
To configure Code Manager you must enable Code Manager in Puppet Enterprise (PE), set up authentication, and test
the connection between the control repository and Code Manager.
• Configure Code Manager concurrency on page 800
Enable Code Manager in Puppet Enterprise (PE), and then use the variables to configure Code Manager concurrency.
• Lockless code deploys on page 801
The lockless code deploys feature within Code Manager allows deployment of Puppet code without interrupting other
Puppet operations. When this feature is disabled, requests to Puppet Server are blocked during code deployments
until the file sync client has finished updating the live Puppet code directory, However, when lockless code deploys
are enabled, the file sync client saves newly deployed code into versioned directories, ensuring that the live code
directory is not overwritten. This process allows Puppet operations to continue without interruption during code
deployments.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 791

• Customize Code Manager configuration in Hiera on page 803
Set parameters in Hiera to customize your Code Manager configuration.
• Triggering Code Manager on the command line on page 814
Use the puppet-code command to trigger Code Manager from the command line and deploy your environments.
• Triggering Code Manager with a webhook on page 820
To deploy your code, you can trigger Code Manager by hitting a web endpoint, either through a webhook or a custom
script. Webhooks are the simplest way to trigger Code Manager.
• Triggering Code Manager with custom scripts on page 822
Custom scripts are a good way to trigger deployments if you can't use webhooks. For example, if you have privately
hosted Git repositories, custom notifications, or existing continuous integration systems (like Continuous Delivery for
Puppet Enterprise (PE)).
• Troubleshooting Code Manager on page 823
Code Manager requires coordination between multiple components, including source control, r10k, and the file sync
service. If you have issues with Code Manager, check that these components are functioning.
• Code Manager API on page 826
You can use the Code Manager API to deploy code and check the status of deployments on your primary server and
compilers without direct shell access.
• About file sync on page 836
File sync helps Code Manager keep your Puppet code synchronized across your primary server and compilers.

How Code Manager works
To automatically manage your environments and modules, Code Manager uses r10k and the file sync service to stage,
commit, and sync your code.

Code Manager requires Managing environments with a control repository on page 779. You must create a control
repository with branches for each environment that you want to create (such as production, development, or testing).
Each branch must have a Puppetfile specifying exactly which modules to install in each environment. You can learn
more About Environments in the Puppet documentation.

Code Manager creates directory environments based on the branches you've set up. Your control repository lives on a
Git server, and this is where you push code that you want Code Manager to deploy.

There are three ways to trigger Code Manager to start a code deployment:

• A webhook from your Git server automatically starts the code deployment when you push code to the control
repo.

• Continuous Delivery sends a deploy request to Code Manager.
• You use the puppet-code command to manually trigger Code Manager from the command line or with a

custom script.

Once triggered, Code Manager uses r10k to fetch code from the Git server and places it into the staging directory on
the primary server (at /etc/puppetlabs/code-staging). Next, the file sync storage service on the primary
server detects the change in the staging directory, and the file sync clients pause Puppet Server to avoid conflicts
during synchronization. Finally, the file sync clients synchronize the new code to the live code directories on the
primary server and compilers (usually at /etc/puppetlabs/code). The following diagram illustrates this code
deployment process.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html
https://puppet.com/docs/continuous-delivery/latest/cd_user_guide.html

pe | Managing and deploying Puppet code | 792

Related information
About file sync on page 836
File sync helps Code Manager keep your Puppet code synchronized across your primary server and compilers.

Triggering Code Manager on the command line on page 814
Use the puppet-code command to trigger Code Manager from the command line and deploy your environments.

Triggering Code Manager with a webhook on page 820
To deploy your code, you can trigger Code Manager by hitting a web endpoint, either through a webhook or a custom
script. Webhooks are the simplest way to trigger Code Manager.

Triggering Code Manager with custom scripts on page 822
Custom scripts are a good way to trigger deployments if you can't use webhooks. For example, if you have privately
hosted Git repositories, custom notifications, or existing continuous integration systems (like Continuous Delivery for
Puppet Enterprise (PE)).

Understanding file sync and the staging directory
To sync your code across your primary server and compilers, and to make sure that code stays consistent, Code
Manager relies on file sync and two different code directories: the staging directory and the live code directory.

Without Code Manager or file sync, Puppet code lives in the codedir, or live code directory, at /etc/
puppetlabs/code.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 793

With Code Manager and file sync, the file sync client service regularly checks for changes to staged code files in the
staged code directory on the primary server (at /etc/puppetlabs/code-staging). If it detects a change, the
file sync client service fetches the changes and syncs the files to the live codedir on each compiler and the primary
server (at /etc/puppetlabs/code). The file sync client service uses HTTPS to poll for changes and JGit to
fetch changes.

Because Code Manager moves new code from source control into the staging directory, and file sync moves it into
the live code directory, you no longer write code in the codedir. If you manually edit the codedir, the next time Code
Manager deploys code from source control, it overwrites your changes.

Important: Don't directly modify code in the staging directory or live code directory (codedir). Code Manager
overwrites the staging directory with changes from the control repo, and file sync overwrites the codedir with changes
from the staging directory. Any changes made to these directories manually are overwritten.

Related information
File sync terms on page 836
Understanding these terms is helpful for understanding file sync.

Environment isolation metadata and Code Manager
The live code and staging code directories contain metadata files generated by file sync, which provide environment
isolation for your resource types.

The metadata files, which have a .pp extension, ensure that each environment uses the correct version of the
resource type.

CAUTION: Do not delete or modify the metadata files. Do not use expressions from these files in regular
manifests.

These files are generated when Code Manager deploys new code in your environments. If you are new to Code
Manager, these files are generated when you first deploy your environments. If you already use Code Manager, the
files are generated as you make and deploy changes to your existing environments.

You can learn more about these files and their role in Environment isolation in the Puppet documentation.

Moving from r10k to Code Manager
Moving from r10k to Code Manager can improve automation of your code management and deployments.

While we recommend using Code Manager whenever possible, reasons you might not want to upgrade from r10k to
Code Manager include:

• Code Manager does not allow you to manually deploy code with r10k. If you depend on the ability to deploy
modules directly from r10k (with the r10k deploy module command), we recommend continuing to use
r10k.

• Code Manager must deploy all control repositories to the same directory. If you use r10k to deploy control
repositories to different directories, we recommend continuing to use r10k.

• Code Manager supports the shellgit provider, but only for HTTPS. It does not support system .SSH configuration
or other shellgit options.

• Code Manager does not support post-deploy scripts.

If you rely on any of the above configurations Code Manager does not support, or if you are using a custom script to
deploy code, carefully assess whether or not Code Manager can support your goals.

Related information
Upgrade from r10k to Code Manager on page 795
To upgrade from r10k to Code Manager, you must disable the previous r10k installation.

Managing code with r10k on page 840
r10k is a code management tool that allows you to manage your environment configurations (such as production,
testing, and development) in a source control repository. Unlike Code Manager's automated deployments, r10k

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environment_isolation.html

pe | Managing and deploying Puppet code | 794

requires you to manually deploy code changes from your control repository using the r10k command line tool on your
primary server and all compilers.

Set up Code Manager
You must set up Code Manager to use it as your code management tool.

To set up Code Manager, you must:

1. Prepare for Managing environments with a control repository on page 779. This involves creating a Git control
repository that has a Puppetfile.

2. Create a control repository with Git for your code.

Code Manager uses the control repo to maintain and deploy your Puppet code and data. You can also create
separate deployment environments in your Puppet infrastructure by creating branches in your control repository
(such as a development branch for a development environment). Code Manager tracks your environments and
updates them according to the changes you make in your control repo.

The Puppetfile specifies which modules and data to install in your environment, including what versions to install,
and where to download the modules or other content.

3. Configure Code Manager on page 794.

4. Optional: Customize Code Manager configuration in Hiera on page 803

5. Deploy environments with a deployment trigger (recommended) or from the command line. For the initial
configuration, you might prefer to use the command line, and then set up an automated trigger.

• Triggering Code Manager on the command line on page 814
• Triggering Code Manager with a webhook on page 820
• Triggering Code Manager with custom scripts on page 822

Related information
Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.

Lockless code deploys on page 801
The lockless code deploys feature within Code Manager allows deployment of Puppet code without interrupting other
Puppet operations. When this feature is disabled, requests to Puppet Server are blocked during code deployments
until the file sync client has finished updating the live Puppet code directory, However, when lockless code deploys
are enabled, the file sync client saves newly deployed code into versioned directories, ensuring that the live code
directory is not overwritten. This process allows Puppet operations to continue without interruption during code
deployments.

Configure Code Manager
To configure Code Manager you must enable Code Manager in Puppet Enterprise (PE), set up authentication, and test
the connection between the control repository and Code Manager.

To configure Code Manager:

1. Create a control repo with a Puppetfile, as explained in Managing environments with a control repository on page
779.

2. Upgrade from r10k to Code Manager on page 795, if applicable.
3. Enable Code Manager on page 795.
4. Set up authentication for Code Manager on page 64.
5. Test the control repository on page 798.
6. Test Code Manager on page 798.

Depending on your needs, you might need to configure additional Code Manager settings on page 798, enable
Lockless code deploys on page 801, or Customize Code Manager configuration in Hiera on page 803.

Related information
Set up Code Manager on page 794

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 795

You must set up Code Manager to use it as your code management tool.

Upgrade from r10k to Code Manager
To upgrade from r10k to Code Manager, you must disable the previous r10k installation.

Code Manager cannot correctly install or update code if other tools run r10k.

1. Disable your previous r10k installation.
2. Disable any tools that automatically run r10k. Usually this is the zack-r10k module.

Note: When you upgrade to Code Manager, you can no longer manually use r10k or the zack-r10k module.

After disabling r10k, configure Code Manager.

Related information
Moving from r10k to Code Manager on page 793
Moving from r10k to Code Manager can improve automation of your code management and deployments.

Enable Code Manager
Set parameters in the console to enable Code Manager and connect your primary server to your Git repository.

Before you begin
Set up an SSH key to permit the pe-puppet user to access your Git repositories. The SSH key must be:

Important: If you are using Microsoft AzureDevOps (ADO), use HTTPS rather than SSH. ADO does not work
using SSH.

• Owned by the pe-puppet user.
• Located on the primary server.
• Located in a directory the pe-puppet user has permission to view, such as /etc/puppetlabs/

puppetserver/ssh/id-control_repo.ed25519.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 796

1. In the console, click Node groups, locate the PE Master node group, and set these parameters for the
puppet_enterprise::profile::master class:

a) Set code_manager_auto_configure to true to enable Code Manager.
b) For r10k_remote, enter a string that is a valid SSH URL for your Git control repository, such as

git@<YOUR.GIT.SERVER.COM>:puppet/control.git.

Important: Some Git providers have additional requirements for enabling SSH access. For
example, BitBucket requires ssh:// at the beginning of the SSH URL (such as ssh://
git@<YOUR.GIT.SERVER.COM>:puppet/control.git). See your provider's documentation for this
information.

c) For r10k_private_key, enter a string specifying the path to the SSH private key that permits the pe-
puppet user to access your Git repositories, such as "/etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519".

Important: If your PE installation includes disaster recovery, you must also set the
puppet_enterprise::profile::master::r10k_private_key parameter in pe.conf. This
ensures that the r10k private key is synced to your primary server replica.

d) For the r10k_known_hosts parameter, enter an array of hashes, with each hash containing the following
key-value pairs:

• "name":"<HOSTNAME>": Specify the hostname of your control repository host.
• "type":"<HOST_KEY_TYPE>": Specify the type of host key, such as rsa, dsa, ecds, or ed25519.
• "key":"<HOST_PUBLIC_KEY>": Specify the SSH public key for your control repository host.

Structure the parameter as shown in the following example:

[{"name":"<HOSTNAME>","type":"<HOST_KEY_TYPE>","key":"<HOST_PUBLIC_KEY>"},
{"name":"<HOSTNAME>","type":"<HOST_KEY_TYPE>","key":"<HOST_PUBLIC_KEY>"}]

Optionally, each hash can accept values for "title", "ensure", and "host_aliases".

The r10k_known_hosts parameter manages your known_hosts file to allow SSH host key verification,
which is required when you use Code Manager or r10k.

e) If you want to enable lockless code deploys, ensure that the versioned_deploys parameter is set to
true.

With the lockless code deploys feature enabled, code deployments are saved in versioned code directories, so
that the live code directory is not overwritten. This process allows Puppet operations to continue during code
deployments.

If you do not require lockless code deploys, set the value to false.

Tip: Enabling lockless code deploys will help to minimize disruptions associated with upgrading to future PE
versions in which the feature will be enabled by default.

2. Click Commit.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 797

3. Run Puppet on your primary server and all compilers.

Potential errors:

If you use Run Puppet in the console to trigger the Puppet run, the job, on the Jobs page, appears to fail due
to underlying services being restarted. This error is not fatal and the Reports page shows the actual, successful
result.

Additionally, if you run Puppet on your primary server and all compilers at the same time, the compilers' logs
might report these errors:

2015-11-20 08:14:38,308 ERROR [clojure-agent-send-off-pool-0]
[p.e.s.f.file-sync-client-core] File sync failure: Unable to get
latest-commits from server (https://primary.example.com:8140/file-sync/v1/
latest-commits).
java.net.ConnectException: Connection refused

These errors occur when Puppet Server is restarting when the compilers poll for new code, and they usually stop
when Puppet Server finishes restarting on the primary server. You can ignore these errors while the primary server
starts.

Set up authentication for Code Manager.

Set up authentication for Code Manager
To securely deploy environments, Code Manager needs an authentication token for both authentication and
authorization.

Before requesting an authentication token, you must assign a user to the deployment role.

1. In the Puppet Enterprise (PE) console, create a deployment user.

Tip: Create a dedicated deployment user for Code Manager to use.

2. Add the deployment user to the Code Deployers role.

When you install PE, this role is automatically created with default permissions for code deployment and token
lifetime management.

3. Click Generate Password to create a password for the deployment user.

Request an authentication token for deployments.
Related information
Configure puppet-access on page 308
The puppet-access command allows users to generate and manage authentication tokens from the command
line of any workstation (Puppet-managed or not), without the need to SSH into the primary server. If you want to use
puppet-access, ensure it is configured correctly before using it to generate authentication tokens.

Add a user to a user role on page 283
When you add a user to a role, the user gains the permissions you assign to that role. A user can't do anything in PE
until they have been assigned to at least one role. If users are assigned to multiple roles, they get all permissions from
all roles they are assigned to.

Assign user groups to user roles on page 293
After importing a group, you must assign at least one user role to it. This grants the role's permissions to the group
members. If you don't assign a role, the users in this group have no permissions.

Request an authentication token for deployments
To securely deploy your code, request an authentication token for the deployment user.

The default lifetime for authentication tokens is one hour. You can use the Override default expiry
permission set to change the token lifetime to a duration better suited for a long-running, automated process.

Use the puppet-access command to generate the authentication token.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 798

1. From the command line on the primary server, run puppet-access login --lifetime 180d. This
command requests the token and sets the token lifetime to 180 days.

Tip: You can specify additional settings in this command, such as the token file's location or your RBAC API
URL, as explained in Configuration file settings for puppet-access.

2. Enter the deployment user's username and password when prompted.

The generated token is stored in a file for later use. The default token storage location is ~/.puppetlabs/token.
You can run puppet-access show to view the token.

Test the connection to the control repo.
Related information
Set a token-specific lifetime on page 313
If you want a token to have a different lifetime than the default lifetime, you can set a different lifetime when you
generate the token. This allows you to keep one token for multiple sessions.

Generate a token for use by a service on page 312
If you need to generate a token that a Puppet Enterprise (PE) service can use, and the token doesn't need to be saved,
use the --print option with the puppet-access command.

Test the control repository
To make sure Code Manager can connect to the control repository, test the connection to the repository.

From the command line, run: puppet-code deploy --dry-run

If the control repository is set up properly, this command fetches and displays a list of environments in the control
repository as well as the total number of environments.

If an environment is not set up properly or causes an error, it does not appear in the returned list. Check the Puppet
Server log for details about the errors.

Test Code Manager
Test Code Manager by deploying a single test environment.

From the command line, deploy one environment by running: puppet-code deploy
my_test_environment --wait

If Code Manager is configured correctly, this command deploys the test environment and returns deployment results
with the SHA (a checksum for the content stored) for the control repository commit.

If the deployment does not work, review the Code Manager configuration steps, or refer to Troubleshooting for help.

After fully enabling and configuring Code Manager, you can trigger Code Manager to deploy your environments.
You can:

• Triggering Code Manager on the command line on page 814
• Triggering Code Manager with a webhook on page 820
• Triggering Code Manager with custom scripts on page 822

Code Manager settings
After configuring Code Manager, you can adjust its settings in the PE Master node group in the
puppet_enterprise::profile::master class.

Code Manager requires these options, unless otherwise noted:

puppet_enterprise::profile::master::code_manager_auto_configure

Specifies whether to autoconfigure Code Manager and file sync.

Default: false

Setting this to true also sets environment_timeout to unlimited.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/troubleshooting.html

pe | Managing and deploying Puppet code | 799

puppet_enterprise::master::file_sync::chown_code_to_pe_puppet

By leaving this enabled, users help ensure they do not hit a class of errors that can occur by committing Puppet
code files with the wrong permissions (or at least have those errors resolved on the next Puppet run). However,
some users have codedirs large enough and I/O throughput restrictive enough that they require disabling these
executive resources in the compiler catalogs.

Defaults: true

Valid values: true or false

puppet_enterprise::master::file_sync::copy_method

Specifies the implementation method used for copying versioned deploys to their location.

Default:shell-cp

Valid values are shell-cp and java. Using the previous default of java is slower but may resolve issues if
you see compilation errors where files appear non-existent or partially written during first compilation, but upon
inspection appear to exist in their totality.

puppet_enterprise::master::file_sync::versioned_sync_pool

Specifies the number of threads available for concurrent code deployments.

Default: 2

This may be set higher for faster deploy alls of environments. Deploying multiple environments at once may
saturate I/O on the compiler syncing code with adverse effects. Watch metrics for I/O usage during code deploys
and adjust the concurrency level as appropriate.

puppet_enterprise::profile::master::r10k_remote

The location, as a valid URL, for your Git control repository.

Example: "git@<YOUR.GIT.SERVER.COM>:puppet/control.git"

puppet_enterprise::profile::master::r10k_private_key

The path to the file containing the private key used to access all Git repositories. Required when using the SSH
protocol, and optional in all other cases.

Example: "/etc/puppetlabs/puppetserver/ssh/id-control_repo.ed25519"

puppet_enterprise::profile::master::r10k_proxy

Optional proxy used by r10k when accessing the Forge. If empty, no proxy settings are used.

Restriction: If r10k_proxy is specified, you must use an HTTP URL for the r10k_remote parameter and
all Puppetfile module entries.

Example: "http://proxy.example.com:3128"

More information: Set proxies for Code Manager traffic on page 232

Additional and alternative Code Manager proxy configurations: Customize Code Manager configuration in Hiera
on page 803 (specifically Configuring proxies on page 807 and Configuring Forge settings on page 805)

puppet_enterprise::profile::master::r10k_trace

Configuration option that includes the r10k stacktrace in the error output of failed deployments when the value is
true.

Default: false

puppet_enterprise::profile::master::versioned_deploys

Setting for the lockless code deploys feature. Define the parameter to specify whether code is updated in
versioned code directories instead of blocking requests and overwriting the live code directory.

Tip: Setting versioned_deploys to false will cause the Puppet Server process to lock the JRuby pool for
each deployment. This will cause the compiler to become unavailable every time Puppet code is updated. This is

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 800

the older method for code deployment, if you experience issues with code deployments trying this method may
work for you. This setting should only be set to false in consultation with Puppet Support.

Default: true

More information: Lockless code deploys on page 801

puppet_enterprise::master::environment_timeout

Specifies if and how long environments are cached, which can significantly reduce your Puppet Server's CPU
usage. You can specify these values:

• No caching: 0
• Retain environment data caches indefinitely: unlimited
• Cache environments for a specified length of time after their last use: Any length of time, such as 5m

Default when Code Manager is enabled: 5m

Default when Code Manager is not enabled: 0

If code_manager_auto_configure is set to true: unlimited

More information: Change the environment_timeout setting on page 218

puppet_enterprise::master::file_sync::copy_method

Specifies the implementation method used for copying versioned deploys to their location.

Default: java

Valid values are java and shell-cp. Changing the method to shell-cp can help to improve file sync speed
for lockless code deploys.

puppet_enterprise::master::file_sync::versioned_sync_pool

Specifies the number of threads available for concurrent code deployments.

Default: 1

Increasing the value allows multiple code environments to be deployed concurrently, enhancing the performance
of lockless code deploys when puppet code deploy --all is run. Increasing the thread pool size can also
improve file sync performance when different code environments are deployed in quick succession.

Customize Code Manager configuration in Hiera on page 803 explains how you can use Hiera to further customize
your Code Manager configuration.

Configure Code Manager concurrency
Enable Code Manager in Puppet Enterprise (PE), and then use the variables to configure Code Manager concurrency.

Here are the variables you can use to configure Code Manager concurrency and a description of what they do.

Deploy pool
The deploy pool controls the number of workers that fetch environments off the queue. Each deploy pool worker
thread shells out to r10k to deploy an environment.

Note: Each worker thread has a copy of the cache stored in: /opt/puppetlabs/puppet/cache.

The puppet_enterprise::master::code_manager::deploy_pool_size defaults to 2. Set this in
Hiera.

Download pool
The download pool controls the number of r10k threads that check for new versions of a module in the environment.

The puppet_enterprise::master::code_manager::download_pool_size defaults to 4. Set this in
Hiera.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 801

Versioned sync pool
The versioned sync pool controls the number of threads that versioned-dirs uses to parallelize environment
deploys. The versioned-dirs is an optional GIT configuration parameter that controls whether to create a new
directory with version information for each significant commit pulled down from the storage service.

The puppet_enterprise::master::file_sync::versioned_sync_pool defaults to 2. Set this in
Hiera.

Lockless code deploys
The lockless code deploys feature within Code Manager allows deployment of Puppet code without interrupting other
Puppet operations. When this feature is disabled, requests to Puppet Server are blocked during code deployments
until the file sync client has finished updating the live Puppet code directory, However, when lockless code deploys
are enabled, the file sync client saves newly deployed code into versioned directories, ensuring that the live code
directory is not overwritten. This process allows Puppet operations to continue without interruption during code
deployments.

With lockless code deploys, each new deploy writes code to versioned directories at:

/opt/puppetlabs/server/data/puppetserver/filesync/client/versioned-dirs/
puppet-code/

When the feature is enabled, the Puppet Server code directory is set up at /etc/puppetlabs/puppetserver/
code and points, via symlink, to the most recent versioned code directory (at the versioned directories filepath
specified above). If you disable lockless deploys, your code directory moves to /etc/puppetlabs/code.

Lockless deploys enable you to deploy a new version of code alongside an old version. When a catalog compiles
starts, it uses the full path to the most recent version of code in the versioned code directory (via the /etc/
puppetlabs/puppetserver/code symlink). Existing catalog compiles continue using the version they started
on and new compiles use the latest code version.

To conserve disk space, code written to versioned directories is optimized to reduce duplication, and directories older
than the latest and its predecessor are cleaned up after 30 minutes. If you deploy code very frequently, you might
prefer to decrease the versioned-dirs-ttl setting, which is specified, in minutes, in file-sync.conf
within each file sync client.

Related information
Running plans alongside code deployments on page 667
The orchestrator's file sync client has a built-in locking mechanism that ensures your plans run in a consistent
environment state. The locking mechanism prevents plans from starting while a code deployment is in progress, and it
prevents new code deployments from synchronizing while a plan is running. You can disable this locking mechanism
if you want to run plans and deploy code simultaneously. Consider the tradeoffs before deciding whether to disable
the file sync locking mechanism.

System requirements for lockless deploys
Enabling lockless deploys increases the disk storage required on your primary server and compilers because code
is written to multiple versioned directories, instead of a single live code directory. Follow these guidelines for
estimating your required system capacity.

You can roughly estimate your required disk storage with this equation:

(Size of typical environment)×(Number of active environments)

For example, if your typical environment is 200 MB on disk when deployed, and you have 25 active environments,
your disk storage calculation is 200 MB × 25, which equals 5,000 MB or 5 GB.

The number of times you deploy a given environment each day also impacts your disk use. Deploying multiple
versions of the same environment uses approximately 25% more disk space than deploying multiple unique

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 802

environments. To estimate the additional disk storage required for deploying environments multiple times a day, use
this equation:

(Size of typical environment × .25)×(Number of environments deployed
 multiple times per day)×(Number of deployments per day)

Continuing the previous example, if 6 of your 200 MB environments are deployed up to 10 times per day, your
additional disk storage calculation is (200 MB × .25) × 6 × 10, which equals 3,000 MB or 3 GB of
additional disk space. In total, this example requires 8 GB available for your primary server and each compiler.

Note: If you're using the Continuous Delivery for PE impact analysis tool, you might need additional disk space
beyond these estimates to accommodate the short-lived environments created during impact analysis.

Toggle lockless code deploys on or off
Use the toggle_lockless_deploys plan to turn lockless code deploys on or off across all compiler nodes,
including the primary server and the replica.

Before you begin
For the toggle plan to run successfully, all compiler nodes (including the primary server and the replica) must have
the same lockless code deploys status: the feature must be enabled on all or disabled on all. The plan cannot proceed
if some nodes have the feature enabled while others have it disabled. To bring your compiler nodes into alignment,
you can Disable lockless code deploys on individual compiler nodes on page 802.

You can use the toggle_lockless_deploys plan by running these commands on the primary server:

• To enable lockless code deploys:

puppet infra run toggle_lockless_deploys enable=true

• To disable lockless code deploys:

puppet infra run toggle_lockless_deploys enable=false

If you do not specify true or false, true is the default.
• Optionally, you can use the old_code_directory parameter with either the save or delete values, to

specify whether you want to save old code directories to ${codedir}_backup. For example:

puppet infra run toggle_lockless_deploys enable=true
 old_code_directory=save

If you do not specify the old_code_directory parameter, save is set by default.

Tip: You can optimize file sync performance for lockless code deploys by
configuring the versioned_sync_pool and copy_method settings in the
puppet_enterprise::profile::master::file_sync class. See Code Manager settings on page
798.

Disable lockless code deploys on individual compiler nodes

You can follow this process for individual compiler nodes to ensure that all your compiler nodes have the same
lockless code deploy status, which is a prerequisite for running the toggle_lockless_deploys plan. Or you
might want to enable lockless code deploys on an individual compiler for testing, before you enable the feature across
all compiler nodes.

1. In the compiler's node-specific Hiera file, the
puppet_enterprise::profile::master::versioned_deploys is set to true by default. To
disable the feature, set the puppet_enterprise::profile::master::versioned_deploys to
false.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 803

2. Commit changes.

3. Run Puppet on the compiler twice: puppet agent -t; puppet agent -t

4. On your primary server, run: puppet code deploy --all --wait

Important: You must deploy all environments (with --all) to avoid errors.

Tip: To monitor the impact on a compiler after enabling lockless code deploys, you can analyze the Puppet
Server data collected by the puppet_metrics_collector module

Customize Code Manager configuration in Hiera
Set parameters in Hiera to customize your Code Manager configuration.

To customize your configuration:

1. In your control repo, open the data/common.yaml file.
2. Add parameters to the puppet_enterprise::master::code_manager

puppet_enterprise::master::code_management class. Use the following format:

puppet_enterprise::master::code_manager::<PARAMETER>: <SETTING>

For example, these parameters increase the size of the default worker pool and reduce the maximum time allowed
to deploy a single environment:

puppet_enterprise::master::code_manager::deploy_pool_size: 4
puppet_enterprise::master::code_manager::timeouts_deploy: 300

Some parameters are described in detail below, along with a list of all Code Manager parameters on page 809.
3. Run Puppet on the primary server. The Puppet run updates the Code Manager configuration file.

Important: Do not manually edit the Code Manager configuration file. Puppet automatically manages this file,
and it overwrites or discards any manual changes you make.

Related information
Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Configuring post-environment hooks
Post-environment hooks can trigger custom actions after deploying an environment.

To configure a list of hooks to run after Code Manager deploys code to an environment, specify the
post_environment_hook parameter in Hiera. This parameter accepts an array of hashes with the url and
use-client-ssl keys.

The url key specifies an HTTPS URL to send a POST request to. The request includes a JSON-formatted body
containing information about the environment deployment, such as:

{
 "deploy-signature":"482f8d3adc76b5197306c5d4c8aa32aa8315694b",
 "file-sync":{
 "environment-commit":"6939889b679fdb1449545c44f26aa06174d25c21",
 "code-commit":"ce5f7158615759151f77391c7b2b8b497aaebce1"},
 "environment":"production",
 "id":3,
 "status":"complete"
 }

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 804

The use-client-ssl key is a Boolean specifying whether to use the client's SSL configuration for HTTPS
connections.

By default, use-client-ssl is set to false, which means that when the HTTP client makes a request, it uses
certificates from the Puppet Enterprise Java trust store file, which is located at:

/opt/puppetlabs/server/apps/java/lib/jvm/java/jre/lib/security/cacerts)

Important: When you upgrade PE, any certificates you added to this trust store file, are cleared. If the certificates
are still required, you must add them again.

Set use-client-ssl to true only if the url destination is a server that uses the Puppet certificate authority.

For example, the following settings instruct Code Manager to update classes in the console after deploying code to
environments:

puppet_enterprise::master::code_manager::post_environment_hooks:
 - url: 'https://console.example.com:4433/classifier-api/v1/update-
classes'
 use-client-ssl: true

If you wanted to configure multiple post-environment hooks, you would add more hashes to the array.

Related information
POST /v1/update-classes on page 570
Trigger the node classifier to retrieve updated class and environment definitions from the primary server. The
classifier service also uses this endpoint when you refresh classes in the console.

POST /v1/deploys on page 827
Trigger Code Manager to deploy code to a specific environment or all environments, or use the dry-run parameter
to test your control repo connection.

Configuring garbage collection
By default, Code Manager retains environment deployments in memory for one hour. You can adjust this by
configuring garbage collection.

To configure the frequency of Code Manager garbage collection, specify the deploy_ttl parameter in Hiera. This
parameter accepts a string that includes one of the following suffixes:

• d: Days
• h: Hours
• m: Minutes
• s: Seconds
• ms: Milliseconds

For example, deploy_ttl: '30d' configures Code Manager to keep deployments in memory for 30 days.
Similarly, deploy_ttl: '48h' retains deployments in memory for 48 hours.

The default setting is 1h (one hour).

Important: If the value of deploy-ttl is less than the combined values of timeouts_fetch,
timeouts_sync, and timeouts_deploy, then all completed deployments are retained indefinitely. This could
significantly slow Code Manager's performance over time. Refer to Code Manager parameters on page 809 for
information about the timeouts_* parameters.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 805

Configuring module deployment scope
By default, Code Manager performs incremental deployments of module code. You can use the full_deploy
parameter to change the module code deployment scope.

Incremental deploys only sync modules whose definitions (in the environment's Puppetfile) allow their version to
"float" (such as Git branches) and modules whose definitions have been added or changed since the environment's last
deployment. Incremental deploys do not support SVN modules.

If you want to deploy all module code regardless of change or float status, you can disable incremental deploys by
setting the following parameter to true:

puppet_enterprise::master::code_manager::full_deploy

To re-enable incremental deploys, set the full_deploy parameter to false.

Configuring Forge settings
To configure how Code Manager downloads modules from the Forge, specify these Forge parameters
on the puppet_enterprise::master::code_management class in Hiera (not the
puppet_enterprise::master::code_manager class). These parameters replace the single JSON object
that was previously given to the puppet_enterprise::master::code_manager::forge_settings
parameter.

The Forge related parameters on the puppet_enterprise::master::code_management master class are:

• forge_baseurl: Indicate where Forge modules are installed from. The default is https://
forgeapi.puppetlabs.com.

• forge_authorization_token: Specify the token for authenticating to a custom Forge server.
• forge_proxy: Set the proxy for all Forge interactions.

For example, this configuration specifies a custom Forge server that doesn't require authentication:

puppet_enterprise::master::code_management::forge_baseurl: 'https://private-
forge.example'

If your custom Forge server requires authentication, you must specify both forge_baseurl and
forge_authorization_token. You must format forge_authorization_token as a string prepended
with Bearer, particularly if you use Artifactory as your Forge server. For example:

puppet_enterprise::master::code_management::forge_baseurl: 'https://private-
forge.example'
 puppet_enterprise::master::code_management::forge_authorization_token:
'Bearer <TOKEN>'

The forge_proxy parameter sets a proxy for all Forge interactions. This setting overrides the global proxy
setting but only for Forge operations (refer to the global proxy setting for more information). You can set an
unauthenticated proxy or an authenticated proxy with either Basic or Digest authentication. For example:

puppet_enterprise::master::code_manager::forge_proxy: 'http://
proxy.example.com:3128'

Tip: If you set a global proxy, but you don't want Forge operations to use a proxy, under the forge_settings
parameter, set forge_proxy to an empty string.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 806

Configuring Git settings
To configure Code Manager to use a private key, a proxy, or multiple Git source repositories, specify the following
Git parameters on the puppet_enterprise::master::code_management class in Hiera (not the
puppet_enterprise::master::code_manager class.

Restriction: You can't use these parameters with the default Code Manager
r10k_private_key settings. To avoid errors, remove the r10k_private_key
parameter from the puppet_enterprise::profile::master class. The older
puppet_enterprise::master::code_manager::git_settings parameter also conflicts with
these Git parameters. The new code_managementclass parameters overrides the older code_manager
git_settings parameter. To avoid errors, remove the old git_settings parameter from the
puppet_enterprise::master::code_manager class.

git_private-key

The git_private-key is required if using the SSH protocol for Git remotes, this value is overridden if the
puppet_enterprise::profile::master::r10k_private_key parameter is set.

Use git_private-key to specify the path to the file containing the default private key that you want Code
Manager to use to access control repos, for example:

puppet_enterprise::master::code_management::git_private_key: ‘/etc/
puppetlabs/puppetserver/ssh/id-control_repo.ed25519’

Important: The pe-puppet user must have read permissions for the private key file, and the SSH key can't require
a password.

git_proxy

The git_proxy parameter sets a proxy specifically for Git operations that use an HTTP(S) transport. This setting
overrides the global proxy setting but only for Git operations (For more information, refer to the global proxy
setting). You can set an unauthenticated proxy or an authenticated proxy with either Basic or Digest authentication.
For example:

puppet_enterprise::master::code_management::git_proxy: 'http://
proxy.example.com:3128'

Tip:

To set a proxy for only one specific Git repository (or when you have multiple control repos), set proxy within the
repositories key.

If you set a global proxy, but you don't want Git operations to use a proxy, set git_proxy to an empty string.

git_provider

The git_provider parameter value is overridden if the
puppet_enterprise::profile::master::r10k_git_provider parameter is set. The
git_provider must be one of rugged or shellgit, for example:

puppet_enterprise::master::code_management::git_provider: ‘rugged’

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 807

git_oauth_token

The git_oauth_token parameter is required if using OAuth authenticated Git remotes over the HTTPS protocol.
Use git_oauth_token to specify the path to the file containing the token that you want Code Manager to use to
access control repos, for example:

puppet_enterprise::master::code_management::git_oauth_token: ‘/etc/
puppetlabs/puppetserver/security/github-oauth’

Important: pe-puppet users must have read permissions for the OAuth token file.

git_default_ref

Use git_default_ref to specify the ref R10K to use if no ref is specified for a module declaration in a
Puppetfile, for example:

puppet_enterprise::master::code_management::git_default_ref: ‘main’

repositories

The repositories key specifies a list of repositories and their respective private keys or proxies. Use repositories
if:

• You need to configure different proxy settings for specific repos, instead of all Git operations.

Important: If you have multiple control repos, the sources setting and the repositories setting must match.

Configuring proxies
If you need Code Manager to use a proxy connection, use the proxy parameter. You can set a global proxy for all
HTTP(S) operations, proxies for Git or Forge operations, or proxies for individual Git repositories.

Where you specify the proxy parameter depends on how you want to apply the setting:

• To set a proxy for all Code Manager operations occurring over an HTTP(S) transport, set the global proxy
setting.

• To set proxies only for Git operations or individual Git repos, set the appropriate git_proxy parameter on the
puppet_enterprise::master::code_management class.

• To set a proxy only for Forge operations, set the forge_proxy key parameter on the
puppet_enterprise::master::code_management class.

You can set an unauthenticated proxy or an authenticated proxy with either Basic or Digest authentication. For
example, this setting is for an unauthenticated proxy:

proxy: 'http://proxy.example.com:3128'

Whereas this setting is for a password-authenticated proxy:

proxy: 'http://user:password@proxy.example.com:3128'

Override proxy settings

You can override the global proxy setting if you want to:

• Set a different proxy setting for Git or Forge operations.
• Specify a different proxy setting for an individual Git repo.
• Specify a mix of proxy and non-proxy connections.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/2023.7/code_mgr_customizing#config_sources

pe | Managing and deploying Puppet code | 808

To override the global proxy setting for all Git or Forge operations, you need to set the git_proxy or
forge_proxy parameters on the puppet_enterprise::master::code_management class.

To set a proxy for an individual Git repository (or if you have multiple control repos), set the proxy key in the
repositories parameter on the puppet_enterprise::master::code_management class.

If you have set a global, Git, or Forge proxy, but you don't want a certain setting to use any proxy, set the proxy
parameter to an empty string. For example, if you set a global proxy, but you don't want Forge operations to use a
proxy, you would specify an empty string under the forge_settings parameter, such as:

puppet_enterprise::master::code_management::forge_proxy: ''

Tip: You can use curl commands to test Git and Forge proxy connections, such as:

curl --proxy "<YOUR_PROXY_URI>" --head "https://github.com" curl --proxy
 "<YOUR_PROXY_URI>" --head "https://forgeapi.puppet.com"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Related information

• Set proxies for Code Manager traffic

Related information
Set proxies for Code Manager traffic on page 232
Code Manager has proxy configuration options you can use to set proxies for connections to your Git server, the
Forge, specific Git repositories, or all Code Manager operations over HTTP(S) transports.

Configuring sources
If you are managing multiple control repos with Code Manager, you must use the sources parameter to specify a
map of your source repositories.

The sources parameter is necessary when Code Manager is managing multiple control repos. For example, your
Puppet environments are in one control repo and your Hiera data is in a separate control repo.

Important:

The sources setting and the repositories setting (under git_settings) must match.

If sources is set, you can't use Code Manager's global remote parameter.

The sources parameter consists of a list of source names along with a hash containing the remote and prefix
key for each source. For example:

myorg:
 remote: "git://git-server.site/myorg/main-modules"
 prefix: true
mysource:
 remote: "git://git-server.site/mysource/main-modules"
 prefix: "testing"

The remote parameter specifies the location from which to fetch the source repo. Code Manager must be able to
fetch the remote without any interactive input. This means fetching the source can't require inputting a user name or
password. You must supply a valid URL, as a string, that Code Manager can use to clone the repo, such as: "git://
git-server.site/myorg/main-modules"

The prefix parameter specifies a string to use as a prefix for the names of environments derived from the specified
source. Set this to a specific string if you want to use a specific prefix, such as "testing". Set this to true to use

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/2023.7/code_mgr_customizing#config_sources

pe | Managing and deploying Puppet code | 809

the source's name as the prefix. The prefix parameter prevents collisions (and confusion) when multiple sources
with identical branch names are deployed into the same directory.

For example, the following settings might cause errors or confusion because there would be two main-modules
environments deployed to the same base directory:

myorg:
 remote: "git://git-server.site/myorg/main-modules"
 prefix: true
 mysource:
 remote: "git://git-server.site/mysource/main-modules"
 prefix: true

However, by changing one prefix to "testing", the two environments become more distinct, since the directory
would now have a main-modules environment and a testing-main-modules environment:

myorg:
 remote: "git://git-server.site/myorg/main-modules"
 prefix: true
 mysource:
 remote: "git://git-server.site/mysource/main-modules"
 prefix: "testing"

Code Manager parameters

Parameter Description Type Default value

r10k_remote (also
referred to as Code
Manager's global remote)

A valid SSH URL
specifying the location of
your Git control repository,
if you have only one
control repo.

If you have multiple Git
repos, specify sources
instead of remote. If you
specify both sources and
remote, then sources
overrides remote.

String If r10k_remote
is specified in the
puppet_enterprise::profile::master
class, that value is used
here. Otherwise, there is no
default value.

authenticate_webhookIndicates whether to enable
RBAC authentication for
the POST /v1/webhook on
page 832 endpoint.

Boolean true

cachedir The file path to the location
where Code Manager
caches Git repositories.

String /opt/puppetlabs/
server/data/code-
manager/cache

certname The certname of the Puppet
signed certs to use for SSL

String or string variable $::clientcert

data The file path to the
directory where Code
Manager stores internal file
content.

String /opt/puppetlabs/
server/data/code-
manager

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 810

Parameter Description Type Default value

deploy_pool_cleanup_intervalSpecifies how often
workers pause to clean their
on-disk caches. If cleanup
takes too long, increase
this value so that cleanup
happens less often.

Integer indicating a 1 out of
n percent chance.

100 (Cleanup occurs
after 1 of every 100 code
deployments, or after 1%
of code deployments.)

deploy_pool_size Specifies the number of
threads in the worker
pool, which determines
how many deployment
processes can run in
parallel.

Integer 2

download_pool_size Specifies the number of
threads used to download
modules.

Integer 4

deploy_ttl For Configuring garbage
collection on page 804.

String with a required
suffix

1h

full_deploy For Configuring module
deployment scope on page
805.

Boolean false

hostcrl The file path to the SSL
CRL.

String or string variable $puppet_enterprise::params::hostcrl

localcacert The file path to the SSL CA
cert.

String or string variable $puppet_enterprise::params::localcacert

post_environment_hooksFor Configuring post-
environment hooks on page
803, which are hooks
that you want to run after
Code Manager deploys an
environment.

Array of hashes No default.

timeouts_deploy Maximum execution
time (in seconds) allowed
for deploying a single
environment.

Integer 600

timeouts_fetch Maximum execution time
(in seconds) allowed for
updating the control repo
state.

Integer 30

timeouts_hook Maximum time (in
seconds) to wait for a
single post-environment
hook URL to respond.
Controls both the socket
connect timeout and the
read timeout; therefore,
the longest total timeout is
twice the specified value.

Integer 30

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 811

Parameter Description Type Default value

timeouts_shutdown Maximum time (in
seconds) to wait for in-
progress deployments to
complete when shutting
down the service.

Integer 610

timeouts_wait Maximum time (in
seconds) to wait for the
environment's deployment
to finish before timing out.
Only applies to requests
sent with the wait key.

Integer 700

timeouts_sync Maximum time (in
seconds) to wait for all
compilers to receive
deployed code before
timing out. Only applies
to requests sent with the
wait key.

Integer 300

webserver_ssl_host The IP address of the host
that Code Manager listens
on.

IP address 0.0.0.0

webserver_ssl_port The port that Code
Manager listens on.

Important: Port 8170
must be open if you're
using Code Manager.

Integer 8170

Code Management parameters

Important: These parameters are NOT part of the code_manager class, they are part of the
code_management class. The full parameter names, including class, are listed below for clarity.

Parameter Description Type Default value

puppet_enterprise::master::code_management::git_providerWhether R10K uses
the built in Git library
shipped with PE or
the system Git CLI.
Consult Support before
setting to shellgit.
Valid values are one of
rugged or shellgit.
It is overridden by
puppet_enterprise::profile::master::r10k_git_provider
if set.

String rugged

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 812

Parameter Description Type Default value

puppet_enterprise::master::code_management::git_private_keyA path on the Primary’s
files system to an SSH
key that can access
Git repositories that
use the SSH protocol.
It is overridden by
puppet_enterprise::profile::master::r10k_private_key.

String No default. We recommend
placing the key in the /
etc/puppetlabs/
puppetserver/ssh/
directory.

puppet_enterprise::master::code_management::git_default_refThe valid value is the name
of a branch that R10K uses
if the given ref does not
exist.

String No default.

puppet_enterprise::master::code_management::git_proxyThe proxy to use for
Git repos. This is only
necessary if there is a
separate proxy for Git
repos vs Forge modules.
Values include the
protocol and port, for
example, http://
proxy.example.com:3128.

String No default.

puppet_enterprise::master::code_management::git_oauth_tokenThe path on the Primary
file system OAuth token
to use when authenticating
to Git repos that require
OAuth tokens.

String No default.

puppet_enterprise::master::code_management::git_repositoriesAn array of objects that
contain repo specific
configuration. The valid
keys in each object are
remote, private-
key, proxy, and oauth-
token. This is only
required if you have
multiple control repos and
do not share authentication
methods between them.

Array No default.

puppet_enterprise::master::code_management::forge_proxyThe proxy to use to
download Forge modules.
This is only needed
if there is a Forge
specific proxy different
from downloading Git
repositories. Values include
the protocol and port,
for example, http://
proxy.example.com:3128
.

String No default.

puppet_enterprise::master::code_management::forge_baseurlAn HTTPS address of your
custom Forge, if you have
one.

String No default.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 813

Parameter Description Type Default value

puppet_enterprise::master::code_management::forge_authorization_tokenThe authorization token
to your Forge account, if
necessary. In the format of
Bearer <TOKEN>.

String No default.

r10k-specific parameters

Code Manager uses r10k in the background. In the context of Code Manager, the following r10k parameters apply.

Parameter Description Type Default value

environmentdir The file path to the single
directory where Code
Manager deploys all
sources.

String If
file_sync_auto_commit
is set to true, then
this defaults to: /
etc/puppetlabs/
code-staging/
environments

forge_settings

(deprecated)

For Configuring Forge
settings on page 805.

Hash No default.

invalid_branches Specifies how you want
Code Manager to handle
branch names that can't
cleanly map to Puppet
environment names.

Either of these strings:

• 'error': Ignore
branches that have non-
word characters, and
report an error about the
invalid branches

• 'correct': Without
providing a warning,
replace non-word
characters with
underscores

'error'

git_settings

(deprecated)

For Configuring Git
settings on page 806.

Hash Can use the default
private-key value
set in console. Otherwise,
there are no default
settings.

proxy For Configuring proxies
on page 807. Can
be global (all HTTP(s)
transports) or part of
the git_settings
or forge_settings
hashes.

An empty string or a
string indicating a proxy
server (with or without
authentication)

No default.

sources For Configuring sources on
page 808 when you have
multiple control repos.

Hash No default.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 814

Triggering Code Manager on the command line
Use the puppet-code command to trigger Code Manager from the command line and deploy your environments.

Installing and configuring puppet-code
Puppet Enterprise (PE) automatically installs and configures the puppet-code command on your primary server
as part of the included PE client tools package. You can also set up puppet-code on an agent node or workstation,
customize configuration for different users, or change the global configuration settings.

The global configuration settings for *nix and macOS systems are in a JSON file located at:

/etc/puppetlabs/client-tools/puppet-code.conf

By default, this configuration file contains:

{
"cacert": "/etc/puppetlabs/puppet/ssl/certs/ca.pem",
"token-file": "~/.puppetlabs/token",
"service-url": "https://<PRIMARY_HOSTNAME>:8170/code-manager"
 }

On Windows systems, the global configuration settings are located at:C:\ProgramData\PuppetLabs
\client-tools\puppet-code.conf

On Windows, the default configuration file contains:

{
"cacert": "C:\\ProgramData\\PuppetLabs\\puppet\\etc\\ssl\\certs\\ca.pem",
"token-file": "C:\\Users\\<username>\\.puppetlabs\\token",
"service-url": "https://<PRIMARY_HOSTNAME>:8170/code-manager"
 }

Important: On PE-managed machines, Puppet manages this file for you. Don't manually edit this file, because
Puppet overwrites your changes the next time it runs.

In addition to the global settings, you can:

• Configure puppet-code on agents and workstations on page 816
• Configure puppet-code for different users on page 816
• Use the command line to override specific configuration settings for one deployment

When Deploying environments with puppet-code on page 815, you can use the default config file, an alternative
config file, or config settings supplied directly in the command.

Configuration precedence and puppet-code
There are several ways to configure puppet-code, but some configuration methods take precedence over others.

If no other configuration is specified, puppet-code uses the settings in the global configuration file. User-specific
configuration files override the global configuration file.

If you Use a temporary puppet-code.conf file on page 815, Puppet temporarily uses that configuration file only. In
this case, Puppet doesn't read the global or user-specific configuration files at all for that one deployment.

If you Use a temporary cacert, token-file, or service-url on page 815, by specifying individual configuration
options directly on the command line, those options temporarily take precedence over any place they are specified in
default, global, or user-specific configuration file settings. Settings you don't specify in this way are applied according
to their normal configuration precedence.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 815

Deploying environments with puppet-code
Use puppet-code deploy to trigger a Code Manager code deployment.

You must supply a specific environment's name or the --all flag (to deploy all environments). For example:

puppet-code deploy production
puppet-code deploy --all

Without any other options specified, the default puppet-code deploy <ENVIRONMENT_OPTION> command
deploys the specified environment(s) and returns only deployment queuing results.

In addition to the options for --wait and custom configuration settings (described below), use the Reference:
puppet-code command on page 817 to learn about other puppet-code options.

Running puppet-code on Windows

When running puppet-code on a managed or non-managed Windows workstation, you must specify the full path
to the command. For example:

C:\Program Files\Puppet Labs\Client\bin\puppet code deploy production --wait

For more information about Windows modifications, refer to Using example commands on page 25.

Return deployment results (--wait)
If you want puppet-code deploy to return the results of the actual deployment event(s), add the --wait flag.
Otherwise, the command returns only deployment queuing information.

For example:

puppet-code deploy --all --wait

With the --wait flag, Code Manager deploys code to the specified environment(s), and only returns results after file
sync has deployed code to the live code directory and all compilers.

The resulting message includes the deployment signature, which is the commit SHA from the control repo used
to deploy the environment. The output also includes two other SHAs that indicate that file sync is aware that the
environment has been newly deployed to the code staging directory.

Note: In deployments that are geographically dispersed or have a large quantity of environments, complete code
deployment might take several minutes.

Use a temporary puppet-code.conf file
You can use a custom configuration file to temporary override default, global, and user-specific configuration settings
by specifying the temporary file on the command line.

If you want to temporarily override default, global, and user-specific configuration settings, use the --config-
file option to specify the file path to an alternative puppet-code.conf file. For example:

puppet-code --config-file ~/.puppetlabs/myconfigfile/puppet code.conf deploy
 --all

This configuration file is only used for this one deployment.

Use a temporary cacert, token-file, or service-url
You can temporarily override individual puppet-code configuration settings by specifying individual settings on
the command line.

If you want to temporarily override default, global, and user-specific configuration settings, you can specify these
settings directly on the command line:

• --cacert

• --token-file or -t

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 816

• --service-url

For example, this command uses a custom URL to call the Code Manager service:

puppet-code --service-url "https://puppet.example.com:8170/code-manager"
 deploy production

Tip: For Windows, macOS, and *nix argument formatting examples, refer to puppet-code configuration settings on
page 819.

When you specify settings this way, your custom settings are only used for this one deployment. Unspecified settings
aren't overridden.

Advanced puppet-code configuration
You can configure the puppet-code command on agent nodes, workstations not managed by PE, and for
individual users (on any machine).
Configure puppet-code on agents and workstations
To use puppet-code on an agent node or on a workstation that is not managed by PE, install the client tools
package and configure puppet-code on that machine.

Before you begin
Download and install the client tools package.

1. On the agent node or workstation, create a config file called puppet-code.conf in the client tools directory.

• For Linux and Mac OS X systems, the default client tools directory is /etc/puppetlabs/client-
tools

• For Windows systems, the default client tools directory is C:\ProgramData\PuppetLabs\client-
tools

2. If this machine is not managed by PE, edit the puppet-code.conf file as needed to customize the cacert,
token-file, and service-url settings. These must use proper JSON formatting.

Important: On PE-managed machines, Puppet manages this file for you. Don't manually edit this file on PE-
managed machines, because Puppet overwrites your changes the next time it runs. However, you can apply
temporary modifications, or use an alternative config file, when Deploying environments with puppet-code on
page 815.

Related information
Installing client tools on page 168
PE client tools are a set of command line tools that let you access Puppet Enterprise services from a workstation that
might or might not be managed by Puppet.

Installing and configuring puppet-code on page 814
Puppet Enterprise (PE) automatically installs and configures the puppet-code command on your primary server
as part of the included PE client tools package. You can also set up puppet-code on an agent node or workstation,
customize configuration for different users, or change the global configuration settings.

Configure puppet-code for different users
On any machine, you can configure puppet-code settings for individual users.

Before you begin
If PE is not installed on the workstation you are configuring, you must Configure puppet-code on the workstation
first.

1. Create a puppet-code.conf file in the user's client tools directory.

• For Linux or Mac OS X systems, place the file in the user's ~/.puppetlabs/client-tools/ directory.
• For Windows systems, place the file in the default user config file location at: C:\Users\<username>

\.puppetlabs\ssl\certs\ca.pem

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 817

2. In the user's puppet-code.conf file, customize the cacert, token-file, and service-url settings at
needed. These must use proper JSON formatting.

Related information
Installing and configuring puppet-code on page 814
Puppet Enterprise (PE) automatically installs and configures the puppet-code command on your primary server
as part of the included PE client tools package. You can also set up puppet-code on an agent node or workstation,
customize configuration for different users, or change the global configuration settings.

Configuration precedence and puppet-code on page 814
There are several ways to configure puppet-code, but some configuration methods take precedence over others.

Reference: puppet-code command
The puppet-code command accepts options, actions, and deploy action options.

Use the following format to modify the puppet-code command:

puppet-code [GLOBAL_OPTIONS] <ACTION> [ACTION_OPTIONS]

Global puppet-code options
The puppet-code command supports these global options.

Option Description Allowed arguments

--help or -h Prints puppet-code usage
information.

No arguments supported

--version or -V Prints the application's version. No arguments supported

--log-level or -l Sets the log verbosity. One of the following log levels:

• none

• trace

• debug

• info

• warn

• error

• fatal

--config-file or -c Specifies a puppet-code.conf
file that takes precedence over
all other existing puppet-
code.conf files.

Refer to: Use a temporary puppet-
code.conf file on page 815

A path to a puppet-code.conf
file

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 818

Option Description Allowed arguments

--cacert Specifies a Puppet CA certificate that
overrides the cacert setting in any
configuration files.

Refer to: Use a temporary cacert,
token-file, or service-url on page
815

A path to the location of the CA
Certificate

--token-file or -t Specifies an authentication token that
overrides the token-file setting
in any configuration files.

Refer to: Use a temporary cacert,
token-file, or service-url on page
815

A path to the location of the
authentication token

--service-url Specifies a base URL for the Code
Manager service, overriding the
service-url setting in any
configuration files.

Refer to: Use a temporary cacert,
token-file, or service-url on page
815

A valid URL to call the Code
Manager service

puppet-code actions
The puppet-code command can perform these actions.

Action Description Action options

deploy Triggers the Code Manager
service to deploy code.

Refer to: Deploying environments
with puppet-code on page 815

Refer to: puppet-code deploy
action options on page 819

print-config Prints the resolved puppet-
code configuration.

No action options supported

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 819

Action Description Action options

status Checks whether Code Manager
and file sync are responding.

You can specify a log level:

• none

• trace

• info

• warn

• error

• fatal

If unspecified, the default is info.

puppet-code deploy action options
You can use these action options to modify the puppet-code deploy action.

Option Description

--all or an environment name Required. You must specify either a single
environment's name or use --all to deploy all
environments.

--dry-run Tests the connections to each configured remote and, if
successfully connected, returns a consolidated list of the
environments from all remotes. The --dry-run flag
implies both --all and --wait.

--format or -F Applies pretty printing to the response.

--wait or -w Refer to: Return deployment results (--wait) on page
815

puppet-code configuration settings
You can temporarily override puppet-code.conf settings on the command line.

Setting Description *nix and macOS default
value

Windows default value

cacert Specifies the path to the
Puppet CA certificate to
use when connecting to the
Code Manager service over
SSL.

/etc/puppetlabs/
puppet/ssl/certs/
ca.pem

C:\ProgramData
\PuppetLabs\puppet
\etc\ssl\certs
\ca.pem

token-file Specifies the location of
the file containing the
authentication token for
Code Manager.

~/.puppetlabs/
token

C:\Users
\<USERNAME>
\.puppetlabs\token

service-url Specifies the base URL
to call the Code Manager
service.

https://
<PRIMARY_HOSTNAME>:8170/
code-manager

https://
<PRIMARY_HOSTNAME>:8170/
code-manager

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 820

Triggering Code Manager with a webhook
To deploy your code, you can trigger Code Manager by hitting a web endpoint, either through a webhook or a custom
script. Webhooks are the simplest way to trigger Code Manager.

Code Manager supports webhooks for GitHub, Bitbucket Server (formerly Stash), Bitbucket, and Team Foundation
Server. The webhook must only be used by the control repository. It can't be used by any other repository (for
example, other internal component module repositories).

Important: Code Manager webhooks are not compatible with Continuous Delivery for PE. If your organization uses
Continuous Delivery for PE, you must use a method other than webhooks to deploy environments.

Tip: Triggering Code Manager with custom scripts on page 822 is a good alternative to webhooks if you have
requirements such as existing continuous integration systems (including Continuous Delivery for Puppet Enterprise
(PE)), privately hosted Git repos, or custom notifications.

Create a Code Manager webhook
To set up the webhook to trigger environment deployments, you must create a custom URL, and then set up the
webhook with your Git host.
Create a custom URL
Create a custom URL to allow communication between your Git host and Code Manager.

Code Manager supports webhooks for GitHub, Bitbucket Server (formerly Stash), Bitbucket, GitLab (Push events
only), and Team Foundation Server (TFS).

Important: If you want to use a GitHub webhook with the Puppet signed cert, you must disable SSL verification.

The custom webhook URL must use these elements:

Element Description Example

Name Your primary server's DNS name puppet.example.com

Port The port used by Code Manager 8170

Endpoint The Code Manager webhook
endpoint

/code-manager/v1/webhook/

Parameters Required and optional Code Manager
webhook query parameters on page
821

type=github&token=<TOKEN>

The minimum possible valid webhook URL format is:

https://<NAME>:<PORT>/code-manager/v1/webhook?type=<TYPE>

The token parameter is required unless you disabled authenticate_webhook. With the token parameter, the
valid URL format is:

https://<NAME>:<PORT>/code-manager/v1/webhook?type=<TYPE>&token=<TOKEN>

If your source configuration requires the prefix parameter, the valid URL format is:

https://<NAME>:<PORT>/code-manager/v1/webhook?
type=<TYPE>&prefix=<PREFIX>&token=<TOKEN>

For example, the following URLs are for a GitHub webhook and a Bitbucket Server webhook:

https://puppet.example.com:8170/code-manager/v1/webhook?
type=github&token=<TOKEN>

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 821

https://puppet.example.com:8170/code-manager/v1/webhook?type=bitbucket-
server&prefix=dev&token=<TOKEN>

Tip: After you Set up the Code Manager webhook on your Git host on page 822, you can use this URL to call the
POST /v1/webhook on page 832 endpoint.

Code Manager webhook query parameters
You can use these query parameters in your the Code Manager webhook URL.

Parameter Description Value

type Required. Specifies the type of
POST body to expect.

Specify the value corresponding with
your Git host:

• GitHub: type=github
• GitLab: type=gitlab
• Bitbucket Server version 5.4

or later (formerly Stash):
type=bitbucket-server

• Bitbucket: type=bitbucket
• Team Foundation Server

(resource version 1.0 is
supported): type=tfs-git

prefix Conditionally required. Specifies a
prefix for converting branch names
to environment names.

Important: Required if you used
prefixing when Configuring sources
on page 808. If your sources use
prefixing and you do not specify
this parameter, Code Manager
can't correctly locate or deploy
environments, or translate branch
names to valid environment names.

prefix=<PREFIX>

token Conditionally required. Specifies
the entire PE authorization token
to use for code deployments. To
get a token, you can Request an
authentication token for deployments
on page 64.

Important: Required
unless you disabled
authenticate_webhook in
your Code Manager configuration.

token=<TOKEN>

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 822

Related information
Configuring sources on page 808
If you are managing multiple control repos with Code Manager, you must use the sources parameter to specify a
map of your source repositories.

Set up the Code Manager webhook on your Git host
In your Git server’s webhook form, enter your custom URL as the payload URL.

The content type for Code Manager webhooks is JSON.

The specific steps for setting up a webhook depends on your Git host. Refer to your Git host's documentation for
instructions.

For example, in a GitHub repo, click Settings > Webhooks & services, enter the payload URL, and enter
application/json as the content type.

Tip: On Bitbucket Server, the server configuration menu has settings for both Hooks and Webhooks. Use the
Webhooks configuration for your Code Manager webhook. Make sure you're using Bitbucket Server version 5.4 or
later and the latest fix version of PE.

After setting up your webhook, you've finished setting up Code Manager. From now on, when you commit new
code and push it to your control repo, the webhook triggers Code Manager to deploy your code. You can also use the
POST /v1/webhook on page 832 endpoint to manually trigger your webhook.

Troubleshoot a Code Manager webhook
To troubleshoot your webhook, you can review your Git host's logs. Refer to your Git host's documentation for
information about their logs and their suggestions for resolving common webhook issues.

Deployments triggered by a webhook in Stash/Bitbucket, GitLab, or GitHub are governed by authentication and hit
the POST /v1/webhook on page 832 endpoint for each service type.

If you are using a GitLab version older than 8.5.0, Code Manager's webhook authentication doesn't work because
of the length of the authentication token. To use the webhook with GitLab, either disable authentication or update
GitLab. If you disable webhook authentication, it is disabled only for the POST /v1/webhook on page 832
endpoint. It is not possible to disable authentication for the POST /v1/deploys on page 827 or GET /v1/deploys/
status on page 833 endpoints.

To troubleshoot webhook issues, follow the instructions for Triggering Code Manager with a webhook on page
820 while monitoring the Puppet Server log. To monitor the logs, open a separate terminal window and run:

tail -f /var/log/puppetlabs/puppetserver/puppetserver.log

Watch the log closely for errors and information messages when you trigger the webhook. The
puppetserver.log file is the only location these errors appear. If you cannot determine the problem with
your webhook this way, manually deploy to the POST /v1/deploys on page 827 endpoint while monitoring the
console-services.log file, as described in Troubleshooting Code Manager on page 823.

For other Code Manager issues, refer to Troubleshooting Code Manager on page 823.

Triggering Code Manager with custom scripts
Custom scripts are a good way to trigger deployments if you can't use webhooks. For example, if you have privately
hosted Git repositories, custom notifications, or existing continuous integration systems (like Continuous Delivery for
Puppet Enterprise (PE)).

Triggering Code Manager with a webhook on page 820 is simpler than using a custom script. If you can use a
webhook, we recommend it.

To create a script that triggers Code Manager to deploy your environments, you can use either the puppet-code
command or a curl statement that hits the Code Manager API endpoints. We recommend using the puppet-code
command, if possible.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 823

After pushing new code to your control repo, run your script to trigger Code Manager to deploy your code.

The following instructions assume you've Set up Code Manager on page 794.

Related information
Reference: puppet-code command on page 817
The puppet-code command accepts options, actions, and deploy action options.

Code Manager API on page 826
You can use the Code Manager API to deploy code and check the status of deployments on your primary server and
compilers without direct shell access.

Request an authentication token for deployments on page 64
To securely deploy your code, request an authentication token for the deployment user.

Scripting the puppet-code command
The puppet-code command can deploy environments from the command line. You can use this command in
custom Code Manager scripts.

Using puppet-code in Code Manager scripts is much the same as Triggering Code Manager on the command line
on page 814. The benefit to using a script is that you don't need to rebuild the commands from scratch each time,
since they are stored in scripts.

Build your desired puppet-code command with the relevant action, environment (or --all for all environments),
custom puppet-code.conf settings, and other options. Then, incorporate the command into your complete script.

After pushing new code to your control repo, run your script to trigger Code Manager to deploy your code.

Related information
Reference: puppet-code command on page 817
The puppet-code command accepts options, actions, and deploy action options.

Scripting deploys curl commands
The Code Manager API deploys endpoint can trigger code deployments. You can use a curl command in your
custom scripts to hit this endpoint.

Calling the deploys endpoint in a script is similar to forming a one-time call to the endpoint. By storing commands
in scripts, you don't need to rebuild the commands from scratch each time.

Build your desired curl command with the relevant URI path, parameters, and authentication, as described in POST /
v1/deploys on page 827. Then, incorporate the command into your complete script.

Scripting deploys/status curl commands
The Code Manager API deploys/status endpoint can check a deployment's status. You can use a curl command
in your custom scripts to hit this endpoint.

Calling the deploys/status endpoint in a script is similar to forming a one-time call to the endpoint. By storing
commands in scripts, you don't need to rebuild the commands from scratch each time.

Build your desired curl command with the relevant URI path, parameters, and authentication, as described in GET /
v1/deploys/status on page 833. Then, incorporate the command into your complete script.

Troubleshooting Code Manager
Code Manager requires coordination between multiple components, including source control, r10k, and the file sync
service. If you have issues with Code Manager, check that these components are functioning.

Code Manager logs

Code Manager logs to the Puppet Server log. By default, this log is at: /var/log/puppetlabs/
puppetserver/puppetserver.log

For more information about working with the logs, see the Puppet Server logs documentation.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/server/about_server.html#logging

pe | Managing and deploying Puppet code | 824

For source control webhook issues, check your Git host's logs.

Check Code Manager's status

Check the status of Code Manager and file sync if your deployments are not working as expected, or if you need to
verify that Code Manager is enabled before running a dependent command.

The puppet-code status command verifies that Code Manager and file sync are responding. The command
returns the same information as the GET /v1/deploys/status on page 833 endpoint. By default, the command
returns details at the info log level. It doesn't support critical and debug log levels.

Errors that puppet-code status might report include:

Code Manager couldn’t connect to the server

Occurs if the pe-puppetserver process isn’t running.

Code Manager reports invalid configuration

Occurs if there is an invalid configuration in the code-manager.conf file, located at: /etc/
puppetlabs/puppetserver/conf.d/code-manager.conf

File sync storage service reports unknown status

Occurs if the status callback timed out.

Test the connection to the control repository

The control repository controls the existence of environments, and ensures that the correct versions of all the
necessary modules are installed in your environments. The primary server must be able to access and clone the
control repo as the pe-puppet user.

To make sure that Code Manager can connect to the control repo, run:

puppet-code deploy --dry-run

If the connection is set up correctly, this command returns a list of all environments found in the control repo (or
repos, if you have multiple sources configured). A successful response means the control repo's SSH key has the
correct permissions, the Git URL is correct, and the pe-puppet user can perform the necessary operations.

If there is a problem with the connection, the command returns this message: Unable to determine current
branches for Git source. It also returns a file path on the primary server that you can use for debugging the
SSH key and Git URL.

Check the Puppetfile for errors

Check the environment's Puppetfile for syntax errors and verify that every module in the Puppetfile can be installed
from the listed source. To do this, you need a copy of an environment's Puppetfile in a temporary directory.

On the primary server, create a temporary directory at /var/tmp/test-puppetfile and place a copy of the
Puppetfile into the temporary directory. From there, you can then check the syntax and sources in your Puppetfile.

To check the Puppetfile syntax, run r10k puppetfile check from within the temporary directory. If syntax
errors are detected, correct them, and run the test again. If the syntax is correct, the command returns Syntax OK.

To test the configuration of sources in your Puppetfile, perform a test installation. In your temporary directory (at /
var/tmp/test-puppetfile), run the following command:

sudo -H -u pe-puppet bash -c \
'/opt/puppetlabs/puppet/bin/r10k puppetfile install'

This command attempts to install modules listed in your Puppetfile to a modules directory in your temporary
directory. This test verifies if there is access to all listed module sources. Take note of all errors that occur, because
issues with individual modules can cause issues for the entire environment. Errors with an individual module (such
as Git URL syntax or version issues) are reported as general errors for that module. If you have modules from private

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 825

Git repositories that require an SSH key to clone the module, check that you are using the SSH Git URL and not the
HTTPS Git URL. After correcting the reported errors, rerun the test install again to confirm the errors are resolved.

For more information, refer to Managing environment content with a Puppetfile on page 783.

Run a deployment test

You can manually run a full r10k deployment to check your Puppetfile syntax, access to sources, and whether the
deployment works through r10k.

The following command attempts a full r10k deployment based on the r10k.yaml file that Code Manager uses.
This test writes to the code staging directory only and doesn't trigger file sync. Only use this for ad-hoc testing. The
test deployment command is:

sudo -H -u pe-puppet bash -c \
'/opt/puppetlabs/puppet/bin/r10k deploy environment -c \
/opt/puppetlabs/server/data/code-manager/r10k.yaml -p -v debug'

If the command succeeds, the /etc/puppetlabs/code-staging directory is populated with directory-based
environments and all the necessary modules for every environment.

If the command fails, the error is likely caused by Code Manager's r10k-related settings. The error messages indicate
which settings are failing. For more information, refer to Code Manager settings on page 798.

Source control webhook issues

Refer to Troubleshoot a Code Manager webhook on page 822.

Monitor /v1/deploys logs

If you're experiencing errors with deployments triggered through the POST /v1/deploys on page 827 webhook, you
can monitor logs when you call the endpoint.

To do this, you'll need to call the POST /v1/deploys on page 827 endpoint with the wait parameter while
monitoring the console services log. To monitor the console-services.log file, open a terminal window and
run:

tail -f /var/log/puppetlabs/console-services/console-services.log

Code deployments time out
If your environments are heavily loaded, code deployments can take a long time, and the system might time out
before deployment is complete.

If your deployments are timing out too soon, increase one or more of these settings:

• timeouts_deploy

• timeouts_shutdown

• timeouts_sync

• timeouts_wait

For descriptions of these settings, refer to Code Manager parameters on page 809. For instructions on configuring
these settings, refer to Customize Code Manager configuration in Hiera on page 803.

Tip: Deployment timeouts can also occur when the file sync client holds code deployments while waiting for long-
running plans to finish. To resolve this, you can increase the timeouts_sync setting or allow Running plans
alongside code deployments on page 667.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 826

File sync stops when Code Manager tries to deploy code
Code Manager's code deployments involves accessing many small files. If you store your Puppet code on network-
attached storage, you might experience poor performance with deployments due to a slow network or problems with
back-end hardware.

If you're experiencing performance issues, try to:

• Tune the network to accommodate the many small files.
• Store Puppet code on local or direct-attached storage.

Classes are missing after deployment
After a successful code deployment, a class you added isn't available in the PE console.

If your code deployment succeeds, but a class you added isn't available in the console, try these steps one at a time:

• Refresh your browser.
• Run Puppet to refresh classes.
• Verify that the environment directory exists on disk.
• Check your node group's settings to make sure the group has the correct environment assigned. You might need to

run Puppet or redeploy environments after changing environment settings.

Code Manager API
You can use the Code Manager API to deploy code and check the status of deployments on your primary server and
compilers without direct shell access.

Forming Code Manager API requests

The Code Manager API accepts well-formed HTTPS requests and requires authentication.

Requests must include a URI path following the pattern:

https://<DNS>:8170/code-manager/v1/<ENDPOINT>

The variable path components derive from:

• DNS: Your primary server's DNS name. You can use localhost, manually enter the DNS name, or use a
puppet command (as explained in Using example commands on page 25).

• ENDPOINT: One or more sections specifying the endpoint, either deploys, webhook, or deploys/status.

Tip: If your Code Manager service does not use port 8170, you need to change the port number in the path.

For example, you could use any of these paths to call the GET /v1/deploys/status on page 833 endpoint:

https://$(puppet config print server):8170/code-manager/v1/deploys/status
https://localhost:8170/code-manager/v1/deploys/status
https://puppet.example.dns:8170/code-manager/v1/deploys/status

To form a complete curl command, you need to provide appropriate curl arguments, authentication, and you might
need to supply the content type and/or additional parameters specific to the endpoint you are calling.

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

Code Manager API authentication

Code Manager API requests require token-based authentication. For instructions on generating, configuring,
revoking, and deleting authentication tokens in PE, go to Request an authentication token for deployments on page
64 or Token-based authentication on page 308.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 827

To provide tokens for deploys endpoints, you can use an X-authentication header with the puppet-access
show command, such as:

auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8170/code-manager/v1/deploys/
status"

curl --insecure --header "$auth_header" "$uri"

Or you can use the actual token, such as:

auth_header="X-Authentication: <TOKEN>"
uri="https://$(puppet config print server):8170/code-manager/v1/deploys/
status"

curl --insecure --header "$auth_header" "$uri"

Important: Unlike the deploys endpoints, when calling the webhook endpoint, you must append the token as a
query parameter. Tokens supplied in query parameters might appear in access logs.

Related information
API index on page 30
APIs allow you to interact with Puppet and Puppet Enterprise (PE) applications from your own code or application
integration hooks.

Request an authentication token for deployments on page 64
To securely deploy your code, request an authentication token for the deployment user.

POST /v1/deploys
Trigger Code Manager to deploy code to a specific environment or all environments, or use the dry-run parameter
to test your control repo connection.

Request format

When forming Code Manager API on page 826 requests to this endpoint, the content type is application/
json. The body must be a JSON object using the keys described in the following table. You must supply either
deploy-all or environments, and, although not required, you might find the other keys useful in certain
situations.

Key Format Definition

deploy-all Boolean Set to true if you want to trigger
code deployments for all known
environments.

If false or omitted, you must
include the environments key.

For information about how Code
Manager detects environments, refer
to Add an environment on page
783.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 828

Key Format Definition

environments Array of strings Specify the names of one or more
specific environments for which you
want to trigger code deployments.

This key is required if deploy-all
isfalse or omitted.

deploy-modules Boolean Indicate whether Code Manager
deploys modules declared in an
environment's Puppetfile.

If false, modules aren't deployed.
If omitted, the default value is true.

Restriction: Modules are
always deployed the first time an
environment is deployed, even if you
set deploy-modules to false.
This ensures environments are fully
populated upon first use. If you
want to exclude a module from an
environments initial deployment,
remove or comment-out the module
in the environment's Puppetfile.

For more information, refer to:
Managing modules with a Puppetfile
on page 784

modules JSON object A comma-separated or space-
separated list of specific modules to
deploy.

wait Boolean Indicates how soon you want Code
Manager to return a response.

If false or omitted, Code Manager
returns a list of queued deployments
immediately after receiving the
request.

If true, Code Manager returns
a more detailed response after all
deployments have finished (either
successfully or with an error).

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 829

Key Format Definition

dry-run Boolean Use to test Code Manager's
connection to your source control
provider.

If true, Code Manager attempt
to connect to each of your
remotes, attempts to fetch a list of
environments from each source, and
reports any connection errors.

For more information about having
multiple remotes, refer to: How the
control repository works on page
779

Here are three examples of complete curl commands for the deploys endpoint.

This example deploys the production environment and uses the wait key to get a more detailed response after
the deployment finishes:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8170/code-manager/v1/deploys"
data='{"environments": ["production"], "wait": true}'

curl --header "$type_header" --header "$auth_header" --request POST "$uri"
 --data "$data"

This example deploys two environments and uses the wait key:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
cacert="$(puppet config print localcacert)"
uri="https://$(puppet config print server):8170/code-manager/v1/deploys"
data='{"environments": ["production", "testing"], "wait": true}'

curl --header "$type_header" --header "$auth_header" --cacert "$cacert" --
request POST "$uri" --data "$data"

This example deploys all environments and returns queueing information immediately after the submitting the
request:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
cacert="$(puppet config print localcacert)"
uri="https://$(puppet config print server):8170/code-manager/v1/deploys"
data='{"deploy-all": true}'

curl --header "$type_header" --header "$auth_header" --cacert "$cacert" --
request POST "$uri" --data "$data"

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 830

Response format

Note: If your request included the wait key, the response arrives after the deployments finish. You might have to
wait several minutes, depending on the number of environments, deployment sizes, and how geographically dispersed
the deployments are.

A successful response contains a list of objects, where each object contains data about a queued or deployed
environment. Response objects use keys described in the following table. Which keys are included and possible
values for the status key depend on the value of the wait key in the request.

Key Definition

environment The name of the queued or deployed environment.

id An integer generated by Code Manager that identifies the
environment's order in the deployment queue.

status A code deployment's status at the time of the response.

If the request omitted wait or included "wait":
false, then the status is either new or queued.

• new: The deploy request is accepted but not yet
queued.

• queued: The deploy is queued and waiting to start.

If the request included "wait": true, the status is
either complete or failed.

• complete: The deploy is complete and synced to
the live code directory on the primary server and
compilers.

• failed: The deploy failed. Response objects for
failed deployments also include the error key.

deploy-signature The commit SHA from the control repo that Code
Manager used for the environment's code deploy.

Only included if the request included "wait": true.

file-sync An object containing environment-commit
and code-commit, which are commit SHAs used
internally by file sync to identify the code synced to the
code staging directory.

Only included if the request included "wait": true.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 831

Key Definition

error Only included if the request included "wait": true
and the deployment failed.

The error key is an object that uses the following keys
to describe the failure:

• details: Can contain the corrected-name of
the environment.

• kind: The type of error encountered.
• msg: A longer error message that can help you

troubleshoot the failure.

Failure information remains in this endpoint's responses
until cleaned up by garbage collection, even if the
environment has a successful deployment after the
failure. For more information, refer to Configuring
garbage collection on page 804.

For example, this response resulted from a request that included a false or omitted wait key:

[
 {
 "environment": "production",
 "id": 1,
 "status": "queued"
 },
 {
 "environment": "testing",
 "id": 2,
 "status": "queued"
 }
]

Whereas this example response is from a request that included "wait": true:

[
 {
 "deploy-signature":"482f8d3adc76b5197306c5d4c8aa32aa8315694b",
 "file-sync":{
 "environment-commit":"6939889b679fdb1449545c44f26aa06174d25c21",
 "code-commit":"ce5f7158615759151f77391c7b2b8b497aaebce1"},
 "environment":"production",
 "id":3,Code Manager
 "status":"complete"
 }
]

This example describes a failed deployment:

 {
 "environment": "test14",

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 832

 "error": {
 "details": {
 "corrected-name": "test14"
 },
 "kind": "puppetlabs.code-manager/deploy-failure",
 "msg": "Errors while deploying environment 'test14' (exit code:
 1):\nERROR\t -> Authentication failed for Git remote \"https://github.com/
puppetlabs/puffppetlabs-apache\".\n"
 },
 "id": 52,
 "status": "failed"
 }

Tip: If deployments are failing when triggered by the deploys endpoint, refer to Troubleshooting Code Manager
on page 823 for information about monitoring logs associated with this endpoint.

POST /v1/webhook
Deploy code by triggering your Code Manager webhook.

Request format

Unlike other POST requests, when forming Code Manager API on page 826 requests to the webhook endpoint,
you must append parameters to the URI path, rather than using a JSON body. Available parameters include:

• type: Always required. Identifies your Git host.
• prefix: Required if your source configuration uses prefixing. Specifies the prefix to use when converting branch

names to environment names.
• token: Required unless you disabled authenticate_webhook in your Code Manager configuration. You

must supply the authentication token in the token parameter. Tokens supplied in query parameters might appear
in access logs.

For more information and examples for each parameter, refer to Code Manager webhook query parameters on page
821.

For example, this request includes the type and token parameters:

curl -X POST "https://$(puppet config print server):8170/code-manager/v1/
webhook?type=github&token=<TOKEN>"

Tip: For more information, refer to Triggering Code Manager with a webhook on page 820.

Response format

When your Code Manager webhook is automatically triggered by a push to the control repo, all responses appear in
your Git provider's interface. Code Manager does not give command line responses to automatic webhook triggers.

If you use a curl command to manually trigger the webhook, and your request is well-formed and valid, Code
Manager returns an OK response. This only indicates that the request was valid, it does not indicate whether a
resulting code deployment succeeded or failed.

Error responses

If an error occurs when the webhook is automatically triggered, check your Git provider interface for error responses.
If there is a problem with the webhook, refer to Troubleshoot a Code Manager webhook on page 822.

If you use a curl command to manually trigger the webhook, and the request has a missing or invalid type, the
endpoint returns an unrecognized-webhook-type error along with a copy of the supplied type value and a
list of valid type values.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 833

GET /v1/deploys/status
Get the status of code deployments that Code Manager is currently processing for each environment. You can specify
an id query parameter to get the status of a particular deployment.

Request format

When forming Code Manager API on page 826 requests to this endpoint, the request is a basic call with
authentication, such as:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8170/code-manager/v1/deploys/
status"

curl --header "$type_header" --header "$auth_header" "$uri"

A basic request returns the status of all deployments in the queue. You can append the optional id query parameter
to get the status of a specific deployment by calling its position in the current deployment queue. For example, this
request calls the status of the fifth deployment in the current queue:

type_header='Content-Type: application/json'
auth_header="X-Authentication: $(puppet-access show)"
uri="https://$(puppet config print server):8170/code-manager/v1/deploys/
status?id=5"

curl --header "$type_header" --header "$auth_header" "$uri"

Response format

For requests that do not include the id parameter, the successful response is a JSON object describing the status of
each deployment in the queue. The body is divided into three secondary objects (deploys-status, file-sync-
storage-status, and file-sync-client-status) that report information about deployments depending
on the deployments' statuses.:

• deploys-status: Contains four arrays representing possible code deployment statuses, which are new,
queued, deploying, or failed.

• For each new, queued, deploying, and failed deployment, there is a nested object containing the deployment's
position in the queue (id), the environment name (environment), and the time the deployment was put in
the queue (queued-at).

• For failed deployments, there is an additional error object describing the failure (details and
corrected-name), the type of error (kind), and a longer error message (msg). Failure information
remains in this endpoint's responses until cleaned up by garbage collection, even if the environment has a
successful deployment after the failure. For more information, refer to Configuring garbage collection on page
804.

• If there are no deployments with a particular status in the queue, the array for that status is empty.
• Successfully completed deployments are reported in either the file-sync-storage-status or file-

sync-client-status objects.
• file-sync-storage-status: Contains a deployed object that lists environments that Code Manager

has successfully deployed to the code staging directory, but not yet synced to the live code directory. For each
deployed environment, the response includes the environment name (environment), the deployment date and
time (date), and the commit SHA from the control repo that Code Manager used for the environment's code
deploy (deploy-signature).

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 834

• file-sync-client-status: Lists the status of your primary server and each compiler that Code Manager
is deploying environments to, including whether the code in the primary server's staging directory has been synced
to the live code directory. Contains:

• all-synced: A Boolean indicating whether all requested code deployments are synced to the live code
directories on their respective servers.

• file-sync-clients: An object containing a list of servers that Code Manager deployed code to. For
each server, the response includes the date and time of the server's last check in (last_check_in_time),
whether the server synchronized with file sync storage (synced-with-file-sync-storage), and an
array of deployment objects associated with that server. Each deployment object includes the environment
name (environment), the deployment date and time (date), and the commit SHA from the control repo
that Code Manager used for the environment's code deploy (deploy-signature).

For requests that include the id parameter, the response is condensed and uses the following keys to describe the
specified deployment:

• environment: The name of the environment.
• status: The deployment's status at the time of the response. Can be new, queued, deploying, failed,

syncing, or synced.
• queued-at: The date and time when the deployment was put in the queue.

For example, this is a response for a single deployment:

{
 "environment": "production",
 "id": 1,
 "status": "deploying",
 "queued-at": "2018-05-10T21:44:25.000Z"
}

And this is an example response for an entire deployment queue:

{
 "deploys-status":{
 "queued":[
 {
 "environment":"dev",
 "id":3,
 "queued-at":"2018-05-15T17:42:34.988Z"
 }
],
 "deploying":[
 {
 "environment":"test",
 "id":1,
 "queued-at":"2018-05-15T17:42:34.988Z"
 },
 {
 "environment":"prod",
 "id":2,
 "queued-at":"2018-05-15T17:42:34.988Z"
 }
],
 "new":[

],
 "failed":[
 {
 "environment": "test14",
 "error": {
 "details": {
 "corrected-name": "test14"

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 835

 },
 "kind": "puppetlabs.code-manager/deploy-failure",
 "msg": "Errors while deploying environment 'test14' (exit
 code: 1):\nERROR\t -> Authentication failed for Git remote \"https://
github.com/puppetlabs/puffppetlabs-apache\".\n"
 },
 "queued-at": "2018-06-01T21:28:18.292Z"
 }
]
 },
 "file-sync-storage-status":{
 "deployed":[
 {
 "environment":"prod",
 "date":"2018-05-10T21:44:24.000Z",
 "deploy-signature":"66d620604c9465b464a3dac4884f96c43748b2c5"
 },
 {
 "environment":"test",
 "date":"2018-05-10T21:44:25.000Z",
 "deploy-signature":"24ecc7bac8a4d727d6a3a2350b6fda53812ee86f"
 },
 {
 "environment":"dev",
 "date":"2018-05-10T21:44:21.000Z",
 "deploy-signature":"503a335c99a190501456194d13ff722194e55613"
 }
]
 },
 "file-sync-client-status":{
 "all-synced":false,
 "file-sync-clients":{
 "chihuahua":{
 "last_check_in_time":null,
 "synced-with-file-sync-storage":false,
 "deployed":[

]
 },
 "localhost":{
 "last_check_in_time":"2018-05-11T22:41:20.270Z",
 "synced-with-file-sync-storage":true,
 "deployed":[
 {
 "environment":"prod",
 "date":"2018-05-11T22:40:48.000Z",
 "deploy-
signature":"66d620604c9465b464a3dac4884f96c43748b2c5"
 },
 {
 "environment":"test",
 "date":"2018-05-11T22:40:48.000Z",
 "deploy-
signature":"24ecc7bac8a4d727d6a3a2350b6fda53812ee86f"
 },
 {
 "environment":"dev",
 "date":"2018-05-11T22:40:50.000Z",
 "deploy-
signature":"503a335c99a190501456194d13ff722194e55613"
 }
]
 }
 }

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 836

 }
}

About file sync
File sync helps Code Manager keep your Puppet code synchronized across your primary server and compilers.

When a code deployment is triggered, Code Manager uses r10k to fetch code (over HTTPS or SSH) from the Git
server and places the code into the staging directory on the primary server (at /etc/puppetlabs/code-
staging), which is an internal Git server.

Next, the file sync storage service on the primary server detects the change in the staging directory, and the file sync
clients pause Puppet Server to avoid conflicts during synchronization. Finally, the file sync clients synchronize the
new code to the live code directories on the primary server and compilers (usually at /etc/puppetlabs/code).

File sync only deploys Puppet code when an agent is ready to receive the new code. This ensures that your agents'
code doesn't change during a Puppet run. File sync triggers an environment cache flush when the deployment is
finished, which ensures that new Puppet agent runs use the newly-deployed Puppet code.

Important:

File sync is part of Code Manager, and you usually don't need to directly configure or trigger file sync.

Directly accessing the file sync API is unsupported and not recommended.

For information about how code deployments are triggered, refer to How Code Manager works on page 791.

Tip: If you want code deployments to run uninterrupted while Orchestrator plans are running, you can enable
Running plans alongside code deployments on page 667.

File sync terms
Understanding these terms is helpful for understanding file sync.

Control repository

Used for storing your Puppet code and maintaining separate code for different environments (such as production,
development, or testing). Each environment is represented by a branch of the control repo. For more information,
refer to Managing environments with a control repository on page 779.

Each environment branch has a Puppetfile specifying exactly which modules to install in each environment. You
can learn more About Environments in the Puppet documentation.

Live code directory

This directory contains all your Puppet manifests and modules for each environment (Code Manager creates
directory environments based on the branches you've set up in your control repo). Puppet Server uses this
directory for catalog compilation. This directory is present on your primary server and all compilers.

The directory's location is specified in the Puppet Server master-code-dir setting and the
Puppet$codedir setting. The default value is /etc/puppetlabs/code, which is also the default location
for the live code directory.

In file sync configuration settings, the live code directory is sometimes abbreviated as live-dir.

Staging code directory

Code Manager detects code changes that you make in your control repository, and then Code Manager stages
the updated code in the staging code directory. From there, file sync moves the updated code to the live code
directories.

While the primary server and all compilers have their own live code directories, the staging code directory is only
present on the primary server. The default location is /etc/puppetlabs/code-staging.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environments_about.html

pe | Managing and deploying Puppet code | 837

How file sync works
File sync helps distribute your Puppet code to your primary server, compilers, and agents.

By default, file sync is disabled and there is no staging directory on the primary server. If you're upgrading from
Puppet Enterprise (PE) 2015.2 or earlier, file sync is automatically disabled after the upgrade. When you Set up Code
Manager on page 794, you also enable file sync. This creates the staging directory on the primary server, which
Code Manager can then populate with Puppet code it detects in your control repo.

Once Code Manager pulls code from your control repo and places it in the staging directory, file sync synchronizes
the code to the primary server's live code directory, and then to the live code directories on all compilers. Once
deployed to compilers, the new code is available to agents that check in to those compilers.

Usually, code deployments are handled by Code Manager, but, only if absolutely necessary, you could use the POST
file-sync/v1/commit endpoint to manually trigger a file sync deployment.

Important:

File sync is part of Code Manager, and you usually don't need to directly configure or trigger file sync.

File sync endpoint documentation is for informational purposes only. Directly accessing the file sync API is
unsupported and not recommended.

You can call the endpoint from the primary server, and your request must contain:

• A content type specification in the header: Content-Type: application/json
• Authentication. Namely, the primary server's SSL certificate and private key, and the Puppet CA's certificate.
• The POST action.
• A URI made up of:

• The primary server's fully qualified domain name, which you can call with puppet config print
server or the literal domain name.

• The port the endpoint listens on. The default is 8140.
• The endpoint identifier: file-sync/v1/commit

• A JSON body containing {"commit-all" : true}

For example:

type_header='Content-Type: application/json'
cert="$(puppet config print hostcert)"
cacert="$(puppet config print localcacert)"
key="$(puppet config print hostprivkey)"
uri="https://$(puppet config print server):8140/file-sync/v1/commit"
data='{"commit-all": true}'

curl --header "$type_header" --cert "$cert" --cacert "$cacert" --key "$key"
 --request POST "$uri" --data "$data"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

A successful request triggers file sync to commit the latest changes from the staging directory to the primary server's
live code directory. The next time the compilers poll the file sync service for code changes, they receive the newly-
committed code and deploy it into their own live code directories, where it is available for agents checking in to those
compilers. By default, compilers poll for changes every 5 seconds.

Code commits can be restricted to a specific environment and can include details, such as a message or information
about the commit author.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 838

Enabling or disabling file sync
File sync is normally enabled or disabled automatically along with Code Manager.

File sync's behavior is linked to Code Manager. Because Code Manager is disabled by default, file sync is also
disabled by default. To enable file sync, you must Set up Code Manager on page 794. You can enable and
configure Code Manager either during or after you install Puppet Enterprise (PE).

In the PE console, the file_sync_enabled parameter, in the puppet_enterprise::profile::master
class, defaults to automatic, which means that file sync is enabled and disabled automatically when Code
Manager is enabled or disabled. If you set the file_sync_enabled parameter to true, it forces file sync
to be enabled even if Code Manager is disabled. The file_sync_enabled parameter doesn't appear in the
puppet_enterprise::profile::master class definitions – you must add the parameter to the class if you
want to set it.

Resetting file sync
You'll need to reset the file sync service if file sync enters a failure state, if file sync consumes all available disk
space, or a repository becomes irreparably corrupted.

Resetting the file sync service deletes the commit history for all repositories that file sync tracks. This frees up disk
space and returns the service to a fresh state while preserving code in the staging directory.

1. On your primary server:

• If you use Code Manager: Make sure the code you want to deploy is present in the staging directory at /
etc/puppetlabs/code-staging, and make sure that your most-recently deployed code is present in
your control repository (so you can re-sync it).

• If you use r10k: Trigger and r10k code deployment, and make sure your most-recently deployed code is
present in your control repository (so you can re-sync it).

• If you use file sync by itself: Make sure the code you want to deploy is present in the staging directory at /
etc/puppetlabs/code-staging.

2. Stop the Puppet Server service by running:

puppet resource service pe-puppetserver ensure=stopped

3. Delete the data directory located at:

/opt/puppetlabs/server/data/puppetserver/filesync/storage

4. Restart the Puppet Server service by running:

puppet resource service pe-puppetserver ensure=running

5. Take the appropriate action to redeploy your code:

• If you use Code Manager: Deploy your code to all environments by Triggering Code Manager on the
command line on page 814.

• If you use r10k or standalone file sync: Perform a commit.

When you reset the file sync service, it creates fresh repositories on each client and on the storage server for the code
it manages.

Checking your deployments
If necessary, you can retrieve information about file sync deployments by calling the status/v1/services/
file-sync-storage-service endpoint.

Important:

File sync is part of Code Manager, and you usually don't need to directly configure or trigger file sync.

File sync endpoint documentation is for informational purposes only. Directly accessing the file sync API is
unsupported and not recommended.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 839

To call the status/v1/services/file-sync-storage-service endpoint, use this curl command:

curl --insecure "https://$(puppet config print server):8140/status/v1/
services/file-sync-storage-service?level=debug"

For general information about forming curl commands, authentication in commands, and Windows modifications, go
to Using example commands on page 25.

A successful request returns a JSON-formatted list of:

• All clients that file sync is aware of.
• When those clients last checked in.
• Which commit the clients currently have deployed.

Tip: For pretty printing, pipe the response to: python -m json.tool

To check if a specific commit was deployed, review the latest_commit in the response. The latest_commit
SHA, in this endpoint's response, is specific to file sync. This SHA does not correspond to a commit from your
control repository.

File sync cautions
Keep these warnings in mind when working with file sync.

File sync API

Because file sync is part of Code Manager, Code Manager handles communication with the file sync API.
Information about the file sync API in this documentation is for informational purposes only.

Important: Do not directly access the file sync API.

Where to edit code

With Code Manager, you only modify code in your control repo. Changes made in invalid locations are overwritten
by the next deployment. For more information refer to Understanding file sync and the staging directory on page
792.

While extremely uncommon, if you're using file sync without Code Manager, only modify your Puppet code in the
staging directory.

By default, the enable-forceful-sync parameter is set to true in Puppet Enterprise (PE). If this is set to
false, file sync no longer overwrites changes in the live code directory. Instead, it logs errors to the Puppet Server
log (at /var/log/puppetlabs/puppetserver/puppetserver.log).

If you need to set this parameter to false, you must add it with Hiera:

puppet_enterprise::master::file_sync::file_sync_enable_forceful_sync: false

The puppet module command and file sync

The puppet module command doesn't work with file sync. You'll need to specify modules in your environment's
Puppetfiles and use Code Manager to handle module code deployments. For information and instructions refer to:

• Managing modules with a Puppetfile on page 784
• Managing code with Code Manager on page 790

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 840

Permissions

File sync runs as the pe-puppet user. To sync files, file sync must have permission to read the staging directory
and to write to all files and directories in the live code directories. You can run the following command to make sure
the pe-puppet user owns the required directories:

chown -R pe-puppet /etc/puppetlabs/code /etc/puppetlabs/code-staging

Note: Puppet Enterprise chowns the content of the code directory automatically. If users encounter
problems while using find and chown, they can disable the behavior by setting the following parameter:
puppet_enterprise::master::file_sync::chown_code_to_pe_puppet to false to skip
that find/chowns.

Environment isolation metadata

File sync generates .pp metadata files in your staging code directory and live code directories. These files provide
environment isolation for your resource types, which ensures that each environment uses the correct version of the
resource type.

CAUTION: Do not delete or modify the metadata files. Do not use expressions from these files in regular
manifests.

For more details about these files and how they isolate resource types in multiple environments, refer to Environment
isolation in the Puppet documentation. For information about when these files are generated, refer to Environment
isolation metadata and Code Manager on page 793.

Managing code with r10k
r10k is a code management tool that allows you to manage your environment configurations (such as production,
testing, and development) in a source control repository. Unlike Code Manager's automated deployments, r10k
requires you to manually deploy code changes from your control repository using the r10k command line tool on your
primary server and all compilers.

Based on the code in your control repository branches, r10k creates environments on your primary server and also
installs and updates the modules you want in each environment.

Tip: Whenever possible, we recommend Managing code with Code Manager on page 790. Only use r10k if you
cannot use Code Manager.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/environment_isolation.html
https://puppet.com/docs/puppet/latest/environment_isolation.html

pe | Managing and deploying Puppet code | 841

• Set up r10k on page 841
You must set up r10k to use it as your code management tool.
• Configure r10k on page 841
To configure r10k in an existing Puppet Enterprise (PE) installation, set r10k parameters in the PE console. You can
also use the console to adjust r10k settings.
• Customizing r10k configuration on page 842
Set parameters in Hiera to customize your r10k configuration.
• Deploying environments with r10k on page 851
Deploy environments on the command line with the r10k deploy command.
• r10k command reference on page 853
The r10k command accepts actions, options, and subcommands.

Set up r10k
You must set up r10k to use it as your code management tool.

Tip: Whenever possible, we recommend Managing code with Code Manager on page 790, because Code
Manager does not require manual code deployment. Only use r10k if you cannot use Code Manager.

To set up r10k, you must:

1. Prepare for Managing environments with a control repository on page 779. This involves creating a Git control
repository that has a Puppetfile.

r10k uses the control repo to maintain and deploy your Puppet code and data. You can also create separate
deployment environments in your Puppet infrastructure by creating branches in your control repository (such
as a development branch for a development environment). r10k tracks your environments and updates them
according to the changes you make in your control repo.

The Puppetfile specifies which modules and data to install in your environment, including what versions to install,
and where to download the modules or other content.

2. Configure r10k on page 841.

3. Optional: Customize your r10k configuration in Hiera.

4. Use the r10k command line tool to Deploy environments.

Related information
Moving from r10k to Code Manager on page 793
Moving from r10k to Code Manager can improve automation of your code management and deployments.

Managing environment content with a Puppetfile on page 783
A Puppetfile specifies detailed information about each environment's Puppet code and data.

Configure r10k
To configure r10k in an existing Puppet Enterprise (PE) installation, set r10k parameters in the PE console. You can
also use the console to adjust r10k settings.

Before you begin
You need a control repo (with a Puppetfile) and the file path for the SSH private key you created when you set up
your control repo. For information and instructions on setting up a control repo, go to Managing environments with a
control repository on page 779.

1. In the PE console, go to Node groups > PE Master > Classes, and locate the
puppet_enterprise::profile::master class.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 842

2. For the r10k_remote parameter, enter a string that is a valid SSH URL for your Git control repository, such as
git@<YOUR.GIT.SERVER.COM>:puppet/control.git.

Important: Some Git providers have additional requirements for enabling SSH access. For
example, BitBucket requires ssh:// at the beginning of the SSH URL (such as ssh://
git@<YOUR.GIT.SERVER.COM>:puppet/control.git). See your provider's documentation for this
information.

3. For the r10k_private_key parameter, enter a string specifying the path to the SSH private key you
created when you set up your control repo, such as "/etc/puppetlabs/puppetserver/ssh/id-
control_repo.ed25519".

This key permits the pe-puppet user to access your Git control repo. The private key file must be located on the
primary server, owned by the pe-puppet user, and in a directory that the pe-puppet user has permission to
view. We recommend /etc/puppetlabs/puppetserver/ssh/id-control_repo.ed25519.

4. For the r10k_known_hosts parameter, enter an array of hashes, with each hash containing the following key-
value pairs:

• "name":"<HOSTNAME>": Specify the hostname of your control repository host.
• "type":"<HOST_KEY_TYPE>": Specify the type of host key, such as rsa, dsa, ecds, or ed25519.
• "key":"<HOST_PUBLIC_KEY>": Specify the SSH public key for your control repository host.

Structure the parameter as shown in the following example:

[{"name":"<HOSTNAME>","type":"<HOST_KEY_TYPE>","key":"<HOST_PUBLIC_KEY>"},
{"name":"<HOSTNAME>","type":"<HOST_KEY_TYPE>","key":"<HOST_PUBLIC_KEY>"}]

Optionally, each hash can accept values for "title", "ensure", and "host_aliases".

The r10k_known_hosts parameter manages your known_hosts file to allow SSH host key verification,
which is required when you use r10k.

5. Run Puppet on your primary server and compilers.

You can customize your r10k configuration in Hiera, if needed.

To deploy environments with r10k, you must use the command line to manually trigger deployments. PE does not
automatically run r10k after you configure it.

Related information
Configuration parameters and the pe.conf file on page 113
A pe.conf file is a HOCON formatted file that declares parameters and values used to install, upgrade, or configure
Puppet Enterprise (PE). A default pe.conf file is available in the conf.d directory in the installer tarball.

Customizing r10k configuration
Set parameters in Hiera to customize your r10k configuration.

The customize your configuration:

1. In your control repo, open the data/common.yaml file.
2. Add parameters to the pe_r10k class. Use the following format:

pe_r10k::<PARAMETER>: <SETTING>

For example, these parameters specify a Git repo cache directory and the location from which to fetch the source
repository:

pe_r10k::cachedir: /var/cache/r10k
pe_r10k::remote: git://git-server.site/my-org/main-modules

Some parameters are described in detail below, along with a list of all r10k parameters on page 850.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 843

3. Run Puppet on the primary server.
4. Deploy environments with r10k. PE does not automatically run r10k after you configure it.

Related information
Configure settings with Hiera on page 214
Hiera is hierarchy-based configuration management that relies on a defaults with overrides system. When you add a
parameter or setting to your Hiera data, Hiera searches through the data, in the order defined, to find the value you
want to change. Once found, it overrides the default value with the new parameter or setting. You can use Hiera to
manage your Puppet Enterprise (PE) configuration settings.

Configuring the r10k base directory
The r10k base directory specifies the path where environments are created for your control repo.

This directory is entirely managed by r10k, and any contents that r10k did not put there are removed. If
r10k_basedir is not set, it uses the default environmentpath in your puppet.conf file.

The r10k_basedir parameter accepts a string-formatted path, such as: /etc/puppetlabs/code/
environments

Important: The r10k_basedir setting must match the environmentpath in your puppet.conf file, or
Puppet can't access your new directory environments. For details about this setting, refer to environmentpath in the
open source Puppet documentation.

If you have multiple source repos, you must specify the basedir for each source (in the sources parameter)
instead of the global r10k_basedir setting. Specifying both base directory settings causes errors.

Configuring post-deployment commands
To set commands to run after deployments complete, use the postrun parameter.

This parameter accepts the full command as an array of strings, which can be used as an argument vector. You can set
this parameter only once. For example:

postrun: ['/usr/bin/curl', '-F', 'deploy=done', 'http://my-app.site/
endpoint']

Configuring purge levels
The purge_levels setting, within the deploy parameter, controls which unmanaged content r10k purges after a
deployment.

The purge_levels setting accepts an array of strings specifying what content r10k purges during
code deployments. You can specify one or more of deployment, environment, puppetfile, and
purge_allowlist.

For example:

deploy:
 purge_levels: ['deployment', 'environment', 'puppetfile']

The default setting is ['deployment', 'puppetfile'].

Each purge level option is explained below.

deployment

After each deployment, in the configured basedir, r10k recursively removes content that is not managed by any of the
sources declared in the remote or sources parameters.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/environments_creating.html#global-settings-environmentpath
https://puppet.com/docs/puppet/8/environments_creating.html#global-settings-environmentpath

pe | Managing and deploying Puppet code | 844

Important: Removing deployment from purge_levels allows the number of deployed environments to grow
without bound, because deleting branches from a control repo would no longer cause the matching environment to be
purged automatically.

environment

After a given environment is deployed, r10k recursively removes content that is:

• Not committed to the control repo branch that maps to that environment.
• Not declared in a Puppetfile committed to that branch.

With the environment purge level, r10k loads and parses the Puppetfile for the environment, even if the --
modules flag is not set, so that r10k can check whether content is declared in the Puppetfile. However, r10k doesn't
actually deploy Puppetfile content unless the environment is new or the --modules flag is set.

If r10k encounters an error while evaluating the Puppetfile or deploying its contents, no environment-level content is
purged.

puppetfile

After Puppetfile content for a given environment is deployed, r10k recursively removes content in any directory
managed by the Puppetfile, if that content is not declared in the Puppetfile.

Directories managed by a Puppetfile include the configured moduledir (which defaults to modules), as well as
any alternate directories specified as an install_path option to any Puppetfile content declarations.

purge_allowlist

The purge_allowlist setting exempts the specified filename patterns from being purged. This setting affects
only environment purging. The value for this setting must be a list of shell-style filename patterns formatted as
strings.

See the Ruby documentation about the fnmatch method for information on valid patterns. Both the
FNM_PATHNAME and FNM_DOTMATCH flags are in effect when r10k considers the allowlist.

Patterns are relative to the root of the environment being purged and, by default, do not match recursively. For
example, an allowlist value of *myfile* preserves only matching files at the root of the environment. To preserve
matching files throughout the deployed environment, you need to use a recursive pattern such as **/*myfile*.

Files matching an allowlist pattern might still get removed if they exist in a folder that is otherwise subject to purging.
In this case, use an additional allowlist rule to preserve the containing folder, for example:

deploy:
 purge_allowlist: ['custom.json', '**/*.xpp']

Configuring Forge settings
To configure how r10k downloads modules from the Forge, specify the forge_settings parameters in Hiera.

The Forge related parameters on the puppet_enterprise::master::code_management master class are:

• forge_baseurl: Indicate where Forge modules are installed from. The default is https://
forgeapi.puppetlabs.com.

• forge_authorization_token: Specify the token for authenticating to a custom Forge server.
• forge_proxy: Set the proxy for all Forge interactions.

For example, this configuration specifies a custom Forge server that doesn't require authentication:

pe_r10k::forge_settings:
 baseurl: 'https://private-forge.mysite'

© 2024 Puppet, Inc., a Perforce company

https://ruby-doc.org/core-2.5.0/File.html

pe | Managing and deploying Puppet code | 845

If your custom Forge server requires authentication, you must specify both baseurl and
authorization_token. You must format authorization_token as a string prepended with Bearer,
particularly if you use Artifactory as your Forge server. For example:

pe_r10k::forge_settings:
 baseurl: 'https://private-forge.example'
 authorization_token: 'Bearer <TOKEN>'

The proxy parameter sets a proxy for all Forge interactions. This setting overrides the global proxy setting but only
for Forge operations (refer to the global proxy setting for more information). You can set an unauthenticated proxy
or an authenticated proxy with either Basic or Digest authentication. For example:

pe_r10k::forge_settings:
 proxy: 'http://proxy.example.com:3128'

Tip: If you set a global proxy, but you don't want Forge operations to use a proxy, under the forge_settings
parameter, set proxy to an empty string.

Configuring Git settings
To configure r10k to use a specific Git provider, a private key, a proxy, or multiple Git source repositories, specify
the git_settings parameter.

The r10k git_settings parameter accepts a hash that can use the private_key, provider, proxy,
username, and repositories keys. For example:

pe_r10k::git_settings:
 provider: "rugged"
 private_key: "/etc/puppetlabs/puppetserver/ssh/id-control_repo.ed25519"
 username: "git"

private_key

The private-key setting is required, and, if it is not specified, it gets a default value from the
puppet_enterprise::profile::master class.

Use private-key to specify the path to the file containing the default private key that you want Code Manager to
use to access control repos, for example:

/etc/puppetlabs/puppetserver/ssh/id-control_repo.ed25519

Important: The pe-puppet user must have read permissions for the private key file, and the SSH key can't require
a password.

provider

Allows r10k to interact with Git repositories using multiple Git providers. Valid values are rugged and shellgit.

For more information about this setting, refer to the r10k documentation on GitHub.

proxy

The proxy key sets a proxy specifically for Git operations that use an HTTP(S) transport. This setting overrides the
global proxy setting but only for Git operations (For more information, refer to the global proxy setting). You can
set an unauthenticated proxy or an authenticated proxy with either Basic or Digest authentication. For example:

proxy: 'http://proxy.example.com:3128'

© 2024 Puppet, Inc., a Perforce company

https://github.com/puppetlabs/r10k/blob/main/doc/git/providers.mkd

pe | Managing and deploying Puppet code | 846

Tip:

To set a proxy for only one specific Git repository (or when you have multiple control repos), set proxy within the
repositories key.

If you set a global proxy, but you don't want Git operations to use a proxy, under the git_settings parameter,
set proxy to an empty string.

username

If the Git remote URL does not provide a username, supply the relevant username as a string.

repositories

The repositories key specifies a list of repositories and their respective private keys or proxies. Use
repositories if:

• You need to configure different proxy settings for specific repos, instead of all Git operations.
• You have multiple control repos.

Important: If you have multiple control repos, the sources setting and the repositories setting must
match.

The repositories setting accepts a hash that uses the remote, private-key, proxy, and username keys.

The remote key specifies the repository to which the subsequent private-key, username, or proxy settings
apply. The private-key, username, and proxy settings have the same requirements and functions as described
above, except that, when inside repositories, these settings only apply to a single repository.

For example, this repositories hash specifies a unique private key for one repo and a unique proxy for another
repo:

pe_r10k::git_settings:
 repositories:
 - remote: "ssh://tessier-ashpool.freeside/protected-repo.git"
 private_key: "/etc/puppetlabs/r10k/ssh/id_rsa-protected-repo-deploy-
key"
 - remote: "https://git.example.com/my-repo.git"
 proxy: "https://proxy.example.com:3128"

Tip: If you set a global proxy or a git_settings proxy, but you don't want a specific repo to use a proxy, in the
repositories hash, set that specific repo's proxy to an empty string.

Configuring proxies
If you need r10k to use a proxy connection, use the proxy parameter. You can set a global proxy for all HTTP(S)
operations, proxies for Git or Forge operations, or proxies for individual Git repositories.

Where you specify the proxy parameter depends on how you want to apply the setting:

• To set a proxy for all r10k operations occurring over an HTTP(S) transport, set the global proxy setting.

Tip: If you don't supply a global proxy, but you have defined a proxy in an environment variable, r10k
uses the value from the highest-ranking *_proxy environment variable as the global r10k proxy. In
order of precedence, r10k looks for HTTPS_PROXY, then https_proxy, then HTTP_PROXY, and finally
http_proxy. If you have defined neither a global proxy nor any *_proxy environment variables, the global
proxy setting defaults to no proxy.

• To set proxies only for Git operations or individual Git repos, set the appropriate proxy key under the
git_settings parameter.

• To set a proxy only for Forge operations, set the proxy key under the forge_settings parameter.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 847

You can set an unauthenticated proxy or an authenticated proxy with either Basic or Digest authentication. For
example, this setting is for an unauthenticated proxy:

proxy: 'http://proxy.example.com:3128'

Whereas this setting is for a password-authenticated proxy:

proxy: 'http://user:password@proxy.example.com:3128'

Override proxy settings

You can override the global proxy setting if you want to:

• Set a different proxy setting for Git or Forge operations.
• Specify a different proxy setting for an individual Git repo.
• Specify a mix of proxy and non-proxy connections.

To override the global proxy setting for all Git or Forge operations, you need to set the proxy key under the
git_settings or forge_settings parameters.

To set a proxy for an individual Git repository (or if you have multiple control repos), set the proxy key in the
repositories hash under the git_settings parameter.

If you have set a global, Git, or Forge proxy, but you don't want a certain setting to use any proxy, set the proxy
parameter to an empty string. For example, if you set a global proxy, but you don't want Forge operations to use a
proxy, you would specify an empty string under the forge_settings parameter, such as:

puppet_enterprise::master::code_manager::forge_settings:
 proxy: ''

Proxy server logging

If r10k uses proxy server during a deployment, r10k logs the server at the debug log level.

Configuring sources
If you are managing multiple control repos with r10k, you must use the sources parameter to specify a map of your
source repositories.

The sources parameter is necessary when r10k is managing multiple control repos. For example, your Puppet
environments are in one control repo and your Hiera data is in a separate control repo.

Important:

The sources setting and the repositories setting (under git_settings) must match.

If sources is set, you can't use r10k's global remote and r10k_basedir settings.

The sources parameter consists of a list of source names along with a hash that can contain the remote,
basedir, prefix, ignore_branch_prefixes, and invalid_branches key for each source. For
example:

myorg:
 remote: "git://git-server.site/myorg/main-modules"
 basedir: "/etc/puppetlabs/puppet/environments"
 prefix: true
 ignore_branch_prefixes:
 - "doc"
 invalid_branches: 'error'
mysource:
 remote: "git://git-server.site/mysource/main-modules"

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 848

 basedir: "/etc/puppetlabs/puppet/environments"
 prefix: "testing"
 invalid_branches: 'correct_and_warn'

remote

The remote parameter specifies the location from which to fetch the source repo. r10k must be able to fetch
the remote without any interactive input. This means fetching the source can't require inputting a user name or
password. You must supply a valid URL, as a string, that r10k can use to clone the repo, such as: "git://git-
server.site/myorg/main-modules"

Tip: If your sources are in different Git providers, you might need to configure the providers parameter in the
r10k Git settings.

basedir

Specifies the path to the location where this source's environments are created. This directory is entirely managed by
r10k, and any contents that r10k did not put there are removed.

Important: The basedir setting must match the environmentpath in your puppet.conf file, or Puppet
can't access your new directory environments.

If you specify basedir in sources, do not also specify the global r10k_basedir setting. Specifying both base
directory settings causes errors.

prefix

The prefix parameter specifies a string to use as a prefix for the names of environments derived from the specified
source. Set this to a specific string if you want to use a specific prefix, such as "testing". Set this to true to use
the source's name as the prefix. The prefix parameter prevents collisions (and confusion) when multiple sources
with identical branch names are deployed into the same directory.

For example, the following settings might cause errors or confusion because there would be two main-modules
environments deployed to the same base directory:

myorg:
 remote: "git://git-server.site/myorg/main-modules"
 basedir: "/etc/puppetlabs/puppet/environments"
 prefix: true
 invalid_branches: 'error'
mysource:
 remote: "git://git-server.site/mysource/main-modules"
 basedir: "/etc/puppetlabs/puppet/environments"
 prefix: true
 invalid_branches: 'correct_and_warn'

However, by changing one prefix to "testing", the two environments become more distinct, since the directory
would now have a myorg-main-modules environment and a testing-main-modules environment:

myorg:
 remote: "git://git-server.site/myorg/main-modules"
 basedir: "/etc/puppetlabs/puppet/environments"
 prefix: true
 invalid_branches: 'error'
mysource:
 remote: "git://git-server.site/mysource/main-modules"
 basedir: "/etc/puppetlabs/puppet/environments"
 prefix: "testing"

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 849

 invalid_branches: 'correct_and_warn'

ignore_branch_prefixes

Use ignore_branch_prefixes if you want r10k to not deploy some branches in a specified source. If you omit
this parameter, then r10k attempts to deploy all branches.

Specify prefixes you want r10k to ignore as a list of strings, such as:

sources:
 mysource:
 remote: "git://git-server.site/mysource/main-modules"
 basedir: "/etc/puppet/environments"
 ignore_branch_prefixes:
 - "test"
 - "dev"

When r10k runs, if the beginning of a branch's name matches one of the supplied prefixes, r10k ignores the branch
and does not deploy an environment based on that branch.

For example, ignoring the prefix "test" ignores branches starting with test, which could be test as a complete
branch name, or test followed by any amount or variation of characters, such as test*, testing*, tester*,
test_*, and so on.

Tip: Your ignore_branch_prefixes strings are inherently followed by a wildcard. For example, "test" is
inherently treated like test*. Do not include wildcard characters in your prefix strings, because r10k interprets them
as being literally part of the branch names.

This setting is useful for ignoring branches named after support tickets, training branches, documentation
branches, or other such branches that you don't want r10k to try to deploy as environments. If you want to ignore
a particular branch without excluding other similarly-prefixed branches, supply the branch's full name in the
ignore_branch_prefixes list.

invalid_branches

Specifies how you want r10k to handle branch names that can't cleanly map to Puppet environment names. Supply
one of the following strings:

• "error": Ignore branches that have non-word characters, and report an error about the invalid branches.
• "correct": Without providing a warning, replace non-word characters with underscores.
• "correct_and_warn": Replace non-word characters with underscores, and report a warning about the altered

branch names. This is the default value if omitted.

Locking r10k deployments
The deploy: write_lock setting allows you to temporarily disallow r10k code deploys without completely
removing the r10k configuration.

This setting is useful for preventing r10k deployments at certain times, or for preventing deployments from interfering
with a common set of code that might be touched by multiple r10k configurations.

To enable this, add the write_lock setting under the deploy parameter and supply a message that is returned
when someone attempts to deploy code. For example:

deploy:
 write_lock: "Deploying code is disallowed until the next maintenance
 window."

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 850

r10k parameters
The following parameters are available for r10k. Parameters are optional unless otherwise stated.

Parameter Description Type Default value

cachedir The file path to the location
where r10k caches Git
repositories.

String /var/cache/r10k

deploy For Configuring purge
levels on page 843 and
Locking r10k deployments
on page 849.

Hash • purge_level:
['deployment',
'puppetfile']

• write_lock:
Omitted

forge_settings For Configuring Forge
settings on page 844.

Hash No default.

git_settings For Configuring Git
settings on page 845.

Hash Can use the default
private-key value
set in console. Otherwise,
there are no default
settings.

proxy For Configuring proxies
on page 846. Can
be global (all HTTP(s)
transports) or part of
the git_settings
or forge_settings
hashes.

An empty string or a
string indicating a proxy
server (with or without
authentication)

The global proxy can use
a *_proxy environment
variable, if one is set.
Otherwise, there are no
defaults.

postrun For Configuring post-
deployment commands on
page 843.

Array of strings to use as an
argument vector

No default.

remote A valid SSH URL
specifying the location of
your Git control repository,
if you have only one
control repo.

If you have multiple Git
repos, specify sources
instead of remote.

String If r10k_remote
is specified in the
puppet_enterprise::profile::master
class, that value is used
here. Otherwise, there is no
default value.

r10k_basedir For Configuring the r10k
base directory on page
843, if you have only
one control repo.

If you have multiple Git
repos, specify basedir in
sources instead.

String No default, but must match
the environmentpath
in your puppet.conf
file.

sources For Configuring sources
on page 847 if you have
multiple control repos.

Hash No default.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 851

Deploying environments with r10k
Deploy environments on the command line with the r10k deploy command.

The first time you run r10k, deploy all environments and modules by running:

r10k deploy environment

This command:

1. Checks your control repository to see which branches are present.
2. Maps those branches to the Puppet directory environments.
3. Clones your Git repo and either creates (if this is your first run) or updates (if it is a subsequent run) your directory

environments with the contents of your repo branches.

Restriction: When running commands to deploy code on your primary server, r10k needs write access to your
environment path. You need to run r10k as the pe-puppet user, as root, or use sudo. Running as root requires
access control to the root user.

Related information
r10k command reference on page 853
The r10k command accepts actions, options, and subcommands.

Updating environments
To update environments with r10k, use the r10k deploy environment command.
Update all environments
The r10k deploy environment command updates all existing environments and recursively creates new
environments.

From the command line, run: r10k deploy environment

Structured in this way, this command updates modules only on the environment's first deployment. On subsequent
updates, it only updates the environment.

Update all environments and modules
Add the --modules flag to the r10k deploy environment command to update all environments and their
modules.

From the command line, run: r10k deploy environment --modules

This command:

• Updates all existing environments.
• Creates new environments, if any new branches are detected.
• Deletes old environments, if any branches no longer exist.
• Recursively updates all environment modules declared in each environment's Puppetfile.

This command does the maximum possible deployment work. Therefore it is the slowest method for r10k
deployments. Usually, you'll use the less resource-intensive commands for updating specific environments and
modules.

Update a single environment
To update a single environment, specify the environment name with the r10k deploy environment command.

From the command line, run:

r10k deploy environment <ENVIRONMENT_NAME>

Formatted in this way, this command updates one environment. It deploys modules only during the environment's
first deployment. On subsequent deployments, it only updates the environment.

If you are actively developing a specific environment, this command is the quickest way to deploy your changes so
you can test them.

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 852

Update a single environment and its modules
To update a specific environment's content and its modules, add the --modules flag to your environment-specific
command. This is useful if you want to make sure that a given environment is fully up to date and has modules
recently declared in the environment's Puppetfile.

On the command line, run:

r10k deploy environment <ENVIRONMENT_NAME> --modules

Installing and updating modules
The r10k deploy module command installs or updates the modules specified in each environment's Puppetfile.
Update specific modules across all environments
To update specific modules across all environments, specify the modules with the r10k deploy module
command.

Important: Before updating modules, you must Update all environments and modules on page 851.

To update one module across all environments, append the module name to the command, such as:

r10k deploy module <MODULE_NAME>

To update multiple modules across all environments, append the module names to the command, separated by spaces.
For example, this command updates the apache, jenkins, and java modules:

r10k deploy module apache jenkins java

If a specified module is not declared in an environment's Puppetfile, that environment is skipped.

Update one or more modules in a single environment
To update specific modules in a specific environment, specify both the environment and the modules in your
command.

Important: Before updating modules, you must Update a single environment and its modules on page 852.

The command format is:

r10k deploy module -e <ENVIRONMENT_NAME> <MODULE_NAME>

The first argument supplied after -e is interpreted as an environment name. Anything after this is treated as a module
name. You can append multiple module names, but only one environment name.

For example, this command updates the apache, jenkins, and java modules in the production environment:

r10k deploy module -e production apache jenkins java

If the specified module is not described in a given environment's Puppetfile, that module is skipped.

Get environment details with r10k
The r10k deploy display command returns information about your environments and modules. This
subcommand does not deploy environments, it only displays information about the environments and modules r10k is
managing.

This command can return various levels of detail about the environments:

• To get information about all environments r10k manages, run:

r10k deploy display

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 853

• To get information about all managed environments and modules declared in their Puppetfiles, append the
Puppetfile flag (-m). For example:

r10k deploy display -m

• To get expected and actual versions of modules in all environments, append the -m and --detail flags. For
example:

r10k deploy display -m --detail

• To get expected and actual versions of modules in specific environments, append the -m and --detail flags
along with one or more environment names, such as:

r10k deploy display -m --detail <ENVIRONMENT_NAME> <ENVIRONMENT_NAME>

r10k command reference
The r10k command accepts actions, options, and subcommands.

Use this format for r10k commands:

r10k <ACTION> <ACTION_OPTIONS> <SUBCOMMANDS>

r10k command actions
The r10k command supports these actions and action options.

Action Description

deploy Performs a specified subcommand operation on
environments. Accepts r10k deploy subcommands on
page 854.

help Returns r10k command embedded help documentation

puppetfile Performs a specified subcommand operation on an
environment's Puppetfile. Environment determined by
the current working directory. Accepts r10k puppetfile
subcommands on page 855.

version Returns your r10k version.

r10k action options

You can modify r10k <ACTION> commands with these options:

Action option Description

--color Enable color-coded log messages.

--help or -h Returns embedded help documentation for a specific
action.

--trace or-t Returns stack traces on application crash.

--verbose or -v Specify one of the following log verbosity levels:
fatal, error, warn, notice, info, debug,
debug1, debug2

© 2024 Puppet, Inc., a Perforce company

pe | Managing and deploying Puppet code | 854

r10k deploy subcommands
You can use the following subcommand and subcommand options with the r10k deploy command.

Subcommand Description Subcommand options

display Returns information about
environments and their modules.

Refer to: Get environment
details with r10k on page 852

• -m: Return module information
• --detail: Return detailed

information
• --fetch: Query environment

sources so you can check for
missing environments

• Append one or more environment
names to get information about
specific environments.

environment Deploys environment
content and modules.

Refer to: Updating
environments on page 851

• Append an environment name to
deploy a specific environment.

• -m: Install or update modules
declared in the Puppetfile

• -m --incremental: Install
or update only modules set to
a "floating" version and any
modules whose definitions are
new or changed since the last
deployment.

module Deploys modules only.

Refer to: Installing and updating
modules on page 852

• -e: Deploy modules for a
specific environment.

• Append one or more module
names to deploy only specific
modules.

• no-force: Prevents overwriting
local changes to Git-based
modules.

Note: The -p subcommand option is deprecated. Use -m instead.

© 2024 Puppet, Inc., a Perforce company

pe | SSL and certificates | 855

r10k puppetfile subcommands
The r10k puppetfile command accepts these subcommands.

Important: The puppetfile command act on the Puppetfile in the current working directory. Make sure you're in
the directory containing the Puppetfile for the environment you want to act on.

The puppetfile command requires write access to an environment’s modules directory. Either switch to an
appropriately-provisioned user or use elevated privileges to run these commands.

Append subcommands after the puppetfile action, such as:

r10k puppetfile install

Subcommand Description Subcommand options

check Verifies the Puppetfile
syntax is correct.

install Installs all modules
declared in the Puppetfile.

• --modules <FILE_PATH>:
Install modules in the current
working directory from a
Puppetfile at the supplied file
path.

• --moduledir
<FILE_PATH>: Install modules
declared in the Puppetfile to
a custom module directory
location.

• --update_force: Install
modules declared in the
Puppetfile and forcefully
overwrite local changes to Git-
based modules.

purge Purges modules not
declared in the Puppetfile.

Note: The --puppetfile subcommand option is deprecated. Use --modules instead.

SSL and certificates

Network communications and security in Puppet Enterprise are based on HTTPS, which secures traffic using X.509
certificates. PE includes its own CA tools, which you can use to regenerate certs as needed.

© 2024 Puppet, Inc., a Perforce company

pe | SSL and certificates | 856

• Regenerate the console certificate on page 856
The console certificate expires every 824 days. Regenerate the console certificate when it is nearing or past
expiration, or if the certificate is corrupted and you're unable to access the console.
• Regenerate the SAML certificate on page 857
By default, the SAML certificate expires every 824 days. Regenerate the certificate when it is nearing or past
expiration.
• Regenerate infrastructure certificates on page 857
Regenerating certificates and security credentials—both private and public keys—created by the built-in PE
certificate authority can help ensure the security of your installation in certain cases.
• Use an independent intermediate certificate authority on page 860
The built-in Puppet certificate authority automatically generates a root and intermediate certificate, but if you need
additional intermediate certificates or prefer to use a public authority CA, you can set up an independent intermediate
certificate authority. You must complete this configuration during installation.
• Use a custom SSL certificate for the console on page 862
The Puppet Enterprise (PE) console uses a certificate signed by PE's built-in certificate authority (CA). Because
this CA is specific to PE, web browsers don't know it or trust it, and you have to add a security exception in order to
access the console. If you find that this is not an acceptable scenario, you can use a custom CA to create the console's
certificate.
• Generate a custom Diffie-Hellman parameter file on page 864
The "Logjam Attack" (CVE-2015-4000) exposed several weaknesses in the Diffie-Hellman (DH) key exchange. To
help mitigate the "Logjam Attack," PE ships with a pre-generated 2048 bit Diffie-Hellman param file. In the case that
you don't want to use the default DH param file, you can generate your own.
• Enable TLSv1 on page 864
To comply with security regulations, TLSv1 and TLSv1.1 are disabled by default.

Regenerate the console certificate
The console certificate expires every 824 days. Regenerate the console certificate when it is nearing or past
expiration, or if the certificate is corrupted and you're unable to access the console.

To check the expiry date of your current certificate, run this command on your primary server:

/opt/puppetlabs/puppet/bin/openssl x509 -in /etc/puppetlabs/puppet/ssl/
certs/console-cert.pem -noout -startdate -enddate

To generate a new console certificate, remove the existing certificate. After you remove the existing certificate, a new
one is generated automatically on the next Puppet run.

1. Remove the existing console certificate.

On your primary server, run both these commands:

puppet ssl clean --certname console-cert
puppetserver ca clean --certname console-cert

2. Run Puppet to generate a new certificate.

On the primary server, run:

puppet agent -t

Alternatively, you can wait for the next Puppet run.

© 2024 Puppet, Inc., a Perforce company

pe | SSL and certificates | 857

Regenerate the SAML certificate
By default, the SAML certificate expires every 824 days. Regenerate the certificate when it is nearing or past
expiration.

To check the expiry date of your current certificate, run this command on your primary server:

/opt/puppetlabs/puppet/bin/openssl x509 -in /etc/puppetlabs/puppet/ssl/
certs/saml-cert.pem -noout -startdate -enddate

To generate a new SAML certificate, remove the existing certificate. After you remove the existing certificate, a new
one is generated automatically on the next Puppet run.

1. Remove the existing SAML certificate.

On the primary server, run both these commands:

puppet ssl clean --certname saml-cert
puppetserver ca clean --certname saml-cert

2. Run Puppet to generate a new certificate.

On the primary server, run:

puppet agent -t

Alternatively, you can wait for the next Puppet run.

Regenerate infrastructure certificates
Regenerating certificates and security credentials—both private and public keys—created by the built-in PE
certificate authority can help ensure the security of your installation in certain cases.

The process for regenerating certificates varies depending on your goal.

If your goal is to... Do this...

Upgrade to the intermediate certificate architecture
introduced in Puppet 6.0.

Fix a compromised or damaged certificate authority.

Complete these tasks in order:

1. Delete and recreate the certificate authority on page
860

2. Regenerate compiler certificates on page 858, if
applicable

3. Regenerate agent certificates on page 859
4. Regenerate replica certificates on page 859

Fix a compromised compiler certificate or troubleshoot
SSL errors on compilers.

Regenerate compiler certificates on page 858

Fix a compromised agent certificate or troubleshoot SSL
errors on agent nodes.

Regenerate agent certificates on page 859

Specify a new DNS alt name or other trusted data. Regenerate primary server certificates on page 858

© 2024 Puppet, Inc., a Perforce company

pe | SSL and certificates | 858

Note: To support recovery, backups of your certificates are saved and the location of the backup directory is output
to the console. If the command fails after deleting the certificates, you can restore your certificates with the contents
of this backup directory.

Regenerate primary server certificates
Regenerate primary server certificates to specify a new DNS alt name or other trusted data. This process regenerates
the certificates for all primary infrastructure nodes, including standalone PE-PostgreSQL nodes.

Before you begin

The puppet infrastructure run command leverages built-in Bolt plans to automate certain management
tasks. To use this command, you must be able to connect using SSH from your primary server to any nodes that the
command modifies. You can establish an SSH connection using key forwarding, a local key file, or by specifying
keys in .ssh/config on your primary server. For more information, see Bolt OpenSSH configuration options.

To view all available parameters, use the --help flag. The logs for all puppet infrastructure run Bolt
plans are located at /var/log/puppetlabs/installer/bolt_info.log.

On your primary server, log in as root, and run:

puppet infrastructure run regenerate_primary_certificate

You can specify these optional parameters:

• Use dns_alt_names to provide a comma-separated list of alternate DNS names to be added to the certificates
generated for your primary server.

Important: To ensure naming consistency, if your puppet.conf file includes a dns_alt_names entry,
you must include the dns_alt_names parameter and pass in all alternative names included in the entry when
regenerating your primary server certificate.

• Use --tmpdir to specify a path to a directory to use for uploading and executing temporary files.

Tip: You might need to set this parameter if the task fails with a permission denied error.

• Use --force to force certificate regeneration in situations where your infrastructure is unhealthy due to a
damaged certificate.

Regenerate compiler certificates
Regenerate compiler certificates to fix a compromised certificate or troubleshoot SSL errors on compilers, or if you
recreated your certificate authority.

On your primary server, log in as root, and run the following command. Specify any additional parameters required
for your environment and use case.

puppet infrastructure run regenerate_compiler_certificate
 target=<COMPILER_HOSTNAME>

• If you use DNS alternative names, specify dns_alt_names as a comma-separated list of names to add to
agent certificates.

Important: To ensure naming consistency, if your puppet.conf file includes a dns_alt_names entry,
you must include the dns_alt_names parameter and pass in all alternative names included in the entry when
regenerating your agent certificates.

• If you recreated your certificate authority, or are otherwise unable to connect to the compiler with the
orchestrator, specify --use-ssh and any additional parameters needed to connect over SSH.

The compiler's SSL directory is backed up to /etc/puppetlabs/puppet/ssl_bak, its certificate is
regenerated and signed, a Puppet run completes, and the compiler resumes its role in your deployment.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt_transports_reference.html#openssh-config
https://puppet.com/docs/bolt/latest/troubleshooting.html#my-task-fails-with-a-permission-denied-error-noexec-issue

pe | SSL and certificates | 859

Regenerate agent certificates
Regenerate *nix or Windows agent certificates to fix a compromised certificate or troubleshoot SSL errors on agents,
or if you recreated your certificate authority.

On your primary server, log in as root (or the administrator), and run the following command. Specify any additional
parameters required for your environment and use case.

puppet infrastructure run regenerate_agent_certificate
 agent=<AGENT_HOSTNAME_1>,<AGENT_HOSTNAME_2>

• If you use DNS alternative names: Specify dns_alt_names as a comma-separated list of names to add to
agent certificates.

Important: To ensure naming consistency, if your puppet.conf file includes a dns_alt_names entry,
you must include the dns_alt_names parameter and pass in all alternative names included in the entry when
regenerating your agent certificates.

• If you recreated your certificate authority or can't connect to nodes with the orchestrator: Specify
clean_crl=true and --use-ssh, as well as any additional parameters needed to connect over SSH.

• If you want to use a PuppetDB query to generate certificates for multiple agents: Specify the
agent_pdb_query parameter to provide a query to use to collect a list of agents for which you want to
regenerate certificates. Make sure the query only returns certnames, such as:

facts[certname] { name='domain' and value ~ 'agent.node.com' }

If you specify both agent and agent_pdb_query, the query results are combined with the specified agents.
• If you want to include custom attributes or extension requests in regenerated certificates: Ensure that agents

have the csr_attributes.yaml file containing the necessary custom attributes and extension requests,
or specify the optional custom_attributes and extension_requests parameters in the plan. For
example:

puppet infrastructure run regenerate_agent_certificate
 agent=<agent_certname> extension_requests='{"pp_environment":
 "development"}'

For more information, see CSR attributes and certificate extensions.

Agent SSL directories are backed up to /etc/puppetlabs/puppet/ssl_bak (*nix) or C:/ProgramData/
PuppetLabs/puppet/etc/ssl_bak (Windows), their certificates are regenerated and signed, a Puppet run
completes, and the agents resume their role in your deployment.

Regenerate replica certificates
Regenerate replica certificates for your disaster recovery installation to specify a new DNS alt name or other trusted
data, or if you recreated your certificate authority.

On your primary server, log in as root, and run the following command. Specify any additional parameters required
for your environment and use case.

puppet infrastructure run regenerate_replica_certificate
 target=<REPLICA_HOSTNAME>

• If you use DNS alternative names, specify dns_alt_names as a comma-separated list of names to add to
agent certificates.

Important: To ensure naming consistency, if your puppet.conf file includes a dns_alt_names entry,
you must include the dns_alt_names parameter and pass in all alternative names included in the entry when
regenerating your agent certificates.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/puppet/8/ssl_attributes_extensions#ssl_attributes_extensions

pe | SSL and certificates | 860

• If you recreated your certificate authority, or are otherwise unable to connect to the replica with the
orchestrator, specify --use-ssh and any additional parameters needed to connect over SSH.

The replica's SSL directory is backed up to /etc/puppetlabs/puppet/ssl_bak, its certificate is regenerated
and signed, a Puppet run completes, and the replica resumes its role in your deployment.

Delete and recreate the certificate authority
Recreate the certificate authority only if you're upgrading to the new certificate architecture introduced in Puppet 6.0,
or if your certificate authority was compromised or damaged beyond repair.

Before you begin

The puppet infrastructure run command leverages built-in Bolt plans to automate certain management
tasks. To use this command, you must be able to connect using SSH from your primary server to any nodes that the
command modifies. You can establish an SSH connection using key forwarding, a local key file, or by specifying
keys in .ssh/config on your primary server. For more information, see Bolt OpenSSH configuration options.

CAUTION: Replacing your certificate authority invalidates all existing certificates in your environment.
Complete this task only if and when you're prepared to regenerate certificates for both your infrastructure
nodes (including external PE-PostgreSQL in extra-large installations) and your entire agent fleet.

On your primary server, log in as root and run:

puppet infrastructure run rebuild_certificate_authority

The SSL and cert directories on your CA server are backed up with "_bak" appended to the end, CA files are removed
and certificates are rebuilt, and a Puppet run completes.

Use an independent intermediate certificate authority
The built-in Puppet certificate authority automatically generates a root and intermediate certificate, but if you need
additional intermediate certificates or prefer to use a public authority CA, you can set up an independent intermediate
certificate authority. You must complete this configuration during installation.

CAUTION: This method requires more manual maintenance than the default certificate authority setup.
With an external chain of trust, you must monitor for and promptly update expired CRLs, because an expired
CRL anywhere in the chain causes certificate validation failures. To manage an external CRL chain:

• Take note of the Next Update dates of the CRLs for your entire chain of trust.
• Submit updated CRLs to Puppet Server using the Certificate Revocation List endpoint.
• Configure agents to download CRL updates by setting crl_refresh_interval in the

puppet_enterprise::profile::agent class.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/bolt/latest/bolt_transports_reference.html#openssh-config
https://puppet.com/docs/puppet/8/server/http_certificate_revocation_list.html#update-upstream-crls

pe | SSL and certificates | 861

1. Collect the PEM-encoded certificates and CRLs for your organization's chain of trust, including the root
certificate, any intermediate certificates, and the signing certificate. (The signing certificate might be the root or
intermediate certificate.)

2. Create a private RSA key, with no passphrase, for the Puppet CA.

3. Create a PEM-encoded Puppet CA certificate.

a) Create a CSR for the Puppet CA.
b) Generate the Puppet CA certificate by signing the CSR using your external CA.

Ensure the CA constraint is set to true and the keyIdentifier is composed of the 160-bit SHA-1 hash of
the value of the bit string subjectPublicKeyfield. See RFC 5280 section 4.2.1.2 for details.

4. Concatenate all of the certificates into a PEM-encoded certificate bundle, starting with the Puppet CA cert and
ending with your root certificate.

-----BEGIN CERTIFICATE-----
<PUPPET CA CERTIFICATE>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<OPTIONAL INTERMEDIATE CA CERTIFICATES>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<ROOT CA CERTIFICATE>
-----END CERTIFICATE-----

© 2024 Puppet, Inc., a Perforce company

pe | SSL and certificates | 862

5. Concatenate all of the CRLs into a PEM-encoded CRL chain, starting with any optional intermediate CA CRLs
and ending with your root certificate CRL.

-----BEGIN X509 CRL-----
<OPTIONAL INTERMEDIATE CA CRLs>
-----END X509 CRL-----
-----BEGIN X509 CRL-----
<ROOT CA CRL>
-----END X509 CRL-----

Tip: The PE installer automatically generates a Puppet CRL during installation, so you don't have to manage the
Puppet CRL manually.

6. Copy your CA bundle (from step 4 on page 861), CRL chain (from step 5 on page 862), and private key
(from step 2 on page 861) to the node where you're installing the primary server.

Tip: Allow access to your private key only from the PE installation process, which runs as root.

7. Install PE using a customized pe.conf file with signing_ca parameters: ./puppet-enterprise-
installer -c <PATH_TO_pe.conf>

In your customized pe.conf file, you must include three keys for the signing_ca parameter: bundle,
crl_chain, and private_key.

{
 "pe_install::signing_ca": {
 "bundle": "/root/ca/int_ca_bundle"
 "crl_chain": "/root/ca/int_crl_chain"
 "private_key": "/root/ca/int_key"
 }
}

8. Optional: Validate that the CA is working by running puppet agent -t and verifying your intermediate CA
with OpenSSL.

openssl x509 -in /etc/puppetlabs/puppet/ssl/ca/signed/<HOSTNAME>.crt
-text -noout
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=intermediate-ca
...

Related information
Certificates installed on page 110
During installation, the software generates and installs a number of SSL certificates so that agents and services can
authenticate themselves.

Use a custom SSL certificate for the console
The Puppet Enterprise (PE) console uses a certificate signed by PE's built-in certificate authority (CA). Because
this CA is specific to PE, web browsers don't know it or trust it, and you have to add a security exception in order to
access the console. If you find that this is not an acceptable scenario, you can use a custom CA to create the console's
certificate.

© 2024 Puppet, Inc., a Perforce company

pe | SSL and certificates | 863

Before you begin

• You need a X.509 cert, signed by the custom party CA, in PEM format, with matching private and public keys.
• If your custom cert is issued by an intermediate CA, the CA bundle must contain a complete chain, including the

applicable root CA.
• These keys and certs must be in PEM format.

1. Retrieve the custom certificate and private key.

2. On your primary server, place the certificate and private key into the correct directory locations as follows:

• Place the certificate in /etc/puppetlabs/puppet/ssl/certs/console-cert.pem, replacing any
existing file namedconsole-cert.pem.

• Place the private key in/etc/puppetlabs/puppet/ssl/private_keys/console-cert.pem,
replacing any existing file namedconsole-cert.pem.

Important: If your installation includes disaster recovery, repeat this step to place a certificate and a private
key configured for your primary server replica in the corresponding directories on the replica.

3. If you previously specified a custom SSL certificate, remove the browser_ssl_cert and
browser_ssl_private_key parameters specified in the console or Hiera data.

In the PE console, go to the Node groups page, expand the PE Infrastructure group, and select the PE Console
node group. Then, on the Classes tab, locate the puppet_enterprise::profile::console class,
remove any browser_ssl_cert and browser_ssl_private_key parameters, and commit changes.

If you declared these parameters on the Configuration data tab, remove them from that tab and commit changes.

If you declared these parameters with Hiera, remove them from your Hiera data. For more information, refer to
Configure settings with Hiera on page 214.

© 2024 Puppet, Inc., a Perforce company

pe | SSL and certificates | 864

4. Run Puppet: puppet agent -t

You can navigate to your console and see the custom certificate in your browser.

Related information
Certificates installed on page 110
During installation, the software generates and installs a number of SSL certificates so that agents and services can
authenticate themselves.

Generate a custom Diffie-Hellman parameter file
The "Logjam Attack" (CVE-2015-4000) exposed several weaknesses in the Diffie-Hellman (DH) key exchange. To
help mitigate the "Logjam Attack," PE ships with a pre-generated 2048 bit Diffie-Hellman param file. In the case that
you don't want to use the default DH param file, you can generate your own.

Note: In the following procedure, <PROXY-CUSTOM-dhparam>.pem can be replaced with any file name, except
dhparam_puppetproxy.pem, as this is the default file name used by PE.

1. On your primary server, run:

/opt/puppetlabs/puppet/bin/openssl dhparam -out /etc/puppetlabs/nginx/
<PROXY-CUSTOM-dhparam>.pem 2048

Note: After running this command, PE can take several minutes to complete this step.

2. Open your pe.conf file (located at /etc/puppetlabs/enterprise/conf.d/pe.conf) and add the
following parameter and value:

"puppet_enterprise::profile::console::proxy::dhparam_file": "/etc/
puppetlabs/nginx/<PROXY-CUSTOM-dhparam>.pem"

3. Run Puppet: puppet agent -t.

Enable TLSv1
To comply with security regulations, TLSv1 and TLSv1.1 are disabled by default.

You must enable TLSv1 to install agents on these platforms:

• AIX
• Solaris 11

CAUTION: For nodes that use TLSv1, using a script to install or upgrade agents can fail if the curl version
installed on the node uses OpenSSL earlier than version 1.0. This issue produces an SSL error during any curl
connection to the primary server. As a workaround, add --ciphers AES256-SHA to ~/.curlrc so that
curl calls always use an appropriate cipher.

1. In the PE console, navigate to Node groups > PE Infrastructure.

2. On the Configuration data tab, find or add the puppet_enterprise::master::puppetserver class.

3. Add the ssl_protocols parameter and set the value to an array of strings representing allowed TLS versions.

For example:

["TLSv1.3", "TLSv1.2", "TLSv1.1", "TLSv1"]

4. Click Add data and commit changes.

© 2024 Puppet, Inc., a Perforce company

pe | Maintenance | 865

5. Run Puppet on the primary server and any compilers.

Tip: There are several ways to Run Puppet on demand on page 616.

Related information
Configure SSL protocols on page 226
You can change what SSL protocols your Puppet Enterprise (PE) infrastructure uses.

Maintenance

• Back up and restore PE on page 865
Use the Puppet Enterprise (PE) backup tool to create regular backups of your installation. Then, if you migrate your
primary server to a new operating system or replace your primary server hardware, you can restore your installation.
The backup and restore process can also be useful for troubleshooting or for recovering your installation after a
system failure.
• Database maintenance on page 873
You can optimize the Puppet Enterprise (PE) databases to improve performance.
• Rotating the inventory service secret key on page 874
The inventory service uses a randomly-generated secret key to encrypt a connection entry's sensitive parameters.

Back up and restore PE
Use the Puppet Enterprise (PE) backup tool to create regular backups of your installation. Then, if you migrate your
primary server to a new operating system or replace your primary server hardware, you can restore your installation.
The backup and restore process can also be useful for troubleshooting or for recovering your installation after a
system failure.

The PE backup tool is designed for backing up and restoring standard or large PE installations. For extra-large
installations, consider using an alternative backup or snapshot process.

If you have a standard or large PE installation, you can implement the following backup and restore process:

1. Use the puppet-backup create command to back up the primary server.
2. When necessary, use the puppet-backup restore command to restore the primary server and your PE

infrastructure.

Disaster recovery consideration

If your PE installation includes disaster recovery, then after restoring the primary server, you must remove the
existing replica and provision a new one.

Important: When upgrading your operating system to a new major version, you must:

1. Back up PE on your existing primary server.
2. Install a new PE primary server on a node with the upgraded operating system.
3. Restore the PE backup on the new primary server.
4. For installations with compilers:

• Remove existing compilers and install new compilers on the upgraded operating system.
5. For installations with disaster recovery:

• Remove the existing replica and provision a new replica on the upgraded operating system.

Restriction: You cannot use the puppet-backup command to back up or restore the following components:

• The replica of your primary server

© 2024 Puppet, Inc., a Perforce company

pe | Maintenance | 866

• Compilers
• Secret keys

Customize scope of backup and restore
You can use the --scope option to customize what data is backed up or restored.

By default, the puppet-backup create command backs up the following data, and the puppet-backup
restore command restores the same data:

• Your PE configuration, including license, classification, and RBAC settings. However, the configuration backup
data does not include Puppet gems or Puppet Server gems.

• PE CA certificates and the full SSL directory.
• The Puppet code deployed to your code directory at the time of the backup.
• PuppetDB data, including facts, catalogs and historical reports.

CAUTION: The puppet-backup command does not include secret keys. You must back up this data
separately and securely.

If you want to have discrete backup files, or if you want to back up some parts of your infrastructure more often than
others, you can use --scope command line option to limit the scope of a backup or restore. The --scope option
accepts one or more of certs, code, config, or puppetdb. If unspecified, the default value is all. For details
about what is and isn't included in each scope, refer to Directories and data in backups on page 870.

For example, if you have frequent code changes, you might back up your Puppet code more often than you back
up the rest of your infrastructure. When you limit the backup scope, the backup file contains only the parts of your
infrastructure that you specify. Be sure to identify the scope in your backup file's name so you know what each file
contains.

When you restore your primary server, you must restore your Puppet configuration, certificates, code, and PuppetDB
data. However, you can restore each aspect from different files, either by using backup files that have limited scopes
or by limiting the restore scope. For example, by limiting the scope when you run the puppet-backup restore
command, you could restore Puppet code, configuration, and certificates from one backup file, and then restore
PuppetDB from a different backup file.

Important: When you restore your primary server, you must restore all four data sets: configuration, certificates,
code, and PuppetDB. However, you can't restore data that isn't contained in the backup file you're restoring from.
For example, a backup file that only contains PuppetDB data can only be used to restore PuppetDB data. In this case
you'll need to run the puppet-backup restore command multiple times, restoring a different file each time,
until you have restored all four data sets (configuration, certificates, code, and PuppetDB).

Back up your infrastructure
The backup process creates a copy of your primary server, including configuration, certificates, code, and PuppetDB.
Backup can take several hours depending on the size of PuppetDB.

Before you begin
If you want to encrypt your backup, you must import your GPG public key to your primary server.

To create a complete set of backup data, you need to backup your infrastructure's secret keys and use the puppet-
backup command to backup your PE configuration, PE certificates, Puppet code, and PuppetDB data. For details
about the data included in backup files, refer to Customize scope of backup and restore on page 866.

1. To ensure that pg_repack doesn't run during the backup process, stop the pe_databases module timers:

systemctl stop pe_databases-*.timer

© 2024 Puppet, Inc., a Perforce company

pe | Maintenance | 867

2. Run the puppet-backup command on your primary server. The default command is:

sudo puppet-backup create --dir=<BACKUP_DIRECTORY>

You can customize your backup by specifying the following optional parameters:

• --dir=<BACKUP_DIRECTORY>: Specify a separate a secure location for your backup.
• --name=<BACKUP_NAME>: Specify the backup file's name. The default name is pe_backup with a

timestamp indicating when the backup file was created, such as: pe_backup-<TIMESTAMP>.tgz.
• --pe-environment=<ENVIRONMENT>: Specify an environment to back up. To ensure the configuration

is recovered correctly, this must be the environment where your primary server is located. The default value is
production.

• --scope=<SCOPE_LIST>: Specify the data you want the backup file to contain. This is used for
Customize scope of backup and restore on page 866. The default scope is all. To backup specific data,
limit the scope by using one or more of the following values: certs, code, config, or puppetdb.

Important: Back up all four data sets at once with --scope=all if you intend to use the backup for a PE
migration or to recover an installation. If you are restoring for a PE migration or recovering an installation, you
must restore all four data sets at once with --scope=all.

Tip: If you specify --scope, specify a --name that describes the file's scope.

• --gpgkey=<KEY_ID>: Specify a GPG key ID to use to encrypt the backup file.
• --force: Specify this parameter if you want to bypass validation checks and ignore warnings.

3. Back up the secret keys directory and, if applicable, the secret key for the LDAP service.

CAUTION:

The puppet-backup command does not include secret keys. You must back up this data separately.

Secure the keys as you would any sensitive information.

• The secret keys directory is located at: /etc/puppetlabs/orchestration-services/conf.d/
secrets/

• (If applicable) The LDAP service key is located at: /etc/puppetlabs/console-services/
conf.d/secrets/keys.json

4. Restart the pe_databases module timers:

systemctl start pe_databases-catalogs.timer pe_databases-facts.timer
 pe_databases-other.timer

Each time you use puppet-backup to create a new backup, PE creates a single backup file containing everything
you're backing up (defined by the --scope). PE writes backup files to /var/puppetlabs/backups, unless
you specify a different location in the puppet-backup command. The file name follows the default naming
convention (pe_backup-<TIMESTAMP>.tgz), unless you specified a different name in the puppet-backup
command.

Restore your infrastructure
Use the restore process when you migrate your primary server to a new operating system or to a new host. You can
also use the restore process to recover your installation after a system failure.

Before you begin

• Carefully review the instructions below before carrying out the steps.
• You must have created backup files, as described in Back up your infrastructure on page 866.

© 2024 Puppet, Inc., a Perforce company

pe | Maintenance | 868

• You must import the GPG key pair (both the public and private keys) that you used for encryption to your new
primary server. The GPG keys are required to decrypt an encrypted backup.

1. If you are restoring the primary server to a node that is currently hosting an active primary server or Puppet agent,
you must first purge the existing installation and install PE. To do this:

a) On the primary server, run this command as root to uninstall PE:

/opt/puppetlabs/bin/puppet-enterprise-uninstaller -p -d

b) Ensure that the /opt/puppetlabs/ and /etc/puppetlabs/ directories are no longer present on the
system:

rm -rf /opt/puppetlabs/
rm -rf /etc/puppetlabs/

2. Install PE on the primary server you want to restore to. You must install the same PE version used to create your
backup files.

a) If you don't have the PE installer script on the machine you want to restore to, download the installer tarball
and unpack it by running:

tar -xf <TARBALL_FILENAME>

b) Navigate to the directory containing the install script. Normally, the installer script is located in the PE
directory that is created when you unpacked the tarball.

c) To install PE, run as root:

./puppet-enterprise-installer

3. To ensure that the pg_repack extension doesn't run, stop the pe_databases module timers:

systemctl stop pe_databases-*.timer

4. On your primary server, run the puppet-backup restore command as the root user to restore your PE
infrastructure. The default command is:

puppet-backup restore <BACKUP-FILENAME>

You must use the following parameter to specify the backup file you want to restore from:

• <BACKUP-FILENAME>: The location, name, and contents of your backup files are determined when you
Back up your infrastructure on page 866.

You can customize your restore by specifying the following optional parameters:

• --pe-environment=<ENVIRONMENT>: Specify an environment to restore. The default value is
production. Use this parameter if your source PE primary server was using a different environment than
production.

• --scope=<SCOPE_LIST>: Specify the data you want to restore. This is used for Customize scope of
backup and restore on page 866. The default scope is all. If you only want to restore specific data, specify
one or more of: certs, code, config, or puppetdb.

Important: If you are restoring for a PE migration or recovering an installation, you must restore all four data
sets at once with --scope=all.

• --force: Specify this parameter if you want to bypass validation checks and ignore warnings.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/try-puppet/puppet-enterprise/download/

pe | Maintenance | 869

5. Restore your secret key backups from your old primary server. These keys are used to encrypt and decrypt
sensitive data in the inventory service, orchestrator, and the LDAP service (if enabled).

• The location of the Inventory service and orchestrator keys directory is: /etc/puppetlabs/
orchestration-services/conf.d/secrets/

• The location of the LDAP service key file is: /etc/puppetlabs/console-services/conf.d/
secrets/keys.json

CAUTION: The puppet-backup restore command does not include secret keys. You must
restore this data separately. See step 3 of Back up your infrastructure.

6. Make sure the inventory service's secret key ownership is configured as: chown -R pe-orchestration-
services:pe-orchestration-services #/etc/puppetlabs/orchestration-services/
conf.d/secrets/

7. If the LDAP service is enabled, make sure the LDAP service's secret key ownership is configured as: chown
pe-console-services:pe-console-services /etc/puppetlabs/console-services/
conf.d/secrets/keys.json

8. Restart pe-orchestration-services and pe-console-services on the primary server:

a) puppet resource service pe-orchestration-services ensure=stopped

b) puppet resource service pe-console-services ensure=stopped

c) puppet resource service pe-orchestration-services ensure=running

d) puppet resource service pe-console-services ensure=running

9. Run Puppet to apply changes:

a) puppet agent -t --no-use_cached_catalog

b) puppet agent -t --no-use_cached_catalog

Important: You must run the command twice.

10. If your backup source PE installation includes compilers and you are restoring your primary server on the same
operating system that was in use when the backup was created, migrate your compilers to the new primary server.
Run the following command on all compilers:

puppet agent -t --server_list <RESTORED_DESTINATION_PRIMARY_CERTNAME>

If your backup source PE installation includes compilers and you are restoring your primary server after changing
or upgrading your operating system, you must forget the previous compilers and add new compilers on the same
OS major version, platform, and architecture as the restored (destination) primary server. Complete the following
steps on the restored primary server:

a) On the primary server, run the following command for each compiler:

puppet node purge <COMPILER_CERTNAME>

If any of the compilers included in your installation were legacy compilers (compilers without
the#PuppetDB#service), you must unpin them from thePE Master#node group.

b) On the primary server, run Puppet to apply the configuration changes:

puppet agent -t

c) Install and configure new compilers.

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/2021.7/installing_compilers.html#install-compilers
https://www.puppet.com/docs/pe/2021.7/installing_compilers.html#configure-compilers

pe | Maintenance | 870

11. If your backup source PE installation includes a PE replica, you must complete the following steps:

a) Run the following command to generate a new admin token:

puppet-access login

b) On the primary server, run the following command:

puppet infrastructure forget <REPLICA_CERTNAME>

c) Provision and enable a new replica.

12. If Code Manager#was enabled when you created your backup file, complete the following steps on the newly
restored primary server:

a) If necessary, run the following command to generate a new Puppet token for deploying code:

puppet-access login

b) For each code environment you want to deploy, run:

puppet code deploy --wait <ENVIRONMENT_NAME>

c) Alternatively, if you want to deploy all of your PE code environments, you can run the following command:

puppet code deploy --wait --all

13. Run Puppet to apply changes:

puppet agent -t --no-use_cached_catalog

14. If you restored PE onto a primary server with a different hostname than the original installation, and you have
not configured the dns_alt_names setting in the pe.conf file, you need to redirect your agents to the new
primary server. If your agents have a load balancer address in puppet.conf, this step is unnecessary and
you can simply make load balancer changes to redirect agent Puppet traffic. If you are not using load balancers,
we recommend updating the server_list configuration setting to the new infrastructure using either the
puppet_enteprise::profile::agent::server_list class parameter or with the puppet_conf
task.

15. Once your agents are migrated to the new infrastructure, restart pe-orchestration-services on the
primary server. This resets all pxp-agent connections.

a) puppet resource service pe-orchestration-services ensure=stopped

b) puppet resource service pe-orchestration-services ensure=running

Related information
Uninstalling on page 172
Puppet Enterprise (PE) includes a script for uninstalling. You can uninstall infrastructure nodes or uninstall the agent
from agent nodes.

Installing PE on page 110
To install Puppet Enterprise (PE), you can use either the PE installer tarball for your operating system platform or
Puppet Installation Manager.

Provision and enable a replica on page 262
Provisioning a replica duplicates specific components and services from the primary server to the replica. Enabling a
replica activates most of its duplicated services and components, and instructs agents and infrastructure nodes how to
communicate in a failover scenario.

Directories and data in backups
These directories and data are included in PE backups.

A default puppet-backup command captures all scopes, meaning all directories and data described in the table
below. However, you can use the --scope option to limit the contents of backup files, or to restore data from

© 2024 Puppet, Inc., a Perforce company

https://www.puppet.com/docs/pe/2025.1/dr_configure.html#dr-provision-replica

pe | Maintenance | 871

multiple backup files, as described in Customize scope of backup and restore on page 866. In this case, the --
scope option indicates which directories and data to back up or restore.

Scope Directories and databases

certs (PE certificates) • PE CA certificates
• /etc/puppetlabs/puppet/ssl/

code (Puppet code) This scope captures the Puppet code deployed to your
code directory at the time of the backup. Specifically:

• /etc/puppetlabs/code/

• /etc/puppetlabs/code-staging/

• /opt/puppetlabs/server/data/
puppetserver/filesync/storage/

• /opt/puppetlabs/server/data/
orchestration-services/data-dir

• /opt/puppetlabs/server/data/
orchestration-services/code

© 2024 Puppet, Inc., a Perforce company

pe | Maintenance | 872

Scope Directories and databases

config (PE configuration) This scope captures your PE configuration, including
license, classification, and RBAC settings. Some
directories and data are excluded, such as Puppet gems,
Puppet Server gems, and directories captured in other
scopes. Specifically, it includes:

• The orchestrator, RBAC, and classifier databases
• The contents of /etc/puppetlabs/, except:

• The /code and /code-staging directories,
which are included in the code scope.

• The /puppet/ssl directory, which is included
in the certs scope.

• The contents of /opt/puppetlabs/, except:

• /puppet

• /server/pe_build

• /server/data/packages

• /server/apps

• /server/data/postgresql

• /server/data/enterprise/modules

• /server/data/puppetserver/
vendored-jruby-gems

• /bin

• /client-tools

• /server/share

• /server/data/puppetserver/
filesync/storage

• /server/data/puppetserver/
filesync/client

• /server/data/orchestration-
services/data-dir and /server/data/
orchestration-services/code, which
are included in the code scope.

puppetdb (PuppetDB) • PuppetDB data, including facts, catalogs, and
historical reports

• The contents of /opt/puppetlabs/server/
data/puppetdb, except the /stockpile
directory.

© 2024 Puppet, Inc., a Perforce company

pe | Maintenance | 873

Database maintenance
You can optimize the Puppet Enterprise (PE) databases to improve performance.

Enable the pe_databases module
The pe_databases module helps you manage and tune your Puppet Enterprise (PE) databases. The module is
installed in the $basemodulepath directory as part of the PE installation or upgrade process, and it is enabled by
default.

Important: If you have a version of this module, from the Forge or other sources, specified in your code, you must
remove this version before upgrading to allow the version bundled with PE to be asserted.

1. To enable or disable the pe_databases module, change the
puppet_enterprise::enable_database_maintenance parameter. This parameter accepts Boolean
values.

2. Run Puppet: puppet agent -t

Related information
How to configure PE on page 212
After you've installed Puppet Enterprise (PE), you can optimize it by configuring and tuning settings. For example,
you might want to add your certificate to the allowlist, increase the max-threads setting for http and https
requests, or configure the number of JRuby instances.

Databases in PE
Puppet Enterprise (PE) uses PostgreSQL as the backend for its databases. You can use the native tools in PostgreSQL
to perform database exports and imports.

The PE PostgreSQL database includes the following databases:

Database Description

pe-activity Activity data from the Classifier, including users, nodes,
and times of activities

pe-classifier Classification data, all node group information

pe-puppetdb PuppetDB data, including exported resources, catalogs,
facts, and reports

pe-rbac Role-based access control (RBAC) data, including users,
permissions, and AD/LDAP information

pe-orchestrator Orchestrator data, including user, node, and job run
result details

List all database names
You can generate a list of PostgreSQL database names.

1. Switch to the pe-postgres user by running:

sudo su - pe-postgres -s /bin/bash

2. Open the PostgreSQL command-line by running:

/opt/puppetlabs/server/bin/psql

3. To list the databases, run: \l

4. To exit the PostgreSQL command line, run: \q

© 2024 Puppet, Inc., a Perforce company

pe | Maintenance | 874

5. To log out of the pe-postgres user, run: logout

Rotating the inventory service secret key
The inventory service uses a randomly-generated secret key to encrypt a connection entry's sensitive parameters.

Rotate the inventory service secret key
Rotate the secret key every 90 days to reduce the probability of an attacker compromising the secret key.

1. Stop the inventory service on the primary server. You can use the command puppet resource service
pe-orchestration-services ensure=stopped, where the pe-orchestration-services
service contains both the orchestrator and inventory services.

2. Stop the Puppet service to ensure that a periodic Puppet run does not accidentally start the inventory service while
you are rotating the secret key.

3. Use this command to download the key_rotation.rb script:

curl https://puppet.com/docs/pe/latest/files/key_rotation.rb -L --output
 key_rotation.rb

4. Run the key_rotation.rb script on the primary server. You must log in as root or use sudo to run the script
with elevated privileges.

The key_rotation.rb script:

• Calculates the secret key directory and database URL by reading the inventory service's config file.
• Generates the new key and writes it to <SECRET_KEY_DIR>/new_key.json.
• Uses psql to re-encrypt the old data with the new key.
• Moves the new key to the old key's location (<SECRET_KEY_DIR>/keys.json).

If the inventory service's database is on a different host than the primary server, you must specify the URL using
the DATABASE_URL environment variable. This must be a valid PostgreSQL URL. For example, the following
invocation connects to the inventory_service database as the inventory_user with the password
inventory_password on host remote_db_host:

DATABASE_URL=postgres://inventory_user:inventory_password@remote_db_host/
inventory_service key_rotation.rb

If re-encryption fails, you can re-run the script. The script does not generate another new key; instead, it detects
the previously-created new key and skips to reattempt re-encryption.

If moving the new key to old key's location fails, you must manually move the new key to the old key’s location.
To do this, you can run:

mv <SECRET_KEY_DIR>/new_key.json <SECRET_KEY_DIR>/keys.json

For example:

mv etc/puppetlabs/orchestration-services/conf.d/secrets/new_key.json etc/
puppetlabs/orchestration-services/conf.d/secrets/keys.json

5. Delete the key_rotation.rb script to prevent unintentional secret key rotations.

6. Restart the inventory service on the primary server by running: puppet resource service pe-
orchestration-services ensure=running

7. Restart the Puppet service.

Back up your infrastructure to capture the new secret key and re-encrypted data.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/pe/latest/backing_up_and_restoring_pe.html#backup-and-restore-pe

pe | Troubleshooting | 875

Troubleshooting

Use this guide to troubleshoot issues with your Puppet Enterprise (PE) installation.

Important: Before following troubleshooting guidance, review What gets installed and where. PE installs several
software components, configuration files, databases, logs, services, and users. It is useful to know their locations
when you need to troubleshoot your infrastructure.

• Log locations on page 875
The software distributed with Puppet Enterprise (PE) generates log files you can use for troubleshooting.
• Troubleshooting installation on page 878
If installation fails, check for these issues.
• Troubleshooting disaster recovery on page 879
If disaster recovery commands fail, check for these issues.
• Troubleshooting puppet infrastructure run commands on page 879
If puppet infrastructure run commands fail, review the logs at /var/log/puppetlabs/
installer/bolt_info.log and check for these issues.
• Troubleshooting connections between components on page 880
If agent nodes can't retrieve configurations, check for communication, certificate, DNS , and NTP issues.
• Troubleshooting the databases on page 882
Use these strategies to troubleshoot issues with the databases that support the console.
• Troubleshooting SAML connections on page 883
There are some common issues and errors that can occur when connecting a SAML identity provider to PE, such as
failed redirects, rejected communications, and failed group binding.
• Troubleshooting backup and restore on page 884
If backup or restore fails, check for these issues.
• Troubleshooting Code Manager
• Troubleshooting Windows on page 885
Troubleshoot issues in Windows PE installations, such as failed installations, failed upgrades, problems applying
manifests, and other issues.

Log locations
The software distributed with Puppet Enterprise (PE) generates log files you can use for troubleshooting.

Primary server logs

Code Manager access log

Location: /var/log/puppetlabs/puppetserver/code-manager-access.log

File sync access log

Location: /var/log/puppetlabs/puppetserver/file-sync-access.log

Puppet Communications Protocol (PCP) broker log

This is the log file for PCP brokers on compilers.

Location: /var/log/puppetlabs/puppetserver/pcp-broker.log

General Puppet Server log

This is where the primary server logs its activity, including compilation errors and deprecation warnings.

Location: /var/log/puppetlabs/puppetserver/puppetserver.log

© 2024 Puppet, Inc., a Perforce company

code_mgr_troubleshoot.html

pe | Troubleshooting | 876

Puppet Server access log

Location: /var/log/puppetlabs/puppetserver/puppetserver-access.log

Puppet Server daemon log

This is where you can find fatal errors and crash reports.

Location: /var/log/puppetlabs/puppetserver/puppetserver-daemon.log

Puppet Server status log

Location: /var/log/puppetlabs/puppetserver/puppetserver-status.log

Agent logs

The agent log locations depend on the agent node's operating system.

On *nix nodes, the agent service logs activity to the syslog service. The node's operating system and syslog
configuration determines where these messages are saved. The default locations are as follows:

• Linux: /var/log/messages
• macOS: /var/log/system.log
• Solaris: /var/adm/messages

On Windows nodes, the agent service logs its activity to the Event Log. Browse the Event Viewer to view those
messages. You might need to enable Logging and debugging on page 888.

Console and console services logs

General console services log

Location: /var/log/puppetlabs/console-services/console-services.log

Console services API access log

Location: /var/log/puppetlabs/console-services/console-services-api-access.log

Console services access log

Location: /var/log/puppetlabs/console-services-access.log

Console services daemon log

This is where you can find fatal errors and crash reports.

Location: /var/log/puppetlabs/console-services-daemon.log

NGINX access log

Location: /var/log/puppetlabs/nginx/access.log

NGINX error log

Contains console errors that aren't logged elsewhere and errors related to NGINX.

Location: /var/log/puppetlabs/nginx/error.log

Installer logs

HTTP log

Contains web requests sent to the installer.

Only exists on machines from which a web-based installation was performed.

Location: /var/log/puppetlabs/installer/http.log

Orchestrator info log

Contains run details about puppet infrastructure commands that use the orchestrator. This includes
commands to provision and upgrade compilers, convert legacy compilers, and regenerate agent and compiler
certificates.

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 877

Location: /var/log/puppetlabs/installer/orchestrator_info.log

Last installer run logs, by hostname

Contains the contents of the last installer run.

There can be multiple log files, labeled by hostname.

Location: /var/log/puppetlabs/installer/install_log.lastrun.<HOSTNAME>.log

Installer operation logs, by timestamp

Captures operations performed during installation and any errors that occurred.

There can be multiple log files, labeled by timestamp.

/var/log/puppetlabs/installer/installer-<TIMESTAMP>.log

Disaster recovery command logs, by action, timestamp, and description

Contains details about disaster recovery command execution.

There can be multiple log files for each command because each action triggers multiple Puppet runs (Some on the
primary server and some on the replica).

Location:/var/log/puppetlabs/installer/<ACTION-NAME>_<TIMESTAMP>_<RUN-
DESCRIPTION>.log

Bolt info log

Can be valuable when Troubleshooting disaster recovery on page 879.

Location: /var/log/puppetlabs/installer/bolt_info.log

Database logs

Database logs include PostgreSQL and PuppetDB logs.

PostgreSQL startup log

Can be valuable when Troubleshooting the databases on page 882.

Location: /var/log/puppetlabs/postgresql/14/pgstartup.log

PostgreSQL daily logs, by weekday

There is one log file for each day of the week. Log file names use short names, such as Mon for Monday, Tue for
Tuesday, and so on.

Location: /var/log/puppetlabs/postgresql/14/postgresql-<WEEKDAY>.log

General PuppetDB log

Location: /var/log/puppetlabs/puppetdb/puppetdb.log

PuppetDB access log

Location: /var/log/puppetlabs/puppetdb/puppetdb-access.log

PuppetDB status log

Location: /var/log/puppetlabs/puppetdb/puppetdb-status.log

Orchestration logs

Orchestration logs include orchestration services and related components, such as PXP agent and Bolt server.

Aggregate node count log

Location: /var/log/puppetlabs/orchestration-services/aggregate-node-count.log

Puppet Communications Protocol (PCP) broker log

This is the log file for PCP brokers on the primary server.

Location: /var/log/puppetlabs/orchestration-services/pcp-broker.log

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 878

Puppet Communications Protocol (PCP) broker access log

Location: /var/log/puppetlabs/orchestration-services/pcp-broker-access.log

Orchestration services access log

Location: /var/log/puppetlabs/orchestration-services/orchestration-services-
access.log

Orchestration services daemon log

This is where you can find fatal errors and crash reports.

Location: /var/log/puppetlabs/orchestration-services/orchestration-services-
daemon.log

Orchestration services status log

Location: /var/log/puppetlabs/orchestration-services/orchestration-services-
status.log

Puppet Execution Protocol (PXP) agent log

*nix location: /var/log/puppetlabs/pxp-agent/pxp-agent.log

Windows location: C:/ProgramData/PuppetLabs/pxp-agent/var/log/pxp-agent.log

Bolt server log

Can be valuable when Troubleshooting connections between components on page 880.

Location: /var/log/puppetlabs/bolt-server/bolt-server.log

Node inventory service log

Location: /var/log/puppetlabs/orchestration-services/orchestration-services.log

Troubleshooting installation
If installation fails, check for these issues.

Note: If you encounter errors during installation, you can troubleshoot and run the installer as many times as needed.

Misconfigured DNS

DNS must be configured correctly for successful installation.

1. Verify that agents can reach the primary server hostname you chose during installation.
2. Verify that the primary server can reach itself at the primary server hostname you chose during installation.
3. If the primary server and console components are on different servers, verify that they can communicate with each

other.

Misconfigured security settings

Firewall and security settings must be configured correctly for successful installation.

1. On your primary server, verify that inbound traffic is allowed on ports 8140 and 443.
2. If your primary server has multiple network interfaces, verify that the primary server allows traffic through the IP

address that its valid DNS names resolve to, not just through an internal interface.

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 879

Troubleshooting disaster recovery
If disaster recovery commands fail, check for these issues.

Latency over WAN

If the primary server and replica communicate over a slow, high latency, or lossy connection, the provision and
enable commands can fail.

If this happens, try re-running the command.

Replica is connected to a compiler instead of a primary server

The provision command triggers an error if you try to provision a replica node that's connected to a compiler. The
error is similar to the following:

Failure during provision command during the puppet agent run on replica 2:
Failed to generate additional resources using 'eval_generate':
 Error 500 on SERVER: Server Error: Not authorized
 to call search on /file_metadata/pe_modules with
 {:rest=>"pe_modules", :links=>"manage", :recurse=>true, :source_permissions=>"ignore", :checksum_type=>"md5"}
Source: /Stage[main]/Puppet_enterprise::Profile::Primary_master_replica/
File[/opt/puppetlabs/server/share/installer/modules]File: /opt/
puppetlabs/puppet/modules/puppet_enterprise/manifests/profile/
primary_master_replica.ppLine: 64

On the replica you want to provision, edit /etc/puppetlabs/puppet.conf so that the server and
server_list settings use a primary server, rather than a compiler.

Both server and server_list are set in the agent configuration file

When the agent configuration file contains settings for both server and server_list, a warning appears. This
warning can occur after enabling a replica. You can ignore the warning, or hide it by removing the server setting
from the agent configuration, leaving only server_list.

Node groups are empty

When provisioning and enabling a replica, the orchestrator is used to run Puppet on different groups of nodes. If a
group of nodes is empty, the tool reports that there's nothing for it to do and the job is marked as failed in the
output of puppet job show. This is expected, and doesn't indicate a problem.

Troubleshooting puppet infrastructure run commands
If puppet infrastructure run commands fail, review the logs at /var/log/puppetlabs/
installer/bolt_info.log and check for these issues.

Running commands when logged in as a non-root user

All puppet infrastructure run commands require you to act as the root user on all nodes that the command
touches. If you are trying to run a puppet infrastructure run command as a non-root user, you must be
able to SSH into the impacted nodes (as the same non-root user) in order for the command to succeed.

When you run a puppet infrastructure run command, Bolt uses your system's existing OpenSSH
ssh_config configuration file to connect to your nodes. If this file is missing or misconfigured, Bolt tries to
connect as root. To make sure the correct user connects to the nodes, you have the following options:

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 880

• Set up your OpenSSH ssh_config configuration file to point to a user with sudo privileges. For example:

Host *.example.net
 UserKnownHostsFile=~/.ssh/known_hosts
 User <USER_WITH_SUDO_PRIVILEGES>

• When running a puppet infrastructure run command, include the --user
<USER_WITH_SUDO_PRIVILEGES> flag.

If your sudo configuration requires a password to run commands, include the --sudo-password <PASSWORD>
flag when running a puppet infrastructure run command.

Tip: To avoid logging the password to .bash_history, set HISTCONTROL=ignorespace in your .bashrc
file, and add a space to the beginning of the command.

If your operating system distribution includes the requiretty option in the /etc/sudoers file, you must do
one of the following:

• Remove this option from the file.
• Include the --tty flag when running a puppet infrastructure run command.

Passing hashes from the command line

When passing a hash on the command line as part of a puppet infrastructure run command, the hash must
be wrapped in quotes, much like a JSON object. For example:

'{"parameter_one": "value_one", “parameter_two”: “value_two”}'

Troubleshooting connections between components
If agent nodes can't retrieve configurations, check for communication, certificate, DNS , and NTP issues.

Agents can't reach the primary server
Agent nodes must be able to communicate with the primary server in order to retrieve configurations.

If agents can't reach the primary server, running telnet <PRIMARY_HOSTNAME> 8140 returns a Name or
service not known error.

1. Verify that the primary server is reachable at a DNS name your agents recognize.

If you aren't sure how to do this, refer to: Agents aren't using the primary server's valid DNS name on page 881

2. Verify that the pe-puppetserver service is running.

Agents don't have signed certificates
Agent certificates must be signed by the primary server.

If the node's Puppet agent logs contain warnings about unverified peer certificates in the current SSL session, the
agent's certificate signing request (CSR) that hasn't yet been signed.

1. On the primary server, run puppet cert list to generate a list of pending CSRs.

Tip: You can also Manage CSRs in the console.

2. To sign a node's certificate, run: puppetserver ca sign <NODE_NAME>

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 881

Agents aren't using the primary server's valid DNS name
Agents trust the primary server only if they contact it at one of the valid hostnames specified when the primary server
was installed.

On the agent node, if you don't get one of the primary server's valid DNS names (which you chose when installing
the primary server) when you run puppet agent --configprint server, then the agent node and primary
server can't communicate.

1. To edit the primary server's hostname on agent nodes, open the /etc/puppetlabs/puppet/puppet.conf
file, and change the server setting to a valid DNS name.

2. To reset the primary server's valid DNS names, log in as root (or the Administrator) and run:

puppet infrastructure run regenerate_primary_certificate --
dns_alt_names=<COMMA-SEPARATED_LIST_OF_DNS_NAMES>

Time is out of sync
The date and time must be in sync on the primary server and agent nodes.

If time is out of sync on nodes, running the date command returns incorrect or inconsistent dates.

Set up NTP to get the time in sync. However, keep in mind that NTP can behave unreliably on virtual machines.

Node certificates have invalid dates
The date and time must be in sync when certificates are created.

If certificates were signed out of sync, you get invalid dates (such as certificates with future dates) when you run:

openssl x509 -text -noout -in $(puppet config print --section master
 ssldir)/certs/<NODE_NAME>.pem

1. On the primary server, delete certificates with invalid dates by running:

puppetserver ca clean --certname <NODE_CERT_NAME>

2. On the nodes with invalid certificates, delete the SSL directory by running:

rm -r $(puppet config print --section master ssldir)

3. On each impacted agent node, run puppet agent --test to generate a new certificate request.

4. On the primary server, run puppetserver ca sign <NODE_NAME> to sign each request.

A node is re-using a certname
If a new node re-uses an old node's certname, and the primary server retains the previous node's certificate, the new
node can't request a new certificate.

1. On the primary server, clear the node's certificate by running:

puppetserver ca clean --certname <NODE_CERT_NAME>

2. On the agent node, run puppet agent --test to generate a new certificate.

3. On the primary server, run puppetserver ca sign <NODE_NAME> to sign the request.

Agents can't reach the filebucket server
If the primary server is installed with a certname that doesn't match its hostname, agents can't back up files to the
filebucket on the primary server.

If agents logs contain errors like could not back up, this means nodes are likely attempting to back up files to
the wrong hostname.

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 882

On the primary server, edit /etc/puppetlabs/code/environments/production/manifests/
site.pp so that the filebucket server attribute points to the correct hostname. For example:

Define filebucket 'main':
filebucket { 'main':
 server => '<PRIMARY_DNS_NAME>',
 path => false,
}

Changing the filebucket server attribute on the primary server fixes the error on all agent nodes.

Orchestrator can't connect to the PE Bolt server
There are two options for debugging a faulty connection between the orchestrator and the PE Bolt server.

• Set the bolt_server_loglevel parameter in the puppet_enterprise::profile::bolt_server
class, and then run Puppet.

• Manually update the loglevel parameter in the /etc/puppetlabs/bolt-server/conf.d/bolt-
server.conf file.

The Bolt server logs are located at: /var/log/puppetlabs/bolt-server/bolt-server.log

Troubleshooting the databases
Use these strategies to troubleshoot issues with the databases that support the console.

Common issues include:

• The PostgreSQL database takes up too much space on page 882
• PostgreSQL buffer memory causes installation to fail on page 882
• Port conflicts, such as: The PuppetDB default port conflicts with another service on page 883
• Incorrect puppet apply configuration, for example: puppet resource generates Ruby errors after connecting

puppet apply to PuppetDB on page 883.
• In unmanaged PostgreSQL installations, you are not on the latest supported version of PostgreSQL. For upgrade

instructions, refer to Upgrade an unmanaged PostgreSQL installation on page 189.

The PostgreSQL database takes up too much space
The PostgreSQL autovacuum=on setting prevents the database from growing too large and unwieldy. Routine
vacuuming is enabled by default.

Verify that autovacuum is set to on.

PostgreSQL buffer memory causes installation to fail
When installing PE on machines with large amounts of RAM, the PostgreSQL database might try to use more shared
buffer memory than is available.

If this issue is present, the pgstartup.log (located at /var/log/pe-postgresql/pgstartup.log)
contains the following error:

FATAL: could not create shared memory segment: No space left on device
DETAIL: Failed system call was shmget(key=5432001, size=34427584512,03600).

1. On the primary server, set the shmmax kernel setting to approximately 50% of the total RAM.

2. To get the value for the shmall kernel setting, divide the value of the shmmax setting by the page size. To
confirm the page size, run: getconf PAGE_SIZE

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 883

3. Set the new kernel settings by running:

sysctl -w kernel.shmmax=<your shmmax calculation>
sysctl -w kernel.shmall=<your shmall calculation>

The PuppetDB default port conflicts with another service
By default, PuppetDB communicates over port 8081. In some cases, this might conflict with other services, such as
McAfee ePolicy Orchestrator.

Install PuppetDB in text mode with the non-default port specified on the
puppet_enterprise::puppetdb_port parameter in the pe.conf file.

After installation, make sure the puppetdb_port value is correct on the PE Infrastructure node group on page
468.

puppet resource generates Ruby errors after connecting puppet apply to
PuppetDB

If puppet apply is configured incorrectly, then puppet resource ceases to function and returns a Ruby run
error.

An example of an incorrect puppet apply configuration would be putting the storeconfigs_backend =
puppetdb and storeconfigs = true parameters in both the main and primary server sections of the
puppet.conf file.

You need to modify the routes.yaml file (located at /etc/puppetlabs/puppet/routes.yaml) so that it
correctly connects puppet apply without impacting other functions.

Troubleshooting SAML connections
There are some common issues and errors that can occur when connecting a SAML identity provider to PE, such as
failed redirects, rejected communications, and failed group binding.

Tip: In the case of any SAML connection errors, check the SAML configurations in both PE and your identity
provider.

Failed redirects

Redirects fail (with a 404 error code) when there are mismatched URLs between PE and the identity provider.
Depending on where the redirect occurs, there are two possible ways to fix this:

• If the redirect fails when going from the identity provider to PE, fix the mismatched URLs in your identity
provider's SAML configuration.

• If the redirect fails when going from PE to the identity provider, fix the mismatched URLs in your PE SAML
configuration.

Rejected communication requests

If PE or the identity provider rejects communications or returns an error, check the console-services.log file
(located at /var/log/puppetlabs/console-services/console-services.log) for details about the
communication failure.

Usually, this means there are mismatched certificates for PE and the identity provider, and that you need to
reconfigure the certificates.

Failed user-group binding

If users aren't binding to their assigned groups, or if user permissions are missing, make sure:

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppetdb/7/connect_puppet_apply.html

pe | Troubleshooting | 884

• There isn't a mismatch in attribute bindings. Check the attribute binding values in your identity provider and PE
SAML configurations.

Tip: If unknown attributes appear in output logs at the debug level, this can be an indication of mismatched
attribute bindings.

• The group export is incorrect in your identity provider's configuration.

Related information
Connect to a SAML identity provider on page 295
Use the console to set up SSO or MFA with your SAML identity provider.

SAML error messages
These are common PE error messages related to SAML and how you can troubleshoot them.

Expected login bindings <BINDING> in attributes and it wasn't present.

The identity provider didn't provide a specified login attribute for the user.

Check your identity provider configuration.

Multiple login bindings found in attributes and only one expected.

The identity provider supplied multiple login entries in the assertion but only one entry is allowed.

Check your identity provider configuration.

User \"{0}\" has been revoked and is unable to login

Either an administrator manually revoked the user's account in PE or RBAC automatically revoked the user's
account.

RBAC usually automatically revokes users when the user has no recent activity. This is based on the
account_expiry_days parameter. For more information, refer to Configure RBAC and token-based
authentication settings on page 227.

If the account was manually revoked, contact the administrator who revoked the account.

SAML library errors

There are various SAML library errors, which are identified by their namespace.

Sometimes these errors are recorded in the console-services.log file.

These errors usually indicate a malformed payload, mismatched entity-id, or an untrusted certificate.

Troubleshooting backup and restore
If backup or restore fails, check for these issues.

The puppet-backup create command fails with the error command puppet infrastructure
recover_configuration failed

The puppet-backup create command might fail if any gem installed on the Puppet Server isn't present on
the agent environment on the primary server. If the gem is missing or has a different version on the primary server's
agent environment, you get this error: command puppet infrastructure recover_configuration
failed.

To fix this, install the missing or incorrectly versioned gems on the primary server's agent environment. To find
which gems are causing the error, check the backup logs for gem incompatibility issues with the error message. PE
creates backup logs as a report.txt whenever you run a puppet-backup command.

To see which gems,and which versions, you have installed on your Puppet Server, run: puppetserver gem
list

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 885

To see what gems are installed in the agent environment on your primary server, run: /opt/puppetlabs/
puppet/bin/gem list

The puppet-backup restore command fails with errors about a duplicate operator family

When restoring the pe-rbac database, if the restore process exits with errors about a duplicate operator family,
follow these steps:

1. Log into your PostgreSQL instance by running:

sudo su - pe-postgres -s /bin/bash -c "/opt/puppetlabs/server/bin/psql pe-
rbac"

2. Run these commands:

ALTER EXTENSION citext ADD operator family citext_ops using btree;
ALTER EXTENSION citext ADD operator family citext_ops using hash;

3. Exit the PostgreSQL shell and re-run the backup utility.

Troubleshooting Windows
Troubleshoot issues in Windows PE installations, such as failed installations, failed upgrades, problems applying
manifests, and other issues.

If you are experiencing failures when installing or upgrading agents, refer to Installation fails on page 885 and
Upgrade fails on page 886.

If manifests are failing to be applied, or are being applied incorrectly, refer to Errors when applying a manifest or
doing a Puppet agent run on page 886.

For other issues, refer to the Error messages on page 887 reference. You might need to enable temporary Logging
and debugging on page 888.

Installation fails
Check for these issues if Puppet agent installation fails on a Windows node.

The installation package isn't accessible

The source of an .msi or .exe package must be a file on either:

• A local filesystem
• A network mapped drive
• A UNC path

RI-based installation sources aren't supported, but you can achieve a similar result by defining a file whose source is
the primary server, and then defining a package whose source is the local file.

Installation wasn't attempted with admin privileges

Installing thePuppet agent requires elevated privileges, such as being logged in as the Administrator or running
commands in an Administrator command prompt or PowerShell window.

The following are indications that you are attempting to install without admin privileges:

• Agent installation fails when trying to perform an unattended installation from the command line.
• You get a norestart message.
• The installation logs indicate that installation is forbidden by system policy.

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 886

Upgrade fails
The Puppet agent .msi package overwrites existing entries in the puppet.conf file. If you upgrade or reinstall the
agent with a different primary server hostname, Puppet applies the new value in $confdir\puppet.conf file.

When you upgrade a Windows agent, you must use the same primary server hostname that you specified when you
originally installed the agent.

For information on configuring puppet.conf and which settings are preserved during upgrades, refer to MSI
properties on page 150.

Errors when applying a manifest or doing a Puppet agent run
If your manifests aren't applied, or are applied incorrectly, on Windows nodes, check for these issues.

Path or file separators are incorrect

For Windows nodes, path separators must use a semi-colon (;).

File separators must use forward slashes or backslashes, depending on the attribute. In most resource attributes,
the Puppet language accepts either forward slashes or backslashes as the file separator. However, some attributes
absolutely require forward slashes, and some attributes absolutely require backslashes.

You must escape backslashes that are double-quoted("). When single-quoted ('), escaping is optional. For example,
these are all valid file resources:

file { 'c:\path\to\file.txt': }
file { 'c:\\path\\to\\file.txt': }
file { "c:\\path\\to\\file.txt": }

However file { "c:\path\to\file.txt": } is an invalid path, because \p, \t, and \f are interpreted as
escape sequences.

For more information:

• Learn about Files and paths in the Puppet language on Windows in the Puppet documentation.
• Learn about Windows modifications when Using example commands on page 25 that you find in the PE

documentation.

Cases are inconsistent

Several resources are case-insensitive on Windows, like files, users, groups. However, these resources can be case
sensitive in Puppet.

When establishing dependencies among resources, make sure to specify the case consistently. Otherwise, Puppet
can't resolve the dependencies correctly. For example, Puppet fails to apply the following manifest because it doesn't
recognize that ALEX and alex are the same user:

file { 'c:\foo\bar':
 ensure => directory,
 owner => 'ALEX'
}
user { 'alex':
 ensure => present
}
...
err: /Stage[main]//File[c:\foo\bar]: Could not evaluate: Could not find user
 ALEX

Shell built-ins are not executed

Puppet doesn't support a shell provider on Windows, so executing shell built-ins directly fails.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/8/lang_windows_file_paths.html#using-backslashes-in-double-quoted-strings

pe | Troubleshooting | 887

To troubleshoot this, use cmd.exe to wrap the built-in:

exec { 'cmd.exe /c echo foo':
 path => 'c:\windows\system32;c:\windows'
}

Tip: In the 32-bit versions of the Puppet agent, you might encounter file system redirection, where system32 is
automatically switched to sysWoW64.

PowerShell scripts are not executed

By default, PowerShell enforces a restricted execution policy that prevents executing scripts.

To avoid this, use the Puppet-supported PowerShell or specify the appropriate execution policy in the PowerShell
command, for example:

exec { 'test':
 command => 'powershell.exe -executionpolicy remotesigned -file C:
\test.ps1',
 path => $::path
}

Services are referenced by display names instead of short names

Windows services support a short name and a display name, but Puppet uses only short names.

Verify that your Puppet manifests use the short names, such as wuauserv instead of Automatic Updates.

Error messages
These are some error messages you might encounter when using Puppet on Windows nodes.

Forge connection or SSL certificate errors

Errors include Could not connect via HTTPS to https://forge.puppet.com, Unable to
verify the SSL certificate, The certificate may not be signed by a valid CA,
and The CA bundle included with OpenSSL may not be valid or up to date.

These errors occurs when you run the puppet module subcommand on newly provisioned Windows nodes.
The Forge uses an SSL certificate signed by the GeoTrust Global CA certificate, and new Windows nodes might
not have that CA in their root CA store yet.

Download the GeoTrust Global CA certificate from GeoTrust's list of root certificates, and then manually
install it on the agent node by running: certutil -addstore Root GeoTrust_Global_CA.pem

Service 'Puppet Agent' (puppet) failed to start. Verify that you have sufficient privileges to start system
services.

This error occurs when installing Puppet on a UAC system from a non-elevated account. Although the installer
displays the UAC prompt to install Puppet, it does not elevate privileges when trying to start the service.

Make sure to run the .msi installation from an elevated cmd.exe process. For more information, refer to
Commands with elevated privileges on page 27.

Cannot run on Microsoft Windows without the <GEM_NAME> gem.

This error occurs if you attempt to run Windows without required gems.

Required gems include: sys-admin, win32-process, win32-dir, win32-service and win32-taskscheduler

Run this command to install the specified gems: gem install <GEM_NAME>

/Stage[main]//Scheduled_task[task_system]: Could not evaluate: The operation completed successfully.

This error occurs when the task scheduler gem has a version earlier than 0.2.1.

© 2024 Puppet, Inc., a Perforce company

pe | Troubleshooting | 888

Run this command to update the task scheduler gem: gem update win32-taskscheduler

/Stage[main]//Exec[C:/tmp/<FILE_NAME>.exe]/returns: change from notrun to 0 failed: CreateProcess()
failed: Access is denied.

This error occurs when a request for an executable on a remote primary server can't be executed.

Make sure the user and group executable bits are set appropriately on the primary server, for example:

file { "C:/tmp/<FILE_NAME>.exe":
 source => "puppet:///modules/<FOLDER_NAME>/<FILE_NAME>.exe",
}

exec { 'C:/tmp/<FILE_NAME>.exe':
 logoutput => true
}

getaddrinfo: The storage control blocks were destroyed.

This error occurs when the agent can't resolve a DNS name into an IP address or if the agent has an incorrect
reverse DNS entry.

Verify that you can run nslookup <DNS>. If this fails, there is a problem with the DNS settings on the
Windows agent. For example, the primary DNS suffix might not be set. For more information, refer to
Microsoft's DNS documentation.

Could not request certificate: The certificate retrieved from the primary does not match the agent's private
key.

This error can occur if the agent is running in two different security contexts or if the agent's SSL directory is
deleted after it retrieves a certificate from the primary server.

Make sure you elevate privileges by selecting Run as Administrator when you select Start Command Prompt
with Puppet.

Could not send report: SSL_connect returned=1 errno=0 state=SSLv3 read server certificate B: certificate
verify failed. This is often because the time is out of sync on the server or client.

This error occurs when time on the Windows agents isn't synchronized.

Windows agents that are part of an Active Directory (AD) domain automatically have their time synchronized
with AD.

For agents that are not part of an AD domain, you must run the following commands to manually enable and add
the Windows time service:

w32tm /register
net start w32time
w32tm /config /manualpeerlist:<NTP_SERVER> /syncfromflags:manual /update
w32tm /resync

Could not parse for environment production: Syntax error at '='; expected '}'

This error occurs if you run puppet apply -e from the command line, and the supplied command is
surrounded with single quotes ('). The single quotes cause cmd.exe to interpret any rocket hash (=>) in the
command as a redirect.

Retry the command with double quotes (") instead of single quotes.

Logging and debugging
The Windows Event Log can be helpful when troubleshooting issues with Windows nodes.

To enable the Puppet agent to emit --debug and --trace messages to the Windows Event Log, run this command
to stop and restart the Puppet service:

c:\>sc stop puppet && sc start puppet --debug --trace

© 2024 Puppet, Inc., a Perforce company

https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top

pe | Copyright and trademark notices | 889

Restriction: This setting applies only until the next time the service is restarted or the system is rebooted.

Related information
Logging for Puppet agent on Windows systems

Log files installed on page 106
The software distributed with PE generates log files that you can collect for compliance or use for troubleshooting.

Copyright and trademark notices

© 2024 Puppet, a Perforce company. All rights reserved.

Puppet and other identified trademarks are the property of Puppet, Inc., Perforce Software, Inc., or an affiliate. Such
trademarks are claimed and/or registered in the U.S. and other countries and regions. All third-party trademarks
are the property of their respective holders. References to third-party trademarks do not imply endorsement or
sponsorship of any products or services by the trademark holder. Contact Puppet, Inc., for further details.

© 2024 Puppet, Inc., a Perforce company

https://puppet.com/docs/puppet/latest/services_agent_windows.html#logging-for-puppet-agent-on-windows-systems

	Contents
	Welcome to Puppet Enterprise® 2023.8.2
	PE software architecture
	Component versions in recent PE releases
	FIPS 140-2 enabled PE
	Getting support
	Using the PE docs
	Puppet platform documentation for PE
	API index

	Release notes
	PE release notes
	PE known issues
	What's new since PE 2021.7

	Getting started with Puppet Enterprise
	Install PE
	Install PE using installer tarball
	Install PE using PIM

	Log in to the PE console
	Check the status of your primary server
	Add nodes to the inventory
	Add code and set up Code Manager
	Manage Apache configuration on *nix targets
	Install the apache module
	Set up Apache node groups
	Organize webserver configurations with roles and profiles

	Manage IIS configuration on Windows targets
	Install the iis module
	Set up IIS node groups
	Organize webserver configurations with roles and profiles

	Next steps

	Installing
	Supported architectures
	System requirements
	Hardware requirements
	Supported operating systems
	Supported browsers
	System configuration

	What gets installed and where?
	Installing PE
	Install PE using the installer tarball
	Install PE using PIM

	Purchasing and activating your Puppet Enterprise license
	Installing agents
	Install agents with the install script
	Install agents from the console
	Install *nix agents
	Install Windows agents
	Install macOS agents
	Install non-root agents
	Managing certificate signing requests

	Installing compilers
	Installing client tools
	Uninstalling

	Upgrading
	Upgrade paths
	Upgrade cautions
	Test modules before upgrading
	Upgrading Puppet Enterprise
	Upgrade PE using the installer tarball
	Upgrade PE using PIM

	Upgrading agents
	Upgrade agents using Puppet Plan

	Migrate PE

	Configuring Puppet Enterprise
	Tune infrastructure nodes
	How to configure PE
	Configure Puppet Server
	Configure PuppetDB
	Configure security settings
	Configure proxies
	Configure the console
	Configure orchestration
	Configure ulimit
	Analytics data collection
	Static catalogs

	Configuring disaster recovery
	Disaster recovery
	Configure disaster recovery

	Accessing the console
	Reaching the console
	Logging in

	Managing access
	User permissions and user roles
	Creating and managing local users and user roles
	LDAP authentication
	Connecting LDAP external directory services to PE
	Working with LDAP users and user groups

	SAML authentication
	Connect a SAML identity provider to PE
	Connect Microsoft ADFS to PE
	Connect Okta to PE

	Token-based authentication
	RBAC API
	Forming RBAC API requests
	RBAC service errors
	RBAC API v1
	Users endpoints
	User groups endpoints
	User roles endpoints
	Permissions endpoints
	Tokens endpoints
	LDAP endpoints
	SAML endpoints
	Passwords endpoints
	Disclaimer endpoints

	RBAC API v2
	Users endpoints
	User group endpoints
	Tokens endpoints
	LDAP endpoints
	GET /ldap/<id>

	Activity service API
	Forming activity service API requests
	Event types reported by the activity service
	Events endpoints

	Monitoring and reporting
	Monitoring infrastructure state
	Identify operational issues affecting infrastructure nodes
	Viewing and managing packages
	Value report
	Infrastructure reports
	Analyzing changes across Puppet runs
	Puppet Enterprise metrics and status monitoring
	View and manage Puppet Server metrics
	Get started with Graphite
	Available Graphite metrics

	Metrics API
	Metrics API v2
	Metrics API v1

	Status API
	Status API authentication
	Forming status API requests
	Status API: services endpoint
	Status API: services plaintext endpoint
	Status API: metrics endpoint

	Managing nodes
	Adding and removing agent nodes
	Adding and removing agentless nodes
	How nodes are counted
	Running Puppet on nodes
	Grouping and classifying nodes
	Making changes to node groups
	Environment-based testing
	Preconfigured node groups
	Managing agent certificates
	Managing Windows nodes
	Designing system configs (roles and profiles)
	The roles and profiles method
	Roles and profiles example
	Designing advanced profiles
	Designing convenient roles

	Node classifier API v1
	Forming node classifier API requests
	Groups endpoints
	Classes endpoint
	Classification endpoints
	Commands endpoint
	Environments endpoints
	Nodes check-in history endpoints
	Group children endpoint
	Rules endpoint
	Import hierarchy endpoint
	Last class update endpoint
	Update classes endpoint
	Validation endpoint
	Node classifier API errors

	Node classifier API v2
	Classification endpoints
	POST /v2/classified/nodes/<name>

	Node inventory API v1
	Forming node inventory API requests
	Command endpoints
	Query endpoints
	Node inventory API errors

	Managing patches
	Configuring patch management
	Patching nodes

	Orchestrating Puppet runs, tasks, and plans
	How Puppet orchestrator works
	Setting up the orchestrator workflow
	Configuring Puppet orchestrator
	Run Puppet on demand
	Run Puppet on demand from the console
	Run Puppet on demand from the CLI

	Tasks in PE
	Installing tasks
	Running tasks in PE
	Running tasks from the console
	Running tasks from the command line
	Stop a task in progress
	Inspecting tasks

	Writing tasks

	Plans in PE
	Plans in PE versus Bolt plans
	Installing plans
	Running plans in PE
	Running plans from the console
	Running plans from the command line
	Inspecting plans
	Running plans alongside code deployments
	Running plans with pe-plan-runner

	Writing plans
	Writing plans in Puppet language
	Writing plans in YAML

	Orchestrator API v1
	Forming orchestrator API requests
	Root endpoints
	Command endpoints
	Inventory endpoints
	Jobs endpoints
	Scheduled jobs endpoints
	Plans endpoints
	Plan jobs endpoints
	Tasks endpoints
	Usage endpoints
	Scopes endpoints
	Orchestrator API error responses

	Migrating Bolt tasks and plans to PE

	Managing and deploying Puppet code
	Managing environments with a control repository
	Managing environment content with a Puppetfile
	Managing code with Code Manager
	How Code Manager works
	Set up Code Manager
	Configure Code Manager
	Configure Code Manager concurrency
	Lockless code deploys
	Customize Code Manager configuration in Hiera
	Triggering Code Manager on the command line
	Triggering Code Manager with a webhook
	Triggering Code Manager with custom scripts
	Troubleshooting Code Manager
	Code Manager API
	About file sync

	Managing code with r10k
	Set up r10k
	Configure r10k
	Customizing r10k configuration
	Deploying environments with r10k
	r10k command reference

	SSL and certificates
	Regenerate the console certificate
	Regenerate the SAML certificate
	Regenerate infrastructure certificates
	Use an independent intermediate certificate authority
	Use a custom SSL certificate for the console
	Generate a custom Diffie-Hellman parameter file
	Enable TLSv1

	Maintenance
	Back up and restore PE
	Database maintenance
	Rotating the inventory service secret key

	Troubleshooting
	Log locations
	Troubleshooting installation
	Troubleshooting disaster recovery
	Troubleshooting puppet infrastructure run commands
	Troubleshooting connections between components
	Troubleshooting the databases
	Troubleshooting SAML connections
	Troubleshooting backup and restore
	Troubleshooting Windows

	Copyright and trademark notices

